The Binomial Expansion Cheat Sheet

The binomial expansion can be used to expand brackets raised to large powers. It can be used to simplify probability models with a large number of trials, such as those used by manufacturers to predict faults.

Pascal's triangle

You can use Pascal's triangle to quickly expand expressions such as $(x+2 y)^{3}$. Consider the expansions of $(a+b)^{n}$ for $n=0,1,2,3$ and 4 :
$(a+b)^{0}=\quad 1$
$\begin{array}{ll}(a+b)^{2}= \\ (a+b)^{2}=\end{array} \quad 1 a+1 b$
$(a+b)^{2}=\quad 1 a^{2}+2 a b+1 b^{2}$ Each coefficient is the sum of the 2 coefficients immediately above it
$(a+b)^{3}=\quad 1 a^{3}+3 a^{2} b+3 a b^{2}+1 b^{3}$
$(a+b)^{4}=1 a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+1 b^{4}$
Every term in the expansion of $(a+b)^{n}$ has total index n:
In the $6 a^{2} b^{2}$ term the total index is $2+2=4$.
In the $4 a b^{3}$ term the total index is $1+3=4$.
Pascal's triangle is formed by adding adjacent pairs of the numbers to find the numbers on the next row.
Here are the first 7 rows of Pascal's triangle:

1
$1+1$
$1+2+1$
$1+$1 $3+3+1$

$$
1+4+6+4+1
$$

$$
1+5+10+10+5+1
$$

$1+6+15+20+15+6+1$
The $(\boldsymbol{n}+\mathbf{1})$ th row of Pascal's triangle gives he coefficients in the expansion of $(\boldsymbol{a}+\boldsymbol{b})^{\boldsymbol{n}}$
Example 1:
Use Pascal's triangle to find the expansions of:
a. $(x+2 y)^{3}$ b. $\quad(2 x-5)^{4}$
a. $(x+2 y)^{3}$
b. $(2 x-5)^{4}$

The coefficients are $1,3,3,1$ so:
Index $=3$ solook at the 4t row of Pascal's
triangle to find the coefficients. triangle to find the coefficients. $(x+2 y)^{3}=1 x^{3}+3 x^{2}(2 y)+3 x(2 y)^{2}+1(2 y)$ $=x^{3}+6 x^{2} y+12 x y^{2}+8 y^{3}$

$$
\begin{aligned}
& \text { This is the expansion of }(a+b)^{3} \text { with } a=x \text { and } b=2 \\
& \text { Use brackets to ensure you don't make a mistake. }
\end{aligned}
$$

b. $(2 x-5)^{4}$ The coefficients are $1,4,6,4,1$ so: Index $=4$ so look at the $5^{\text {th }}$ row of Pascal's triangle. The coefficients are $1,4,6,4,1$ so \qquad $=16 x^{4}-160 x^{3}+600 x^{2}-1000 x+625$

$$
\text { This is the expansion of }(a+b)^{4} \text { with } a=2 x \text { and } b=-5
$$

Example 2:
The coefficient of x^{2} in the expansion of of $(2-c x)^{3}$ is 294 . Find the possible values of the constant c . (Note: if there is an unknown in the expression, form an equation involving the unknown)

The coefficients are 1, 3, 3, 1
The term in x^{2} is $3 \times 2(-c x)^{2}=6 c^{2} x^{2}$
So, $6 c^{2}=294$
$c^{2}=49 \Rightarrow c \pm 7$
Factorial notation
Combinations and factorial notation can help you expand binomial expressions. For larger indices, it is quicker than using Pascal's triangle.

Using factorial notation $3 \times 2 \times 1=3$!
You can use factorial notation and your calculator to find entries in Pascal's triangle quickly. The number of ways of choosing r items from a group of n items is written as ${ }^{n} C_{r}$ or $\binom{n}{r}$:
${ }^{n} C_{r}=\binom{n}{r}=\frac{n t}{\eta(a-r)!}$
The r th entry in the nth row of Pascal's triangle is given by ${ }^{n-1} C_{r-1}=\binom{n-1}{r-1}$
Example 3: Calculate
a. 5!
b. ${ }^{5} C_{2}$
c. the $6^{\text {th }}$ entry in the $10^{\text {th }}$ row of Pascal's triangle
a. $5!=5 \times 4 \times 3 \times 2 \times 1=120$
b. ${ }^{5} C_{2}=\frac{5!}{2!3!} \frac{120}{12}=10$
c. ${ }^{9} C_{5}=126$

The r th entry in the nth row is ${ }^{n-1} C_{r-1}$

Sse the ${ }^{n} C_{r}$ and ! functions on your calculator to answer this question.

