

A- level Chemistry

Inorganic Chemistry

Total number of marks: 47

0 2	The elements	sodium to	sulfur in Period	3 all react with	oxygen	to form oxides.		
0 2.1		Give an equation and two observations made for the reaction that occurs when sodium is heated in oxygen. [2 marks]						
	Equation							_
	Observation	1						_
								_
0 2.2	,	ation and o	ne observation			that occurs wh	en [2 marks]]
	Equation							_
	Observation							_
0 2.3	The melting	points of th	ne highest oxide	es of the eleme	ents sodi	um to sulfur are	e shown in	1
				Table 2				
				Highest oxi	de of			
		sodium	magnesium	aluminium	silicon	phosphorus	sulfur	
	Melting point/K	1548	3125	2345	1883	573	290	
	Explain the in	ncrease in	melting point for	rom sodium ox	ide to ma	agnesium oxide	e. [2 marks]
								_

0 2 . 4	Explain why the melting point of the oxide of silicon is much higher than that of the highest oxide of phosphorus.
	[3 marks]
0 3	This question is about Period 3 elements.
0 3 . 3	Explain why the atomic radius decreases across Period 3, from sodium to chlorine. [2 marks]
0 3 . 3	· · · · ·
0 3.3	· · · · ·
0 3.3	· · · · ·

- 0 5 This question is about some Group 7 compounds.
 - 0 5. 5 Solution Y contains two different negative ions.

To a sample of solution Y in a test tube a student adds

- · silver nitrate solution
- · then an excess of dilute nitric acid
- · finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

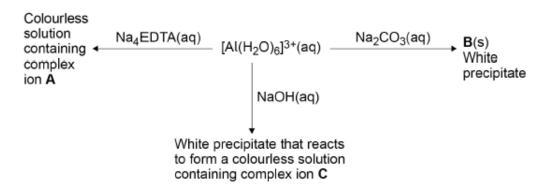
Table 3

Reagent added to solution Y	Observation
silver nitrate solution	cream precipitate containing compound D and compound E
excess dilute nitric acid	cream precipitate D and bubbles of gas F
excess concentrated ammonia solution	colourless solution containing complex ion G

Give the formulas of **D**, **E** and **F**.

Give an ionic equation to show the formation of E.

Give an equation to show the conversion of **D** into **G**.


[6 marks] Formula of **D** Formula of E Formula of F Ionic equation to form E Equation to show the conversion of **D** into **G**

0 3.1	Explain why complexes formed from transition metal ions are coloured. [3 marks]
	The iron content of iron tablets can be determined by colorimetry. Method: Dissolve a tablet in sulfuric acid. Oxidise all the iron from the tablet to Fe³+(aq). Convert the Fe³+(aq) into a complex that absorbs light of wavelength 490 nm Make the solution up to 250 cm³ Measure the absorbance of light at 490 nm with a colorimeter. Use a calibration graph to find the concentration of the iron(III) complex.
0 3.2	Calculate the energy, in J, gained by each excited electron in the absorption at 490 nm Speed of light, $c = 3.00 \times 10^8 \text{m s}^{-1}$ Planck constant, $h = 6.63 \times 10^{-34} \text{J s}$ [3 marks]
	Energy gained by each electron
	Energy gained by each electron J

0 3.3	Describe how a calibration graph is produced and used to find the concentration of the iron(III) complex.
	[3 marks]
0 1 T	his question is about emissions of oxides of nitrogen from petrol and diesel engines.
0 1.4	Petrol vehicles have a catalytic converter which decreases emissions of oxides of nitrogen.
	Platinum in the catalytic converter acts as a heterogeneous catalyst.
	State the meaning of the term heterogeneous catalyst.
	[2 marks]
•	

Γ

Some reactions of the [Al(H₂O)₆]³+(aq) ion are shown.

0	5		1	Give the	formula	of the	white	precipitate	В
---	---	--	---	----------	---------	--------	-------	-------------	---

State **one** other observation when $Na_2CO_3(aq)$ is added to a solution containing $[Al(H_2O)_6]^{3+}(aq)$ ions.

Give an equation for this reaction.

[3 marks]

Formula of B _____

Observation

Equation

0 5. 2 Give the formula of the complex ion C.

State **one** condition needed for the formation of ${\bf C}$ from $[Al(H_2O)_6]^{3+}(aq)$ and NaOH(aq).

Give an equation for this reaction.

[3 marks]

Formula of C ____

Condition

Equation

0 5.3	Deduce the formula of the complex ion A .	[1 mark]
0 5.4	Explain, with the use of an equation, why a solution containing [Al(H ₂ C a pH <7	
	Equation	[3 marks]
	Explanation	
		1
1 5	In the test for a halide ion in aqueous solution, dilute nitric acid is added addition of silver nitrate solution.	ed before the
	Why is nitric acid added?	[1 mark]
	A It increases the concentration of nitrate ions.	0
	B It prevents the precipitation of silver compounds other than halides	. 0
	C It prevents the silver nitrate being precipitated.	0
	D It provides the acidic solution required for precipitation.	0
1 7	Which shows the electron configuration of an atom of a transition met	al? [1 mark]
	A [Ar] 4s ² 3d ⁰	0
	B [Ar] 4s ² 3d ⁸	0
	C [Ar] 4s ² 3d ¹⁰	0

1 8	Which will not act as a ligand in the formation of a complex ion?	[1 mark]
	A CH ₄	0
	B CO	0
	C H ₂ O	0
	D NH ₃	0

1 9]	Which shows the correct oxidation state and co-ordination number of cobalt in
	-	[Co(NH3)5Cl]Cl2?

[1 mark]

	oxidation state	co-ordination number	
A	+2	5	0
В	+2	6	0
С	+3	5	0
D	+3	6	0

2 1	Which compound decolourises acidified potassium manganate(VII) so	lution?	[1 mark]
,	A Al ₂ (SO ₄) ₃	0	
E	3 CuSO ₄	0	
C	C FeSO ₄	0	
ι	D Fe ₂ (SO ₄) ₃	0	

	What is the minimum volume, in cm 3 , of 0.02 mol dm $^{-3}$ KMnO $_4$ solution needed oxidise 0.01 mol of VO $^{2+}$?		
	$5 \text{ VO}^{2^+} + \text{MnO}_4^- + \text{H}_2\text{O} \rightarrow 5 \text{VO}_2^+ + \text{Mn}^{2^+} + 2 \text{H}^+$	[1 mark]	
A	. 10	0	
В	50	0	
С	100	0	
D	200	0	

1 5	What is the correct observation when barium metal is added to an excess of water? [1 mark]	
	A Forms a colourless solution only	0
	B Forms a colourless solution and effervesces	0
	C Forms a white precipitate only	0
	D Forms a white precipitate and effervesces	0

1 6	An aqueous solution of a salt gives a white precipitate when mixed wi aqueous silver nitrate and when mixed with dilute sulfuric acid. Which could be the formula of the salt?	th [1 mark]
	A BaCl ₂	0
	B (NH ₄) ₂ SO ₄	0
	C KCI	0
	D Sr(NO ₃) ₂	0

1 8	What is observed when concentrated hydrochloric acid is added to a solution of CuSO ₄ until no further change occurs?	n aqueous [1 mark]
	A A colourless gas is evolved and a precipitate forms.	0
	B A colourless gas is evolved and no precipitate forms.	0
	A precipitate forms that dissolves in an excess of concentrated hydrochloric acid.	0
	D The solution changes colour and no precipitate forms.	0