

2021 ASSESSMENT MATERIALS

GCSE BIOLOGY

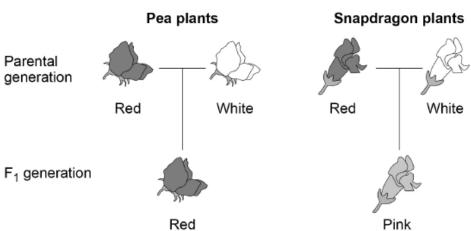
Biology Test 4: Inheritance, variation and evolution (Higher)

Total number of marks: 34

0 5 Table 2 gives the classification of four plant species.

Table 2

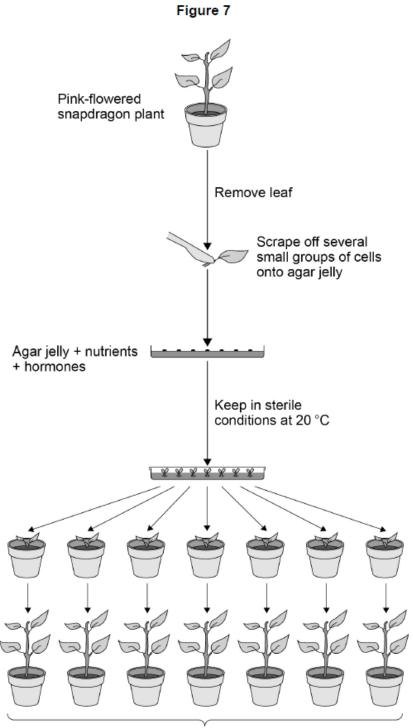
Group	Species 1	Species 2	Species 3	Species 4
Kingdom	Plantae	Plantae	Plantae	Plantae
Phylum	Spermatophyta	Spermatophyta	Spermatophyta	Spermatophyta
Class	Monocotyledonae	Dicotyledonae	Monocotyledonae	Dicotyledonae
Order	Poales	Fabales	Poales	Scrophulariales
Family	Cyperaceae	Fabaceae	Poaceae	Scrophulariaceae
Genus	Eriophorum	Pisum	Poa	Antirrhinum
Species	angustifolium	sativum	annua	majus


0 5.1 Species 1 and 3 are the most closely related.

What information in Table 2 gives evidence for this?

[1 mark]

Figure 6 shows the inheritance of flower colour in two species of plant.


- In pea plants and in snapdragon plants, flower colour is controlled by one pair of alleles.
- In Figure 6 the parental generation plants are homozygous for flower colour.
- In heterozygous pea plants, the allele for red flower colour is dominant.
- In heterozygous snapdragon plants, the alleles for flower colour are both expressed.

Use the following symbols for alleles in your answers to Questions 05.2 to 05.4:

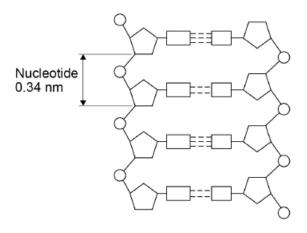
	Pea plants	Snapdragon plants	
	R = allele for red flowers r = allele for white flowers	C ^R = allele for red flowers C ^w = allele for white flowers	
0 5.2	What is the genotype of the red-flowered pe	ea plants in the F ₁ generation?	[1 mark]
0 5.3	What is the genotype of a white-flowered sr	napdragon plant?	[1 mark]

Commercially, hundreds of pink-flowered snapdragon plants can be produced from one pink-flowered plant.

Figure 7 shows a tissue culture technique used for producing many plants from one plant.

Many snapdragon plants, all with pink flowers

0 5.6	Give a reason for each of the following steps shown in Figure 7.	[5 marks]
	Several groups of cells are scraped off the leaf:	
	Nutrients are added to the agar jelly:	
	Hormones are added to the agar jelly:	
	The plant cells are kept in sterile conditions:	
	The plant cells are kept at 20 °C:	
0 5 7	Explain why the method shown in Figure 7 produces only pink-flowered plan	nts.
		[2 marks]


0 4 DNA is a polymer of nucleotides.

0 4 . 1 Why is DNA described as a polymer?

[1 mark]

Figure 5 shows part of a DNA molecule.

Figure 5

0 4 . 2 Describe the structure of a nucleotide.

[4 marks]

0 4 . 3	The length of a DNA double helix increases by 0.34 nm for every pair of nucleotides.		
	The total number of nucleotides in a human body cell is 1.2×10^{10} .		
	Calculate the total length of double helix in a human body cell.		
	Give your answer in metres. Use information from Figure 5.	[5 marks]	
	Total length =	m	
0 4.4	Some parts of DNA do not code for proteins.		
	Describe how non-coding parts of DNA can affect the expression of genes.	[1 mark]	

0 5	There are two types of cell division: mitosis and meiosis.	
0 5 . 1	Describe three differences between the processes of mitosis and meiosis.	[3 marks]
	1	
	2	
	3	
0 5 . 2	Describe one similarity between the processes of mitosis and meiosis.	[1 mark]

Dupuytren's is a disorder that affects the hands.

Figure 6 shows the inheritance of Dupuytren's in one family.

Figure 6

Key

Male with Dupuytren's

Female with Dupuytren's

Male without Dupuytren's

Female without Dupuytren's

Female without Dupuytren's

Dupuytren's is caused by a dominant allele in this family.

D = dominant allele

d = recessive allele

0 5.3	Give the genotype of person 1.	
	Explain your answer.	[2 marks
	Genotype	

0 5. 4	Person 7 and person 8 in Figure 6 are expecting a fourth child.			
	What is the probability of the child having Dupuytren's?			
	You should:			
	draw a Punnett square diagram			
	identify which offspring have Dupuytren's re re re re re re re re re r			
	ι	5 marks]		
	Probability =			
0 5.5	Explain how Figure 6 shows the allele for Dupuytren's is not on the Y chrome	osome. 2 marks]		