Questions

Q1.

Relative to a fixed origin O,
the point A has position vector $(2 \mathbf{i}+3 \mathbf{j}-4 \mathbf{k})$,
the point B has position vector $(4 \mathbf{i}-2 \mathbf{j}+3 \mathbf{k})$,
and the point C has position vector ($\mathbf{a} \mathbf{i}+5 \mathbf{j}-2 \mathbf{k}$), where a is a constant and $a<0$
D is the point such that $\overrightarrow{A B}=\overrightarrow{B D}$.
(a) Find the position vector of D.

Given $|\overrightarrow{A C}|=4$
(b) find the value of a.

Q2.

Relative to a fixed origin O

- point A has position vector $2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k}$
- point B has position vector $3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k}$
- point C has position vector $2 \mathbf{i}-16 \mathbf{j}+4 \mathbf{k}$
(a) Find $\overrightarrow{A B}$
(b) Show that quadrilateral $O A B C$ is a trapezium, giving reasons for your answer.

Q3.

Figure 1
Figure 1 shows a sketch of triangle $A B C$.
Given that

- $\overrightarrow{A B}=-3 \mathbf{i}-4 \mathbf{j}-5 \mathbf{k}$
- $\overrightarrow{B C}=\mathbf{i}+\mathbf{j}+4 \mathbf{k}$
(a) find $\overrightarrow{A C}$
(b) show that $\cos \mathrm{ABC}=\frac{9}{10}$

Q4.

Figure 2
Figure 2 shows a sketch of a triangle $A B C$.
Given $\overrightarrow{A B}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}$ and $\overrightarrow{B C}=\mathbf{i}-9 \mathbf{j}+3 \mathbf{k}$,
show that $\angle B A C=105.9^{\circ}$ to one decimal place

Mark Scheme

Q1.

Q2.

Question	Scheme	Marks	AOs
(a)	$\overline{A B}=(3 \mathbf{i}-3 \mathbf{j}-4 \mathbf{k})-(2 \mathbf{i}+5 \mathbf{j}-6 \mathbf{k})$	M1	1.1 b
	$=\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$	A 1	1.1 b
		$\mathbf{(2)}$	
	States $\overline{O C}=2 \times \overline{A B}$	M1	1.1 b
	Explains that as $O C$ is parallel to $A B$, so $O A B C$ is a trapezium.	A1	2.4
	(2)		
(4 marks)			

(a)

Ml: Attempts to subtract either way around. If no method is seen it is implied by two of $\pm 1 \mathbf{i} \pm 8 \mathbf{j} \pm 2 \mathbf{k}$.
Al: $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ or $\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$ but not $(1,-8,2)$
(b)

M1: Compares their $\mathbf{i}-8 \mathbf{j}+2 \mathbf{k}$ with $2 \mathbf{i}-16 \mathbf{j}+4 \mathbf{k}$ by stating any one of

- $\overrightarrow{O C}=2 \times \overrightarrow{A B}$
- $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right)$
- $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$ or vice versa

This may be awarded if $A B$ was subtracted "the wrong way around" or if there was one numerical slip
A1: A full explanation as to why $O A B C$ is a trapezium.
Requires fully correct calculations, so part (a) must be $\overline{A B}=(\mathbf{i}-8 \mathbf{j}+2 \mathbf{k})$
It requires a reason and minimal conclusion.
Example 1:
$\overrightarrow{O C}=2 \times \overrightarrow{A B}$, therefore $O C$ is parallel to $A B$ so $O A B C$ is a trapezium
Example 2:
A trapezium has one pair of parallel sides. As $\overline{O C}=2 \times \overrightarrow{A B}$, they are parallel, so \checkmark.
Example 3
As $\left(\begin{array}{r}2 \\ -16 \\ 4\end{array}\right)=2 \times\left(\begin{array}{r}1 \\ -8 \\ 2\end{array}\right), O C$ and $A B$ are parallel, so proven
Example 4
Accept as $\overrightarrow{O C}=\lambda \times \overrightarrow{A B}$, they are parallel so true
Note: There are two definitions for a trapezium. One stating that it is a shape with one pair of parallel sides, the other with only one pair of parallel sides. Any calculations to do with sides $O A$ and $C B$ in this question may be ignored, even if incorrect.

Q3.

