GCE A LEVEL CHEMISTRY S21-A410 ## **Assessment Resource D** Physical and Inorganic Chemistry | 1. | Draw a dot-and-cross diagram to show the bonding of the compound magnesium fluoride. | [2] | |----|--|------| ĺ | | 2. | When blue crystals of ${\rm CuSO_4.5H_2O}$ are heated they form a white solid. Upon addition of w they return to their original blue colour. | ater | | | Explain these observations. | [2] | 3. | A sam | nple o | f the element boron contains 22.10% boron-10 and 77.90% boron-11. | | | | | | |----|---|---|---|--------------|--|--|--|--| | | Calcu
figure | | he relative atomic mass of this sample, giving your answer to four signif | icant
[2] | | | | | | | | | A _r = | | | | | | | 4. | Many common acids donate one hydrogen ion during chemical reactions, however others can donate two or more hydrogen ions. | | | | | | | | | | (a) | Hydrochloric acid, HCl, and ethanoic acid, CH ₃ COOH, are examples of monobasic acids – these are acids that can donate only one hydrogen ion in chemical reactions. | | | | | | | | | | Hydr | ochloric acid is a strong acid and ethanoic acid is a weak acid. | | | | | | | | | (i) | Define pH. | [1] | | | | | | | | (ii) | Write an expression for the acid dissociation constant, $\mathcal{K}_{\mathbf{a}}$, for ethanoic acid. | [1] | | | | | | | | | | l | (iii | A student | makes | the | following | statements: | |------|-----------------------------|-------|-----|-----------|-------------| |------|-----------------------------|-------|-----|-----------|-------------| - when the concentration of any monobasic acid is doubled, the concentration of H⁺ ions is also doubled; this applies to both strong acids and weak acids - each time the concentration of an acid is doubled, the pH value increases by 0.3 | 0.3 | | |---|-----------------------------------| | Is the student correct? Explain your answer. | | | You should refer to both statements and the difference(s) be weak acids in your answer. | tween strong acids and
[6 QER] | (b) | | uric acid is a dibasic acid as it can donate up to two hydrogen ions during chemical tions. | | | | | | | |-----|--|---|--|--|--|--|--|--| | | Whe | en a small amount of sodium hydroxide is present the following reaction can occur. | | | | | | | | | $H_2SO_4(aq) + NaOH(aq) \longrightarrow NaHSO_4(aq) + H_2O(l)$ | | | | | | | | | | Whe | n more sodium hydroxide is present the following reaction can occur. | | | | | | | | | | NaHSO ₄ (aq) + NaOH(aq) → Na ₂ SO ₄ (aq) + H ₂ O(I) | | | | | | | | | (i) | The soluble salt $NaHSO_4$ can be prepared as a white solid using the first reaction above. Briefly outline how this preparation would be undertaken. | | | | | | | | | | A detailed experimental procedure is not required. [4] | | | | | | | | | | | | | | | | | | | ••••• | | | | | | | | | | ***** | (ii) | The NaHSO $_4$ formed in this preparation is hydrated and has the formula NaHSO $_4$. x H $_2$ O. | | | | | | | | | | In an experiment a sample of NaHSO $_{\rm 4}x{\rm H}_{\rm 2}{\rm O}$ was heated to constant mass. The sample lost 37.5 % of its mass. | | | | | | | | | | Calculate the value of x in the formula NaHSO _{4-x} H ₂ O. [3] | x = | | | | | | | | | | NaHSO ₄ can also be formed by reaction of concentrated sulfuric acid with sodium halides such as sodium chloride, sodium bromide or sodium iodide. | |-----|------|---| | | | When concentrated sulfuric acid is added to one of these halides several changes are observed, including a smell of rotten eggs. | | | | Identify the halide used and explain why the smell is observed with this halide but not with the others. | | | | | | | | | | | | | | (c) | | y reactions of acids produce hydrogen gas. When an electrical discharge is passed
igh this gas certain frequencies of energy are emitted. | | | (i) | Explain why this energy is emitted. [2] | | | | | | | | | | | (ii) | The first ionisation energy of hydrogen is 1316 kJ mol ⁻¹ . | | | (ii) | The first ionisation energy of hydrogen is 1316 kJ mol ⁻¹ . Calculate the wavelength of the convergence limit of the Lyman series for hydrogen in nm. | | | (ii) | Calculate the wavelength of the convergence limit of the Lyman series for hydrogen | | | (ii) | Calculate the wavelength of the convergence limit of the Lyman series for hydrogen | | | (ii) | Calculate the wavelength of the convergence limit of the Lyman series for hydrogen | | | (ii) | Calculate the wavelength of the convergence limit of the Lyman series for hydrogen | It is possible to study the concentration dependence of rate by finding how the rate of a reaction changes over time. This is because the concentrations of the reactants change over time. The reaction below occurs in non-aqueous solution in the presence of a small amount of water. $$C_2H_5Br + OH^- + H_2O \longrightarrow C_2H_5OH + Br^- + H_2O$$ Three students carried out experiments to find how the concentration of each reactant affects the rate. Each one changed the concentration of a different reactant. They used the initial concentrations shown below and an automated sampling device to take measurements every 10 minutes for 6 hours. | | Initial concentration of each reactant / mol dm ⁻³ | | | | |--|---|-------------------------|-------------------------|--| | | [C ₂ H ₅ Br] | [OH-] | [H ₂ O] | | | George's experiment:
Finding the effect of [C ₂ H ₅ Br] on rate | 2.00 × 10 ⁻³ | 2.00 | 2.00 | | | Hannah's experiment:
Finding the effect of [H ₂ O] on rate | 2.00 | 2.00 | 2.00 × 10 ⁻³ | | | Jamal's experiment:
Finding the effect of [OHT] on rate | 2.00 | 2.00 × 10 ⁻³ | 2.00 | | (a) The results obtained in George's experiment are shown on the graph below. Time / 103 seconds | | (i) | Calculate the initial rate for the reaction, stating its unit. | [3] | |----|------|---|------| Initial rate = | | | | | Unit | | | | (ii) | Use the graph to show that the reaction is first order with respect to C ₂ H ₅ Br. | [2] | Sua | goet why this method upon much lower concentrations of the recetants being at u | diad | | b) | than | gest why this method uses much lower concentrations of the reactants being stu-
those of the other reactants involved. | [1] | nah finds that the concentration of water does not change during her ex | cperiment. | |--|---| | Give a reason why the concentration of water does not change. | [1] | | The order of the reaction with respect to water is zero. Suggest how F confirm this. | Hannah could
[1] | | | | | al carried out his experiment at a slightly different temperature from Ge | orge. | | ound that the reaction is first order with respect to hydroxide ions. T
tion is therefore as follows. | The final rate | | $rate = k[C_2H_5Br][OH^-]$ | | | value of the rate constant is 4.07×10^{-5} . | | | Give the unit of the rate constant. | [1] | | The activation energy for this reaction is $89.5k\text{J}\text{mol}^{-1}$ and its frequents a value of 4.30×10^{11} . | ncy factor, A, | | Calculate the temperature used for Jamal's experiment. | | | You must show your working. | [3] | The order of the reaction with respect to water is zero. Suggest how had carried out his experiment at a slightly different temperature from Geround that the reaction is first order with respect to hydroxide ions. The strength of the rate constant is 4.07×10^{-5} . Give the unit of the rate constant. The activation energy for this reaction is $89.5 \text{kJ} \text{mol}^{-1}$ and its frequence has a value of 4.30×10^{11} . Calculate the temperature used for Jamal's experiment. |