

A-level Chemistry Inorganic Chemistry

Total number of marks: 47

Permission to reproduce all copyright material has en applied for. In some cases, efforts to contact copyrighblders may have been unsuccessful and AQA will be happy to rectify any omissions of acknowledgem#ntsu have any queries please contact the Copyright Team.

0 2	The elements s	sodium to s	sulfur in Period	3 all react with	oxygen	to form oxides.	
02.1	Give an equation and two observations made for the reaction that occurs when sodium is heated in oxygen. [2 marks]						
	Equation <u>4Na(s)</u> + O _{2(g)} > 2Na ₂ O(g) Observation 1 <u>or ange flame</u> Observation 2 <u>white solid for med</u>						
02.2	Give an equation and one observation made for the reaction that occurs when phosphorus is heated in oxygen. [2 marks]						
	Equation	βy	+502	—> Рч	0 10		
	Observation	wh	ite smoke				
0 2 3 The melting points of the highest oxides of the elements sodium to sulfur are shown in Table 2.							
				Table 2			
				Highest oxi	de of		
		sodium	magnesium	aluminium	silicon	phosphorus	sulfur
	Melting point/K	1548	3125	2345	1883	573	290
Explain the increase in melting point from sodium oxide to magnesium oxide. [2 marks]							
1	in magnes brces of c	<u>sium ox</u> attracti	ide ther onbotwe	eare str en the N	onger 1g ²⁺	- electrost and 02-	atic ions
to an between $N(1^{+})$ and Ω^{2-} so mare one rall is							
realized to break to a indich and in Man than Man							
This is because Ma ²⁺ has a higher nuclear charge than							
No ⁺							
	INM .						

02.4	Explain why the melting point of the oxide of silicon is much higher than that of the highest oxide of phosphorus. [3 marks]				
	silicon is a larger molecule (S8) than phosphorus (P4)				
	so there are stronger van der Waals forces between the				
	molecules, therefore more energy is required to break these forces				
0 3	This question is about Period 3 elements.				
03.3	Explain why the atomic radius decreases across Period 3, from sodium to chlorine. [2 marks]				
	atomic radius decreases as menumber of protons in the				
	nucleus increases, so the nuclear charge increases and				
	me out er electrons are more strongly attracted to the				
	nucleus so pulled dos er in				

Г

This question is about some Group 7 compounds.

0 5. **5** Solution Y contains two different negative ions.

To a sample of solution Y in a test tube a student adds

- · silver nitrate solution
- then an excess of dilute nitric acid
- finally an excess of concentrated ammonia solution.

The observations after each addition are recorded in Table 3.

Table 3

Reagent added to solution Y	Observation
silver nitrate solution	cream precipitate containing compound D and compound E
excess dilute nitric acid	cream precipitate D and bubbles of gas F
excess concentrated ammonia solution	colourless solution containing complex ion ${\bf G}$

Give the formulas of **D**, **E** and **F**. Give an **ionic** equation to show the formation of **E**. Give an equation to show the conversion of **D** into **G**.

[6 marks]

Formula of D	<u></u> AgBr			
Formula of E	Ag 2 CO 3			
Formula of F				
Ionic equation to form E				
$2Ag^{+} + CO_{3}^{2}$ -	→ Ag2CO3			
Equation to show the conversion of D into G				
NH3 + AgBr	\longrightarrow	$\left[f_{10}(N_{13})_{2}\right]^{\dagger} + Br^{-}$		

	0 3 . 3 Describe how a calibration graph is produced and used to find the concentration of the iron(III) complex.
	[3 marks]
	produce a calibration graph by measuring the absorbance
	of five known concentrations and plot concentration (on x
	axis) and absorbance (on y axis). Draw a line of best fit and
[then measure the absorbance of the iron(11) complex Draw a line across from absorbance and down to concentration This question is about emissions of oxides of nitrogen from petrol and diesel engines.
	0 1 . 4 Petrol vehicles have a catalytic converter which decreases emissions of oxides of nitrogen. Platinum in the catalytic converter acts as a heterogeneous catalyst.
	State the meaning of the term heterogeneous catalyst. [2 marks]
	a cataly st that is in a different state to the
	reactants

Some reactions of the [Al(H2O)8]3+(aq) ion are shown.