Question	Scheme	Marks	AOs
(a)	$\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=-3 \mathbf{i}-4 \mathbf{j}-5 \mathbf{k}+\mathbf{i}+\mathbf{j}+4 \mathbf{k}=\ldots$	M1	1.1b
	$=-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$	A1	1.1b
		(2)	
(b)	At least 2 of $\left(A C^{2}\right)=" 2^{2}+3^{2}+1^{2} ",\left(A B^{2}\right)=3^{2}+4^{2}+5^{2},\left(B C^{2}\right)=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$2^{2}+3^{2}+1^{2}=3^{2}+4^{2}+5^{2}+1^{2}+1^{2}+4^{2}-2 \sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$\begin{gathered} 14=50+18-2 \sqrt{50} \sqrt{18} \cos A B C \\ \Rightarrow \cos A B C=\frac{50+18-14}{2 \sqrt{50} \sqrt{18}}=\frac{9}{10} \end{gathered}$	A1*	2.1
		(3)	
	(b) Alternative		
	$A B^{2}=3^{2}+4^{2}+5^{2}, B C^{2}=1^{2}+1^{2}+4^{2}$	M1	1.1b
	$\overrightarrow{B A} \cdot \overrightarrow{B C}=(3 \mathbf{i}+4 \mathbf{j}+5 \mathbf{k}) \cdot(\mathbf{i}+\mathbf{j}+4 \mathbf{k})=27=\sqrt{3^{2}+4^{2}+5^{2}} \sqrt{1^{2}+1^{2}+4^{2}} \cos A B C$	M1	3.1a
	$27=\sqrt{50} \sqrt{18} \cos A B C \Rightarrow \cos A B C=\frac{27}{\sqrt{50} \sqrt{18}}=\frac{9}{10} *$	A1*	2.1
(5 marks)			
Notes			

(a)

M1: Attempts $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$
There must be attempt to add not subtract.
If no method shown it may be implied by two correct components
A1: Correct vector. Allow $-2 \mathbf{i}-3 \mathbf{j}-\mathbf{k}$ and $\left(\begin{array}{l}-2 \\ -3 \\ -1\end{array}\right)$ but not $\left(\begin{array}{l}-2 \mathbf{i} \\ -3 \mathbf{j} \\ -1 \mathbf{k}\end{array}\right)$
(b)

M1: Attempts to "square and add" for at least 2 of the 3 sides. Follow through on their $\overrightarrow{A C}$
Look for an attempt at either $a^{2}+b^{2}+c^{2}$ or $\sqrt{a^{2}+b^{2}+c^{2}}$
M1: A correct attempt to apply a correct cosine rule to the given problem; Condone slips on the lengths of the sides but the sides must be in the correct position to find angle $A B C$
A1*: Correct completion with sufficient intermediate work to establish the printed result.
Condone different labelling, e.g. $A B C \leftrightarrow \theta$ as long as it is clear what is meant
It is OK to move from a correct cosine rule $14=50+18-2 \sqrt{50} \sqrt{18} \cos A B C$
via $\cos A B C=\frac{54}{2 \sqrt{50} \sqrt{18}}$ o.e. such as $\cos A B C=\frac{(5 \sqrt{2})^{2}+(3 \sqrt{2})^{2}-(\sqrt{14})^{2}}{2 \times 5 \sqrt{2} \times 3 \sqrt{2}}$ to $\cos A B C=\frac{9}{10}$

Alternative:

M1: Correct application of Pythagoras for sides $A B$ and $B C$ or their squares
M1: Recognises the requirement for and applies the scalar product
A1*: Correct completion with sufficient intermediate work to establish the printed result

Q4.

Question	Scheme	Marks	AOs
	Attempts $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}=2 \mathbf{i}+3 \mathbf{j}+\mathbf{k}+\mathbf{i}-9 \mathbf{j}+3 \mathbf{k}=3 \mathbf{i}-6 \mathbf{j}+4 \mathbf{k}$	M1	3.1a
	Attempts to find any one length using 3-d Pythagoras	M1	2.1
	Finds all of $\|A B\|=\sqrt{14},\|A C\|=\sqrt{61},\|B C\|=\sqrt{91}$	A1ft	1.1b
	$\cos B A C=\frac{14+61-91}{2 \sqrt{14} \sqrt{61}}$	M1	2.1
	angle $B A C=105.9^{\circ}$ *	A1*	1.1b
		(5)	
(5 marks)			
Notes:			
M1: Attempts to find $\overrightarrow{A C}$ by using $\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{B C}$ M1: Attempts to find any one length by use of Pythagoras' Theorem A1ft: Finds all three lengths in the triangle. Follow through on their $\|A C\|$ M1: Attempts to find $B A C$ using $\cos B A C=\frac{\|A B\|^{2}+\|A C\|^{2}-\|B C\|^{2}}{2\|A B\|\|A C\|}$ Allow this to be scored for other methods such as $\cos B A C=\frac{\overrightarrow{A B} \cdot \overrightarrow{A C}}{\|A B\|\|A C\|}$ A1*: This is a show that and all aspects must be correct. Angle $B A C=105.9^{\circ}$			

