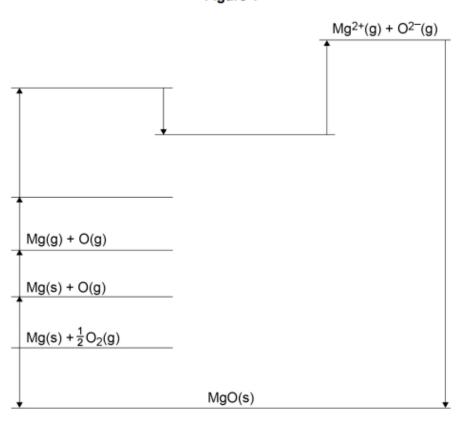


A- level Chemistry

Physical Chemistry

Total number of marks: 55

molecule has that shape and how the shape influences the forces that affect the		In your answer you should give the shape of each molecule, explain why each molecule has that shape and how the shape influences the forces that affect the melting point.
---	--	--


0 4	Compounds A and B react together to form an equicompounds C and D according to the equation	uilibrium mixture containing	
	2A + B ⇌ 3C	+ D	
0 4.1	A beaker contained 40 cm ³ of a 0.16 mol dm ⁻³ of s 10 ⁻³ mol of B and 2.8 × 10 ⁻² mol of C were was left to reach equilibrium. The equilibrium mixture formed contained 3.9 ×	re added to the beaker and the	mixture
	Calculate the amounts, in moles, of B , C and D		5 marks]
	Am	ount of B	mol
	Am	ount of C	mol
	Am	ount of D	mol
0 4.2	Give the expression for the equilibrium constant		ts units. 2 marks]
	K _c		
		Units	

0 4.3	A different equilibrium mixture of these four compounds, at a different temperature 0.21 mol of $\bf B$, 1.05 mol of $\bf C$ and 0.076 mol of $\bf D$ in a total volum 5.00 × 10 ² cm ³ of solution. At this temperature the numerical value of K_c was 116	
	Calculate the concentration of A , in mol dm ⁻³ , in this equilibrium mixture. Give your answer to the appropriate number of significant figures.	[3 marks]
		3
	Concentration of A	_mol dm ⁻³

- 0 1 This question is about lattice enthalpies.
- 0 1 . 1 Figure 1 shows a Born–Haber cycle for the formation of magnesium oxide.

Complete **Figure 1** by writing the missing symbols on the appropriate energy levels. [3 marks]

Figure 1

0 1.2 Table 1 contains some thermodynamic data.

Table 1

	Enthalpy change / kJ mol ⁻¹
Enthalpy of formation for magnesium oxide	-602
Enthalpy of atomisation for magnesium	+150
First ionisation energy for magnesium	+736
Second ionisation energy for magnesium	+1450
Bond dissociation enthalpy for oxygen	+496
First electron affinity for oxygen	-142
Second electron affinity for oxygen	+844

Calculate a value for the enthalpy of lattice formation for magnesium oxide.

[3 marks]

Enthalpy of lattice for	mation	kJ	mol ⁻¹	
_ intridipy of lattice for	TIGUOTI	110	11101	

0 3

The equation for the reaction between ammonia and oxygen is shown.

$$4NH_3(g) + 5O_2(g) \rightleftharpoons 4NO(g) + 6H_2O(g)$$
 $\Delta H = -905 \text{ kJ mol}^{-1}$

$$\Delta H = -905 \text{ kJ mol}^{-1}$$

Some standard entropies are given in Table 3.

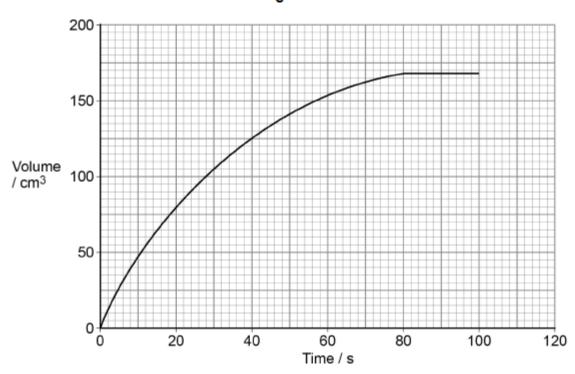
Table 3

Gas	S ^o / J K ⁻¹ mol ⁻¹
NH₃(g)	193
O ₂ (g)	205
NO(g)	211
H₂O(g)	189

		1120(9)	100		
024	Calculate the entropy cha	nge for the	reaction between	ammonia and o	wwaen
0 3 . 1	Calculate the entropy cha	ilge for the	reaction between	ammonia and o	[2 marks]
		Entr	ropy change		J K ⁻¹ mol ⁻¹
		2110	opy onango		

0 3.2	Calculate a value for the Gibbs free-energy change (ΔG), in kJ mol ⁻¹ , for the reaction between ammonia and oxygen at 600 °C
	(If you were unable to obtain an answer to Question 03.1 , you should assume that the entropy change is 211 J K ⁻¹ mol ⁻¹ . This is not the correct answer.) [2 marks]
	ΔG kJ mol $^{-1}$
0 3.3	The reaction between ammonia and oxygen was carried out at a higher temperature. Explain how this change affects the value of ΔG for the reaction. [2 marks]

0 1 This question is about rates of reaction.


Phosphinate ions (H₂PO₂-) react with hydroxide ions to produce hydrogen gas as shown.

$$H_2PO_2^- + OH^- \rightarrow HPO_3^{2-} + H_2$$

A student completed an experiment to determine the initial rate of this reaction. The student used a solution containing phosphinate ions and measured the volume of hydrogen gas collected every 20 seconds at a constant temperature.

