

GCE A LEVEL CHEMISTRY

S21-A410

Assessment Resource A

Chemistry in Practice

١.	that complexes of copper(II) ions can undergo ligand exchange.
	You may choose from the following chemicals ONLY, not all of which need to be used.
	 aqueous copper(II) sulfate aqueous potassium iodide aqueous sulfuric acid aqueous ammonia concentrated hydrochloric acid

.....

- 2. A student was asked to identify four inorganic salts, labelled P, Q, R and S, by their reaction with aqueous sodium hydroxide and by the interactions between their solutions. The student was told that each solution contains
 - · a different cation and that the cations present are

· a different anion and that the anions present are

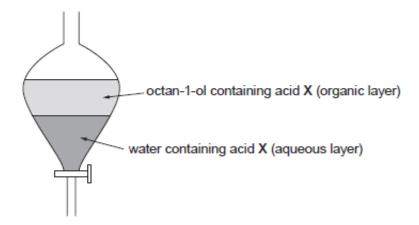
$$I^ CI^ NO_3^ SO_4^{2-}$$

The student tested approximately $2\,\mathrm{cm^3}$ at a time of each solution with NaOH(aq) and then with a few drops of the other solutions in turn.

When no observable reaction happened, "NOR" was recorded in the results table below.

	Р	Q	R	s
NaOH(aq)	white precipitate, insoluble in excess NaOH(aq)	white precipitate, soluble in excess NaOH(aq)	green precipitate, insoluble in excess NaOH(aq)	NOR
s	NOR	white precipitate	heavy white precipitate	
R	NOR	white precipitate		
Q	bright yellow precipitate			

	Comp	lete	the	table	e be	low
--	------	------	-----	-------	------	-----


- . Identify the cation and anion present in each of the four inorganic salts P, Q, R and S.
- Give an ionic equation to show the formation of any one of the precipitates formed. Include state symbols. [10]

Inorganic salt	Cation	Anion
Р		
Q		
R		
s		

Ionic equation	

 A very weak carboxylic acid X, RCOOH, with a molar mass of 116g mol⁻¹ dissolves to some extent in both water and the organic solvent octan-1-ol. Water and octan-1-ol do not mix.

When a sample of pure X is shaken with water and octan-1-ol in a separating funnel and allowed to stand at a constant temperature of 298 K for one week, two layers are formed as shown below.

An equilibrium is established between the amount of X in the two solvents.

Under these conditions at equilibrium the equilibrium constant K is given as

$$K = \frac{[X(\text{organic layer})]}{[X(\text{aqueous layer})]}$$

In an experiment to find the value for the equilibrium constant K, 15.0g of pure X was shaken with 200 cm³ of water and 200 cm³ of octan-1-ol in a separating funnel and left until equilibrium had been established.

After separating the aqueous and organic layers, it was found that 25.0 cm³ of the aqueous solution of X needed 23.50 cm³ of aqueous sodium hydroxide of concentration 0.0200 mol dm⁻³ to neutralise the acid.

(a) (i) The six steps in the calculation to find the value for the equilibrium constant K are shown in a random order in the table below.

Number these steps in the correct order. The first step has already been numbered. [1]

Step	Correct order
Calculate the number of moles of X in the aqueous layer	
Calculate the mass of X in the organic layer and hence its concentration in moldm ⁻³	
Calculate the number of moles of NaOH used in the titration	1
Calculate the value for the equilibrium constant K at 298 K	
Calculate the mass of X in the aqueous layer and hence its concentration in mol dm ⁻³	
Calculate the number of moles of X in 25.0 cm ³ of the aqueous layer	

(ii)	Calculate the value of K.	[5]

(b)	Calc from	ulate the total maximum percentage error in the volume of sodium hydroxide delivered the burette, with a maximum error of half a division (±0.05 cm³). [1]
		Maximum percentage error = %
(c)	(i)	Calculate the pH of the aqueous solution of the weak carboxylic acid X at 298 K. [3]
		($K_{\rm a}$ for carboxylic acid X is 1.32 \times 10 ⁻⁵ mol dm ⁻³ at 298 K)
		pH =

(ii)	sodium acid X.	hydroxic Label th	de solution i ne axes and	s gradually a significant p	dded to 25. oints on th	0 cm ³ of the s e curve.	of 0.0200 mole solution of carbo