 $[A1(H_2O)_3(OH)_3]$ Colourless solution Na₂CO₃(aq) Na₄EDTA(aq) B(s) [Al(H2O)6]3+(aq) containing + White complex precipitate ion A [AL (EDTA)] NaOH(aq) White precipitate that reacts to form a colourless solution $C : \left[Al(1_2O)_2(01)_{4}\right]^{-1}$ containing complex ion C 0 5 . 1 Give the formula of the white precipitate B. State one other observation when Na₂CO₃(aq) is added to a solution containing $[Al(H_2O)_6]^{3+}(aq)$ ions. Give an equation for this reaction. [3 marks] Formula of **B** $\left[A \left[(H_2 0)_3 (0H)_3 \right] \right]$ Equation $2 \left[A \left[(H_2 0)_6 \right]^{3^+} + 3 (D_3^{2^-} \longrightarrow 2 \left[A \left[(H_2 0)_3 (OH)_3 \right] + 3 (O_2^{2^+} + 3 H_2 O_2^{2^+})^{3^+} + 3 (O_2^{2^+} + 3 H_2 O_2^{2^+} + 3 H_2 O_2^{2^+})^{3^+} + 3 (O_2^{2^+} + 3 H_2 O_2^{2^$ 0 5 . 2 Give the formula of the complex ion C. State one condition needed for the formation of C from [Al(H2O)6]3+(aq) and NaOH(aq). Give an equation for this reaction. [3 marks] Formula of **c** $\left[Al(1_2 D)_2(01)_{4}\right]^{-1}$ Naoti in excess Condition Equation $\left[Al(11_{2}0)_{6}\right]^{3+} + 401^{-} \longrightarrow \left[Al(11_{2}0)_{2}(01)_{4}\right]^{-} + 4120$

0 5

0 5.3	Deduce the formula of the complex ion A.
	(AL (EDTA))
0 5.4	Explain, with the use of an equation, why a solution containing $[Al(H_2O)_6]^{3+}$ has a pH <7 [3 marks]
	Equation
	$\frac{\left(A\left(\frac{1}{20}\right)_{6}\right)^{3\dagger}}{A\left(\frac{1}{20}\right)_{5}\left(0^{\dagger}\right)_{2}} + \frac{1}{1^{4}}$ Explanation <u>Al ^{3†} a(ts as an acid and dissociates to form</u> $\frac{1}{1^{4}} \frac{1}{100} $

1 5	In the test for a halide ion in aqueous solution, dilute nitric acid is added before the addition of silver nitrate solution.			
	Why is nitric acid added?	[1 mark]		
	A It increases the concentration of nitrate ions.	0		
	B It prevents the precipitation of silver compounds other than halides	. •		
	C It prevents the silver nitrate being precipitated.	0		
	D It provides the acidic solution required for precipitation.	0		
17	Which shows the electron configuration of an atom of a transition meta	al? [1 mark]		
	A [Ar] 4s ² 3d ⁰	0		
	B [Ar] 4s ² 3d ⁸	•		
	C [Ar] 4s ² 3d ¹⁰	0		
	D [Ar] 4s ² 3d ¹⁰ 4p ¹	0		

, P soluble, no ppt

1 8

 $\hfill H(\hfill l)$ What is observed when concentrated hydrochloric acid is added to an aqueous solution of CuSO_4 until no further change occurs?

[1 mark]

A colourless gas is evolved and a precipitate forms.	0
B A colourless gas is evolved and no precipitate forms.	0
c A precipitate forms that dissolves in an excess of concentrated hydrochloric acid.	0
D The solution changes colour and no precipitate forms.	•