Questions

Q1.

Relative to a fixed origin O,

the point A has position vector $(2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k})$,

the point *B* has position vector $(4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k})$,

and the point C has position vector (ai + 5j - 2k), where a is a constant and a < 0

D is the point such that $\overrightarrow{AB} = \overrightarrow{BD}$.

(a) Find the position vector of *D*.

Given $|\vec{AC}| = 4$

(b) find the value of *a*.

(3)

(2)

(Total for question = 5 marks)

Q2.

Relative to a fixed origin O

- point A has position vector 2i + 5j 6k
- point *B* has position vector 3**i** 3**j** 4**k**
- point C has position vector 2i 16j + 4k

```
(a) Find \overrightarrow{AB}
```

(2)

(b) Show that quadrilateral OABC is a trapezium, giving reasons for your answer.

(2)

(Total for question = 4 marks)

Q3.

Figure 1 shows a sketch of triangle ABC.

Given that

•
$$\overrightarrow{AB} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k}$$

• $\overrightarrow{BC} = \mathbf{i} + \mathbf{j} + 4\mathbf{k}$

(a) find \overrightarrow{AC}

(2)

(b) show that $\cos ABC = \frac{9}{10}$

(3)

(Total for question = 5 marks)

Q4.

Figure 2 shows a sketch of a triangle *ABC*.

Given $\overrightarrow{AB} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and $\overrightarrow{BC} = \mathbf{i} - 9\mathbf{j} + 3\mathbf{k}$,

show that $\angle BAC = 105.9^{\circ}$ to one decimal place.

(5)

(Total for question = 5 marks)

<u>Mark Scheme</u>

Q1.

Questic	on Scheme	Marks	AOs
	$\overrightarrow{OA} = 2\mathbf{i} + 3\mathbf{j} - 4\mathbf{k}, \ \overrightarrow{OB} = 4\mathbf{i} - 2\mathbf{j} + 3\mathbf{k}, \ \overrightarrow{OC} = a\mathbf{i} + 5\mathbf{j} - 2\mathbf{k}, \ a < 0$		
	$\overrightarrow{AB} = \overrightarrow{BD}, \ \overrightarrow{AB} = 4$		
(a)	E.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OB} + \overrightarrow{OB} - \overrightarrow{OA} = 2\overrightarrow{OB} - \overrightarrow{OA}$		
	or $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{BD} = \overrightarrow{OB} + \overrightarrow{AB} = \overrightarrow{OA} + \overrightarrow{AB} + \overrightarrow{AB} = \overrightarrow{OA} + 2\overrightarrow{AB}$		
	$= \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 4 \\ -2 \\ 3 \end{pmatrix} + \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$ or $= \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ -2 \\ -5 \\ -4 \end{pmatrix} - \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} \left\{ = \begin{pmatrix} 2 \\ 3 \\ -4 \end{pmatrix} + 2 \begin{pmatrix} 2 \\ -5 \\ 7 \end{pmatrix} \right\}$	M1	3.1a
	$\begin{pmatrix} (-4) & ((3) & (-4)) & (-4) & (7) \\ = \begin{pmatrix} 6 \\ -7 \\ 10 \end{pmatrix} \text{ or } 6\mathbf{i} - 7\mathbf{j} + 10\mathbf{k}$	A1	1.1b
		(2)	
(b)	$(a-2)^2 + (5-3)^2 + (-2-4)^2$	M1	1.1b
	$\left\{ \overrightarrow{AC} = 4 \Rightarrow \right\} (a-2)^2 + (5-3)^2 + (-24)^2 = (4)^2$ $\Rightarrow (a-2)^2 = 8 \Rightarrow a = \dots \text{ or } \Rightarrow a^2 - 4a - 4 = 0 \Rightarrow a = \dots$	dM1	2.1
	(as $a < 0 \Rightarrow$) $a = 2 - 2\sqrt{2}$ (or $a = 2 - \sqrt{8}$)	A1	1.1b
		(3)	marks)
	Notes for Question	(.	шагкз
(a)	Notes for Question		
	Complete <i>applied</i> strategy to find a vector expression for \overrightarrow{OD}		
Al:	See scheme		
Note:	Give M0 for subtracting the wrong way wrong to give e.g. (4i-2j+3k) + (2i+3j-4k) - (4i-2j+3k) = (4i-2j+3k) + (-2i+5j-7k) = (2i+3j-4k)		
Note:	Writing e.g. $\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AB}$ or $\overrightarrow{OD} = 2\overrightarrow{OB} - \overrightarrow{OA}$ with no other work is M0		
	Finding coordinates, i.e. (6, -7, 10) without reference to the correct position	vectors is A	0
	Allow M1A1 for writing down $6i - 7j + 10k$ with no working		
	M1 can be implied for at least two correct components in their position vector	of D	
(b)			
	Finds the difference between \overrightarrow{OA} and \overrightarrow{OC} , then squares and adds each of the Neter Lengra labelling	e 3 compone	ents
	Note: Ignore labelling		
	Complete method of <i>correctly</i> applying Pythagoras' Theorem on $ AC = 4$ and $ $		nect
	method of solving their resulting quadratic equation to find at least one of $a =$ Condone at least one of either awrt 4.8 or awrt -0.83 for the dM mark		
	Obtains only one exact value, $a = 2 - 2\sqrt{2}$		
Note: Note:	Writing $a = 2 \pm 2\sqrt{2}$, without evidence of rejecting $a = 2 + 2\sqrt{2}$ is A0 Allow exact alternatives such as $2 - \sqrt{8}$ or $\frac{4 - \sqrt{32}}{2}$ for A1, and isw can be applied		
Note:	Writing $a = -0.828$, without reference to a correct exact value is A0		

