

GCE A LEVEL CHEMISTRY

S21-A410

Assessment Resource F

Physical and Inorganic Chemistry

1.	Complete the arrangement		below, using ar n of cobalt.	rows to rep	resent electron	s, to show the	e electron [1]
	[Ne]	3s	3p		3d	4s	
2.	Complete the		the average mas	s of an atom		ompared to	[1]

1.

3.	(a)	Selenium is an element in the	p-block of the Periodic Table.	
		What information regarding the from this statement?	e electronic structure of the se	lenium atom can be deduced [1]
	(b)	The illustration below gives so in the Periodic Table.	ome information about the ele	ments surrounding selenium
			Sulfur electronegativity = 2.58 boiling temperature = 445 first ionisation energy = 1000 standard electrode potential for S(+6) → S(+4) = +0.16 V	
		As Arsenic electronegativity = 2.18 boiling temperature = 603 first ionisation energy = 947	Se Selenium electronegativity = ? boiling temperature = 685 first ionisation energy = ? standard electrode potential for Se(+6) → Se(+4) = ?	Br Bromine electronegativity = 2.96 boiling temperature = 60
			Te Tellurium electronegativity = 2.10 boiling temperature = 990 standard electrode potential for Te(+6) → Te(+4) = +1.18 V	

All ionisation energies are given in kJ $\rm mol^{-1}$ and all temperatures in $^{\circ}\rm C$

(i)	Both sulfur and selenium have molecules containing rings of eight atoms.	
	Explain the difference in their boiling temperatures.	[2]
(ii)	Suggest values for the missing properties of selenium. Use the ideas you h studied to explain the values you have chosen. [6 Q	ave ER]

(c)	One ident	radioactive isotope of selenium is selenium-75. It can be used as a medical tracer to tify cartilaginous tumours.
	(i)	The half-life of selenium-75 is 120 days. Samples are provided that have eight times higher concentration of selenium-75 atoms than the minimum needed for use as a tracer.
		Find the maximum time a sample can be stored before the concentration of selenium-75 becomes too low to use. [2]
		Time = days
	(ii)	Selenium-75 does not emit alpha particles when it decays.
		Explain why this is important for its use as a medical tracer. [2]
(d)	Sele It ca	nium dioxide, SeO_2 , is a foul smelling solid, with a smell resembling rotting horseradish. n be used to oxidise alkenes.
		$SeO_2 + C_3H_6 + H_2O \longrightarrow H_2SeO_2 + C_3H_6O$
	In ar	oxidation experiment, 2.70 g of C ₃ H ₆ produced a yield of 62% of C ₃ H ₆ O.
	Calc	ulate the mass of C ₃ H ₈ O formed. [2]

Mass = g

4.		nonia, ogen.	NH ₃ , and h	ydrazine, NI	H ₂ NH ₂ ,	are both o	compound	s containing	only nitrog	en and
	(a)	as s		erials, a pre				es nitrogen nperature of		
			N ₂ (g) +	3H ₂ (g) ₹	2NH	l ₃ (g)	ΔΕ	<i>H</i> = −94 kJ mo	ol ⁻¹	
		(i)	Explain fu	illy why a pro	essure	of 200 atm	is used fo	or this reaction	on.	[3]
		(ii)	formation	alpy change for ammon f formation.	value ia. Giv	given abo e one rea	ove is not ason why	the standard this is not th	d enthalpy he standar	change of d enthalpy [1]
		(iii)	Write an e	expression fo	or the e	equilibrium	constant,	K _c , for this r	eaction.	[1]
		(iv)	State the for your a) of inc	reasing te	mperature	on the value	e of <i>K</i> _c . Giv	e a reason [2]

(v)	A mixture of nitrogen and hydrogen has an initial concentration of 0.020 mol dm ⁻³ of
	each gas. The mixture is allowed to come to equilibrium in a fixed volume.

In the equilibrium mixture 20% of the nitrogen gas had been converted into ammonia. Calculate the value of
$$K_{\rm c}$$
 under these conditions.

[3]

- (b) The standard enthalpy change of formation for ammonia is -46 kJ mol⁻¹ and for hydrazine it is +51 kJ mol⁻¹.
 - (i) State what information these values provide about the stability of these molecules. [1]

(ii) One method of producing hydrazine is to oxidise ammonia using an appropriate oxidising agent, such as hydrogen peroxide.

$$2NH_3(g) + H_2O_2(I) \longrightarrow NH_2NH_2(I) + 2H_2O(I)$$
 $\Delta H^{\theta} = -241 \text{ kJ mol}^{-1}$

Substance	Standard enthalpy change of formation, $\Delta_t H^\theta$ / kJ mol ⁻¹	Standard entropy, S ^e / JK ⁻¹ mol ⁻¹
NH ₃ (g)	-46	193
NH ₂ NH ₂ (I)	+51	122
H ₂ O ₂ (I)		102
H ₂ O(I)	-286	70

	I.	Calculate the standard enthalpy change of formation of hydrogen per $\rm H_2O_2.$	oxide, [2]
		$\Delta_{\rm f} H^{\theta} =$ kJ	mol ⁻¹
	II.	Calculate the temperature at which the value of ΔG^θ is equal to zero.	[3]
		T =	I/
	III.	A student states that the temperature calculated in part II is the mir temperature required for the reaction to occur. Is the student correct? reason for your answer.	Give a [2]
(iii)	Ana	Iternative route for producing hydrazine starts with the molecule urea, wluced in biological systems.	
(NH ₂) ₂ CO	+	NaOCI + 2NaOH \longrightarrow N ₂ H ₄ + H ₂ O + NaCI + Na ₂ CO ₃	
		one disadvantage of this route over the production of hydrazine nonia.	from [1]

(iv) Hydrazine can undergo both oxidation and reduction reactions. Electrochemical potentials for both processes are included in the table below.

	Standard electrode potential, E^{θ} / V
$Co^{3+}(aq) + e^{-} \rightleftharpoons Co^{2+}(aq)$	+1.82
$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$	+0.77
$N_2H_4(aq) + 4H_2O(l) + 2e^- \rightleftharpoons 2NH_4^+(aq) + 4OH^-(aq)$	+0.11
V³+(aq) + e ⁻ ⇌ V²+(aq)	-0.26
$Cr^{3+}(aq) + e^{-} \rightleftharpoons Cr^{2+}(aq)$	-0.42
$N_2(g) + 4H_2O(I) + 4e^- \rightleftharpoons N_2H_4(aq) + 4OH^-(aq)$	-1.15

will [2]
zine [2]
[2]