

GCE A LEVEL CHEMISTRY

S21-A410

Assessment Resource B

Organic Chemistry and Analysis

1. The compound below is reduced by sodium tetrahydridoborate(III).

State, giving a reason, whether a primary, secondary or tertiary alcohol is produced.

[1]

[2]

2. The formulae for two aromatic compounds are given below.

$$CH_3$$
 O_2N
 NO_2
 NO_2
 NO_2
 NO_2

Complete the table which describes the ¹HNMR signals for these two compounds.

Compound	Compound Number of peaks	
mesitylene		
TNT		

3.	Benzene-1,2-dicarboxylic acid (or its sodium salt) is heated with sodalime.	
	State the type of reaction that occurs and give the name of the product.	[2]
4.	Draw the structure of a compound that has an empirical formula CH ₄ N.	[1]

5. (a) The characteristic smell of some varieties of blue cheese is due mainly to heptan-2-one.

A teacher was asked whether heptan-2-one could be clearly distinguished from heptan-3-one by some suggested methods. His responses are shown in the table.

Method	Clearly identified?
mass spectroscopy	yes
gas-liquid chromatography	no
boiling temperature	yes
chemical analysis for C, H and O	no
reaction with alkaline iodine	yes
reaction with 2,4-dinitrophenylhydrazine	no
reaction with Tollens' reagent	no

Explain why each response is correct.	[6 QER]

(b) Pentan-2-one contributes to the smell of other blue cheese varieties.
A reaction sequence for obtaining pentane from pentan-2-one is shown below.

(i) Give the skeletal formula of compound F.

(ii) State the role of sulfuric acid when it reacts with compound F and explain why two products are formed. [2]

[1]

(iii)	The final stage involves catalytic hydrogenation. One method of carrying this out is to dissolve the alkene in a suitable solvent and react it with hydrogen at room temperature in the presence of a heterogeneous catalyst.
	State a catalyst that can be used and why this is described as a <i>heterogeneous</i> catalyst. [2]
(iv)	One solvent that can be used for the hydrogenation described in (iii) above is hexane. The boiling temperatures of pentane and hexane are 35 °C and 69 °C respectively. State the name of a method that can be used to separate these two compounds. [1]

(v) The boiling temperatures of some alkanes are shown in the table.

Alkane	Boiling temperature / °C
2,2-dimethylpropane	9
2-methylbutane	28
pentane	35
2,2-dimethylbutane	50
2-methylpentane	60
hexane	69
heptane	98

de	State two factors that affect the boiling temperature deduced from the formulae of these alkanes. Suggest in boiling temperatures.	

(vi) A radical reaction occurs when alkanes are reacted with chlorine in the presence of ultraviolet light. For example in the chlorination of butane.

 Give the displayed formula of the carbon-containing radical that leads to 2-chlorobutane.

II. State the name of an alkane that can be made as a side product during the chlorination of butane.
[1]

.....

(a) Ketone W reacted with phosphorus(V) chloride to give the corresponding dichloro compound.

ketone W

(i)	Describe how to show the presence of chlorine in this compound.	[4]
(ii)	6.35g of the dichloro compound formed from ketone W contained 50.3% of chlorine by mass, the remainder being carbon and hydrogen.	
	Calculate the relative molecular mass of the dichloro compound.	[2]

(iii) Explain why both the molecules shown below have the same splitting pattern in their ¹H NMR high resolution spectra. [1]

.....

(iv) The ¹H NMR spectrum of ketone W is shown below.

Assuming that the alkyl groups R and R' are the same, use the information from the NMR spectrum to deduce the structure of ketone **W**. [3]

(b)	The and	relative molecular mass of a volatile compound L can be found by weighing a sample measuring the volume of its vapour at a known temperature and pressure.
	(i)	In an experiment the following results were obtained.
		Mass of liquid L = 0.222g Volume of vapour produced = 111 cm ³ Temperature = 423 K Pressure = 9.50 × 10 ⁴ Pa
		Use this data to calculate the relative molecular mass of compound L. [2]
		<i>M</i> _r =
	(ii)	Tests on liquid L showed that It did not liberate carbon dioxide with sodium hydrogencarbonate solution. It contained 2 oxygen atoms in each molecule When it was heated with aqueous sodium hydroxide it did not produce ethanol as one of the products
		Discuss these results and then suggest a structure for liquid L. [4]