Figure 1 shows a graph of the student's results.

0 1 . 1	Use the graph in Figure 1 to determine the initial rate of reaction for this experiment.
	State its units. Show your working on the graph.

[3 marks]

Rate _____ Units ____

0 1 . 2

Another student reacted different initial concentrations of phosphinate ions with an excess of hydroxide ions. The student measured the time (*t*) taken to collect 15 cm³ of hydrogen gas. Each experiment was carried out at the same temperature. **Table 1** shows the results.

Table 1

Initial [H ₂ PO ₂ ⁻] / mol dm ⁻³	t/s
0.25	64
0.35	32
0.50	16
1.00	4

State the relationship between the initial concentration of phosphinate and time (t).

Deduce the order of the reaction with respect to phosphinate.

[2 marks]

Relationship			
Order			

0 1 . 3

Complete the diagram in **Figure 2** to show how the hydrogen gas could be collected and measured in the experiments in Questions **01.1** and **01.2**.

[1 mark]

Figure 2

The rate equation for a different reaction is

rate = $k [L] [M]^2$

0 1.4	Deduce the overall effect on the rate of reaction when the concentrations of both L and M are halved.			
	[1 mark]			
0 6	Standard electrode potentials are measured by comparison with the standard hydrogen electrode.			
0 6.1	State the substances and conditions needed in a standard hydrogen electrode. [3 marks]			
	i de la companya de			

0 6.4 Table 2 shows some electrode potential data.

Table 2

Electrode reaction	<i>E</i> ∘ / V
2 H ⁺ (aq) + 2 e ⁻ →H ₂ (g)	0.00
Cu ²⁺ (aq) + 2 e ⁻ →Cu(s)	+0.34
NO ₃ ⁻ (aq) + 4 H ⁺ (aq) + 3 e ⁻ →NO(g) + 2 H ₂ O(l)	+0.96

Use the data in **Table 2** to explain why copper does **not** react with most acids but does react with nitric acid.

Give an equation for the reaction between copper and nitric acid.

[3 marks]

Explanation			
Equation			
Equation			

- 0 2 This question is about sulfuric acid and its salts.
- **0 2** In aqueous solution, sulfuric acid acts as a strong acid. The H₂SO₄ dissociates to form HSO₄⁻ ions and H⁺ ions.

The HSO₄⁻ ions act as a weak acid and dissociate to form SO₄²⁻ ions and H⁺ ions.

Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution.

Include appropriate arrows in your equations.

[2 marks]

Equation 1

Equation 2

0 2.4	A solution that contains 605 mg of NaHSO ₄ in 100 cm ³ of solution has a pH of 1.72 Calculate the value of K_a for the hydrogensulfate ion (HSO ₄ ⁻) that is behaving as a weak acid. Give your answer to three significant figures.		
	State the units of K _a [6 marks]		
	K _a Units		

0 8	Which has a bond angle of 109.5°?	[1 mark]
	A C (diamond)	0
	B C (graphite)	0
	C NH ₂ ⁻	0
	D NH ₃	0

1 3	Which statement about pH is correct?		[1 mark]
	A The pH of a weak base is independent of temperature.	0	
	B At temperatures above 298 K, the pH of pure water is less than 7.	0	
	C The pH of 2.0 mol dm ⁻³ nitric acid is approximately 0.30	0	
	D The pH of 0.10 mol dm ⁻³ sulfuric acid is greater than that of 0.10 mol dm ⁻³ hydrochloric acid.	0	
3 2	Which is the concentration of NaOH(aq), in mol dm ⁻³ , that has pH = 1	4.30?	
	$K_{\rm w}$ = 1.00 × 10 ⁻¹⁴ mol ² dm ⁻⁶ at 25 °C		[1 mark]
	A -1.16	0	
	B 5.01×10^{-15}	0	
	$\mathbf{C} \ \ 2.00 \times 10^{14}$	0	
	D 2.00	0	
11	In which conversion is the metal reduced?		[1 mark]
	$A Cr2O72- \rightarrow CrO42-$	0	
	B $MnO_4^{2-} \rightarrow MnO_4^{-}$		
		0	
	C $TiO_2 \rightarrow TiO_3^{2-}$	0	
3 3	C $TiO_2 \rightarrow TiO_3^{2-}$	0	[1 mark]
3 3	C $TiO_2 \rightarrow TiO_3^{2-}$ D $VO_3^- \rightarrow VO^{2+}$	0	[1 mark]
3 3	C TiO $_2 \to TiO_3^{2-}$ D VO $_3^- \to VO^{2+}$ What are the units of the rate constant for a third order reaction?	0 0	[1 mark]
3 3	C $TiO_2 \to TiO_3^{2-}$ D $VO_3^- \to VO^{2+}$ What are the units of the rate constant for a third order reaction? A mol dm ⁻³ s ⁻¹	0 0	[1 mark]
3 3	C $TiO_2 \rightarrow TiO_3^{2-}$ D $VO_3^- \rightarrow VO^{2+}$ What are the units of the rate constant for a third order reaction? A $mol\ dm^{-3}\ s^{-1}$ B $mol^{-1}\ dm^3\ s^{-1}$	0 0 0	[1 mark]

3 4	What is the pH of 0.015 mol dm ⁻³ sulfuric acid?	[1 mark]
	A -1.82	0
	B −1.52	0
	C 1.52	0
	D 1.82	0