Q2.

Question	Scheme	Marks	AOs
(a)	$\overline{AB} = (3\mathbf{i} - 3\mathbf{j} - 4\mathbf{k}) - (2\mathbf{i} + 5\mathbf{j} - 6\mathbf{k})$	M1	1.1b
	= i - 8j + 2k	A1	1.1b
		(2)	
(b)	States $\overrightarrow{OC} = 2 \times \overrightarrow{AB}$	M1	1.1b
	Explains that as OC is parallel to AB, so OABC is a trapezium.	A1	2.4
		(2)	
			(4 marks)
Notes:			
Notes:			

(a)

M1: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm 1i \pm 8j \pm 2k$.

A1:
$$\mathbf{i} - 8\mathbf{j} + 2\mathbf{k}$$
 or $\begin{pmatrix} 1\\ -8\\ 2 \end{pmatrix}$ but not $(1, -8, 2)$

(1)

(b)

M1: Compares their i-8j+2k with 2i-16j+4k by stating any one of

•
$$\overrightarrow{OC} = 2 \times \overrightarrow{AB}$$

• $\begin{pmatrix} 2 \\ -16 \\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1 \\ -8 \\ 2 \end{pmatrix}$
• $\overrightarrow{OC} = \lambda \times \overrightarrow{AB}$ or vice versa

This may be awarded if AB was subtracted "the wrong way around" or if there was one numerical slip

A1: A full explanation as to why OABC is a trapezium.

Requires fully correct calculations, so part (a) must be $\overline{AB} = (\mathbf{i} - 8\mathbf{j} + 2\mathbf{k})$ It requires a reason and minimal conclusion. Example 1: $\overline{OC} = 2 \times \overline{AB}$, therefore *OC* is parallel to *AB* so *OABC* is a trapezium Example 2: A trapezium has one pair of parallel sides. As $\overline{OC} = 2 \times \overline{AB}$, they are parallel, so \checkmark . Example 3 $As \begin{pmatrix} 2\\ -16\\ 4 \end{pmatrix} = 2 \times \begin{pmatrix} 1\\ -8\\ 2 \end{pmatrix}$, *OC* and *AB* are parallel, so proven Example 4 Accept as $\overline{OC} = \lambda \times \overline{AB}$, they are parallel so true

Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with **only one** pair of parallel sides. Any calculations to do with sides *OA* and *CB* in this question may be ignored, even if incorrect.

Q3.