You can calculate ${ }^{5} C_{2}$ by using the
${ }^{n} C_{r}$ function on your calculator
${ }^{n} C_{r}=\frac{n!}{r!(n-r)!}=\frac{5!}{2!(5-2)!}$

The binomial expansion

The binomial expansion is a rule that allows you to expand brackets. You can use $\binom{n}{r}$ to work out the coefficients in the binomial expansion. For example,
in the expansion of $(a+b)^{5}=(a+b)(a+b)(a+b)(a+b)(a+b)$, to find the b^{3} term you can choose multiples of b from 3 different brackets. You can do this in $\binom{5}{3}$ ways so the b^{3} term is $\binom{5}{3} a^{2} b^{3}$.

The binomial expansion is:
$(a+b)^{n}=a^{n}+\binom{n}{1} a^{n-1} b+\binom{n}{2} a^{n-2} b^{2}+\cdots+\binom{n}{r} a^{n-r} b^{r}+\cdots+b^{n}$
where $\binom{n}{r}={ }^{n} C_{r}=\frac{n!}{r!(n-r)!}$
Example 4 : Use the binomial theorem to find the expansion of $(3-2 x)^{5}$.
$(3+2 x)^{5}=3^{5}+\binom{5}{1} 3^{4}(-2 x)+\binom{5}{2} 3^{3}(-2 x)^{2}+\binom{5}{3} 3^{2}(-2 x)^{3}+\binom{5}{4} 3^{1}(-2 x)^{4}+(-2 x)^{5}$ $=243-810 x+1080 x^{2}-720 x^{3}+240 x^{4}-32 x^{5}$

$$
\begin{aligned}
& \text { There will be } 6 \text { terms. Each term has a total index of } 5 \text {. Use }(a+b)^{n} \\
& \text { with } a=3, b=-2 x \text { and } n=5
\end{aligned}
$$

Solving Binomial Problems
You can use the general term of the binomial expansion to find individual coefficients in binomial expansion.

In the expansion of $(a+b)^{n}$ the general term is given by $\binom{n}{r} a^{n-r} b^{r}$.
Example 6:
a. Find the coefficient of x^{4} in the binomial expansion of $(2+3 x)^{10}$
x^{4} term $=\binom{10}{4} 2^{6}(3 x)^{4}$
$=210 \times 64 \times 81 x^{4}$
$=1088640 x^{4}$
The coefficient of x^{4} in the binomial expansion of $(2+3 x)^{10}$ is 1088640 .
b. Find the coefficient of x^{3} in the binomial expansion of $(2+x)(3-2 x)^{7}$.
$(3-2 x)^{7} \longrightarrow \begin{aligned} & \text { First, find the first four terms of the binomial } \\ & \text { expansion of }(3-2 x)^{7}\end{aligned}$
$=3^{7}+\binom{7}{1} 3^{6}(-2 x)+\binom{7}{2} 3^{5}(-2 x)^{2}+\binom{7}{3} 3^{4}(-2 x)^{3}+\cdots$
$=2187-10206 x+20412 x^{2}-22680 x^{3}+\cdots$
$\Rightarrow(2+x)\left(2187-10206 x+20412 x^{2}-22680 x^{3}+\cdots\right)$
Now expand the brackets $(2+x)(3-2 x)^{7}$
x^{3} term $=2 \times\left(-22680 x^{3}\right)+x \times 20412 x^{2}$
$=-24948 x^{3}$
The coefficient of x^{3} in the binomial
expansion of $(2+x)(3-2 x)^{7}$ is -24948

There are 2 ways of making the x^{3} term: (constant term $\times x^{3}$ term) and (x term $\times x^{2}$ term)

Binomial Estimation

If the value of x is less than 1 , then x^{n} gets smaller as n gets larger. If x is small you can sometimes ignore large powers of x to approximate a function or estimate a value.

Example 9:
Find the first four terms of the binomial expansion, in ascending powers of x, of
$\left(1-\frac{x}{4}\right)^{10}$
$\left(1-\frac{x}{4}\right)^{10}=1^{10}+\binom{10}{1} 1^{9}\left(-\frac{x}{4}\right)+\binom{10}{2} 1^{8}\left(-\frac{x}{4}\right)^{2}+\binom{10}{3} 1^{7}\left(-\frac{x}{4}\right)^{3}+\cdots$
$=1-2.5 x+2.8125 x^{2}-1.875 x^{3}+$
b. Use your expansion to estimate the value of 0.975^{10}, giving your answer to 4 decimal places.
We want $\left(1-\frac{x}{4}\right)=0.975$

$$
\frac{x}{4}=0.025
$$

Calculate value of x

$$
x=0.1
$$

Substitute $x=0.1$ into the expansion for $\left(1-\frac{x}{4}\right)^{10}$ from part a:
$0.975^{10} \approx 1-0.25+0.028125-0.001875$
$=0.77625$
$0.975^{10} \approx 0.7763$ to 4 d
Using a calculator, $0.975^{10}=0.77632962$ so, approximation is correct.

