Trigonometric identities Cheat Sheet

Angles in all four quadrants

Unit circles:
A unit circle is a circle with radius of 1 unit. It will help you understand the trigonometric ratios.

For a point $P(x, y)$ on a unit circle such that $O P$ making an angle with the positive x-axis $\begin{aligned} \cos \theta & =x \text {-coordinate of } P \\ \sin \theta & =y \text {-coordinate of } P\end{aligned}$ $\sin \theta=y$ - coordinate of P
$\tan \theta=\frac{y}{x}=$ gradient of $O P$ You always start measuring θ from positive x axis
Positive angles \Longleftrightarrow Anti-clock wise Negative angles \Longleftrightarrow Clockwise

With the help of unit circle you can find values and signs of sine, cosine and tangent.
The $x-y$ plane is divided into quadrants:

Angles may lie outside the range $0-360^{\circ}$, but they always lie in one of the four quadrants.
For e.g. 520° is equivalent to $520^{\circ}-360^{\circ}=160^{\circ}$ which lies in second quadrant

Example 1:
Find the signs of $\sin \theta, \cos \theta$ and $\tan \theta$ in the second quadrant.
Draw a circle with centre 0 and radius 1 , with $P(x, y)$ in the second quadrant.

You know that x is $-v e$ and y is +ve in the
second quadrant
$\sin \theta=+v e, \quad \cos \theta=-\mathrm{ve}$
$\tan \theta=\frac{+v e}{-v e}=-v e$
So, only $\sin \theta$ is $+v e$ in the second quadrant
With the help of the following diagram, you can determine the signs of each of the trigonometric ratios

Only $\sin \theta$ is positive
for angle θ in the
second quadrant.

Only $\tan \theta$ is positive
for angle θ in the third
quadrant

You can use the following rutes tointu sint, esofurfesin tuitin) p6ostitseso negative angle using the corresponding acute angle made with the x-axis

Example2:
Express the following in terms of trigonometric ratios of acute angles.
a. $\sin 240^{\circ} \quad$ b. $\cos \left(-50^{\circ}\right)$

The angle 240° is obtuse and measured from
the + ve x-axis anti-clockwis
So the acute angle is 60°
so the acute angle is
sin is $-v e$ in the third quadra
So $\sin 240^{\circ}=-\sin 60^{\circ}$
vample 3 :
fiven that θ is an acute angle, express $\tan \left(\theta-540^{\circ}\right)$ in terms of $\tan \theta$
To express $\tan \left(\theta-540^{\circ}\right.$) in terms of $\tan \theta$, we need to find in which quadrant the angle
$\theta-540^{\circ}$ lies.
You know that 540° is equivalent to $540^{\circ}-360^{\circ}=180^{\circ}$
$\Rightarrow-540^{\circ}$ is equivalent to $-180^{\circ} \Rightarrow 180^{\circ}$ clockwise and $\theta=$ anti-clockwise
o first you will go 180° clockwise and then θ anti-clockwise
tan is +ve in the third quadrant
xact values of trigonometric ratios
Exact values of trigonometric ratios.
You can find exact values of sin, \cos and \tan of $30^{\circ}, 45^{\circ}$ and 60°. Please refer the table below for the exact You can find
values.

	$\mathbf{3 0}^{\circ}$	$\mathbf{4 5}^{\circ}$	$\mathbf{6 0}^{\circ}$
$\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$
$\boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$
$\boldsymbol{\operatorname { t a n } \boldsymbol { \theta }}$	$\frac{1}{\sqrt{3}} \frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Trignometric Identities:

Equation of unit circle is $x^{2}+y^{2}=1$
As we know $\cos \theta=x$ and $\sin \theta=y$
For all values of $\theta, \sin ^{2} \theta+\cos ^{2} \theta \equiv 1$
For all values of θ, such that $\cos \theta \neq 0, \tan \theta \equiv \frac{\sin \theta}{\cos \theta}$
You can use the above identities to simplify trignometric expressions and complete proofs

Example 4: Simplify $\quad a .5 \sin ^{2} 3 \theta+5 \cos ^{2} 3 \theta \quad$ b. $\quad \frac{\sqrt{\left(1-\cos ^{2} x\right)}}{\cos x}$
a. Start by factorising the equation
$\Rightarrow 5\left(\sin ^{2} 3 \theta+\cos ^{2} 3 \theta\right)$
$\Rightarrow 5\left(\sin ^{2} 3 \theta+\cos ^{2} 3 \theta\right)$
$\Rightarrow 5 \times 1=5$
$\Rightarrow 5 \times 1=5 \quad$ As $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1 \Rightarrow \sin ^{2} 3 \theta+\cos ^{2} 3 \theta=1$

$$
\begin{aligned}
& \frac{\sqrt{\left(1-\cos ^{2} x\right)}}{\cos x}=\frac{\sqrt{\sin ^{2} \theta}}{\cos \theta} \longleftarrow \text { As } \cos ^{2} \theta+\sin ^{2} \theta=1 \Rightarrow\left(\sin ^{2} \theta=1-\cos ^{2} \theta\right) \\
& \Rightarrow \frac{\sqrt{(1-\cos 2 x)}}{\cos x}=\frac{\sin \theta}{\cos \theta}=\tan \theta
\end{aligned}
$$