Question	Scheme	Marks	AOs
(a)	$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = -3\mathbf{i} - 4\mathbf{j} - 5\mathbf{k} + \mathbf{i} + \mathbf{j} + 4\mathbf{k} = \dots$	M1	1.1b
Γ	$=-2\mathbf{i}-3\mathbf{j}-\mathbf{k}$	A1	1.1b
		(2)	
(b)	At least 2 of $(AC^2) = "2^2 + 3^2 + 1^2 ", (AB^2) = 3^2 + 4^2 + 5^2, (BC^2) = 1^2 + 1^2 + 4^2$	M1	1.1b
Γ	$2^{2} + 3^{2} + 1^{2} = 3^{2} + 4^{2} + 5^{2} + 1^{2} + 1^{2} + 4^{2} - 2\sqrt{3^{2} + 4^{2} + 5^{2}}\sqrt{1^{2} + 1^{2} + 4^{2}} \cos ABC$	M1	3.1a
	$14 = 50 + 18 - 2\sqrt{50}\sqrt{18}\cos ABC$ $\Rightarrow \cos ABC = \frac{50 + 18 - 14}{2\sqrt{50}\sqrt{18}} = \frac{9}{10}*$	A1*	2.1
		(3)	
	(b) Alternative		
	$AB^2 = 3^2 + 4^2 + 5^2$, $BC^2 = 1^2 + 1^2 + 4^2$	M1	1.1b
	$\overrightarrow{BA}.\overrightarrow{BC} = (3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 4\mathbf{k}) = 27 = \sqrt{3^2 + 4^2 + 5^2} \sqrt{1^2 + 1^2 + 4^2} \cos ABC$	M1	3.1a
	$27 = \sqrt{50}\sqrt{18}\cos ABC \Rightarrow \cos ABC = \frac{27}{\sqrt{50}\sqrt{18}} = \frac{9}{10}*$	A1*	2.1
(5 mar			marks)
Notes			

(a)

M1: Attempts $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

There must be attempt to add not subtract.

If no method shown it may be implied by two correct components

	(-2)		(-2i)	
A1: Correct vector. Allow $-2i - 3j - k$ and	-3	but not	-3j	
	(-1)		(-1 k)	

(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their \overrightarrow{AC}

Look for an attempt at either $a^2 + b^2 + c^2$ or $\sqrt{a^2 + b^2 + c^2}$

- M1: A correct attempt to apply a correct cosine rule to the given problem; Condone slips on the lengths of the sides but the sides must be in the correct position to find angle ABC
- A1*: Correct completion with sufficient intermediate work to establish the printed result. Condone different labelling, e.g. $ABC \leftrightarrow \theta$ as long as it is clear what is meant

It is OK to move from a correct cosine rule $14 = 50 + 18 - 2\sqrt{50}\sqrt{18} \cos ABC$

via
$$\cos ABC = \frac{54}{2\sqrt{50}\sqrt{18}}$$
 o.e. such as $\cos ABC = \frac{(5\sqrt{2})^2 + (3\sqrt{2})^2 - (\sqrt{14})^2}{2 \times 5\sqrt{2} \times 3\sqrt{2}}$ to $\cos ABC = \frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides AB and BC or their squares

M1: Recognises the requirement for and applies the scalar product

A1*: Correct completion with sufficient intermediate work to establish the printed result

Q4.

Questio	on Scheme	Marks	AOs	
	Attempts $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mathbf{i} - 9\mathbf{j} + 3\mathbf{k} = 3\mathbf{i} - 6\mathbf{j} + 4\mathbf{k}$	M1	3.1a	
	Attempts to find any one length using 3-d Pythagoras	M1	2.1	
	Finds all of $ AB = \sqrt{14}$, $ AC = \sqrt{61}$, $ BC = \sqrt{91}$	A1ft	1.1b	
	$\cos BAC = \frac{14 + 61 - 91}{2\sqrt{14}\sqrt{61}}$	М1	2.1	
	angle <i>BAC</i> = 105.9° *	A1*	1.1b	
		(5)		
	(5 marks)			
Notes:				
M1: A	Attempts to find \overline{AC} by using $\overline{AC} = \overline{AB} + \overline{BC}$			
M1: A	Attempts to find any one length by use of Pythagoras' Theorem			
Alft: F	Finds all three lengths in the triangle. Follow through on their $ AC $			
M1: 4	Attempts to find <i>BAC</i> using $\cos BAC = \frac{ AB ^2 + AC ^2 - BC ^2}{2 AB AC }$			
I	Allow this to be scored for other methods such as $\cos BAC = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{ AB AC }$			
A1*: 7	This is a show that and all aspects must be correct. Angle $BAC = 105.9$ °			