Simple Trignometric equations.
In this section you will learn to solve simple trignometric equations of the form $\sin \theta=k$
$\cos \theta=k$ (where $-1 \leq k \leq 1$) and $\tan \theta=p$ (where $p \in \mathbb{R}$)
$-1 \leq k \leq 1$ as \sin and cos has maximum $=1$ and minimum $=-1$
$p \in \mathbb{R}$ as tan has no maximum or minimum value
Example 5: Solve the equation $2 \cos \theta=-\sqrt{2}$ for θ, in the interval $0 \leq x \leq 360^{\circ}$ First rearrange the equation in the form $\cos \theta=k$
So $\cos \theta=\frac{-\sqrt{2}}{2}=-0.7071 \quad$ The values you get on calculator taking inverse of trigonometric functions $\theta=\cos ^{-1}(-0.7071)=45^{\circ}$ 。 $\begin{aligned} & \text { are called principal values. But principal values will not always be a solution } \\ & \text { to the equation. }\end{aligned}$

As $\cos \theta=-0.7071$ and $\theta=45^{\circ} \Rightarrow \cos$ is negative so you need to look θ 45° is the acute angle (i.e angle made with the horizontal axis) but we are looking for the angle made from the positive x - axis anti-clockwise. So, there are two solutions
$180^{\circ}-45^{\circ}=135^{\circ}$ and $180^{\circ}+45^{\circ}=225^{\circ}$
Harder trigonometric equations:
You will have to solve equations of the form
$\sin n \theta=k, \cos n \theta=k$ and $\tan n \theta=p$
$\sin (\theta+\alpha)=k, \cos (\theta+\alpha)=k$ and $\tan (\theta+\alpha)=p$
It is same as solving simple equations, but will have some extra steps
xample 6: Solve the equation $\sin \left(x+60^{\circ}\right)=0.3$ in the interval $0 \leq x \leq 360^{\circ}$ Let $X=x+60^{\circ} \Rightarrow \sin X=0.3$
The interval for X will be $0+60^{\circ} \leq X \leq 360^{\circ}+60^{\circ} \Rightarrow 60^{\circ} \leq X \leq 420^{\circ}$
$X=\sin ^{-1} 0.3=17.45^{\circ}$, principal value
Sin is positive which mean 17.45° should be in the $1^{\text {st }}$ and $2^{\text {nd }}$ quadrant.
One of the solution will be $180^{\circ}-17.45^{\circ}=162.54$
Now the other solution could be 17.45° but $60^{\circ} \leq X \leq 420^{\circ}$, so it cannot be 17.45°.
So start from + ve x-axis and measure one full circle i.e. 360° and add 17.5°
$360+17.45=37.45^{\circ}$ So $X=162.54 \ldots . .37 .45 \ldots{ }^{\circ}$
Equations and Identities:
quations and Identities:

Example 7: Solve for θ, in the interval $0 \leq x \leq 360^{\circ}$, the equation $2 \cos ^{2} \theta-\cos \theta-1=0$
Start by factorising the equation as you do for quadratic equation
$2 \cos ^{2} \theta-\cos \theta-1=0 \quad$ Compare with $2 x^{2}-x-1=(2 x+1)(x-1)$
so $(2 \cos \theta+1)(\cos \theta-1)=0$
$\cos \theta=-\frac{1}{2}$ or $\cos \theta=1 \quad$ Set each factor equal to 0 thereby finding two sets of solutions
$\cos \theta=-\frac{1}{2} \Rightarrow \theta=60^{\circ}$
Cosine is negative implies solution is in the $2^{\text {nd }}$ and $3^{\text {rd }}$ quadrants In the $2^{\text {nd }}$ quadrant $\theta=180-60=120^{\circ}$. So, one solution is 120° nthe $3^{\text {rd }}$ quadrant $\theta=180+60=240^{\circ}$
So, the other solution in the $3^{\text {rd }}$ quadrant will be 240°
$\cos \theta=1$ so $\theta=0$ or 360°
So the solutions are
$\theta=0^{\circ}, 120^{\circ}, 240^{\circ}, 360^{\circ}$

