Differentiation Questions

(b) Given that
$$y = \frac{3x+1}{2x+1}$$
, show that $\frac{dy}{dx} = \frac{1}{(2x+1)^2}$. (3 marks)

2 (a) Find
$$\frac{dy}{dx}$$
 when $y = (3x - 1)^{10}$. (2 marks)

6 (a) Find $\frac{dy}{dx}$ when:

(i)
$$y = (4x^2 + 3x + 2)^{10}$$
; (2 marks)

2 (a) Differentiate $(x-1)^4$ with respect to x. (1 mark)

Why so short?

Because the techniques learnt are embedded and checked in questions on other topics.

Differentiation Answers

(b)
$$\frac{dy}{dx} = \frac{(2x+1)3-2(3x+1)}{(2x+1)^2} = \frac{6x+3-6x-2}{(2x+1)^2}$$
 M1

$$=\frac{1}{(2x+1)^2}$$
 A1 AG (no errors)

Alternative

Alternative
$$-2(3x+1)(2x+1)^{-2} + 3(2x+1)^{-1}$$

$$= \frac{1}{(2x+1)^{2}}$$
(A1)

$$y = \frac{3}{2} - \frac{1}{2} (2x+1)^{-1}$$
 M1A1

$$\frac{dy}{dx} = (2x+1)^{-2}$$
 A1

$$= \frac{1}{(2x+1)^2}$$
 AG

2(a)
$$y = (3x-1)^{10}$$

 $\frac{dy}{dx} = 10 (3x-1)^9 \times 3$
 $= 30 (3x-1)^9$ M1 A1 2 M1 for $a(3x-1)^9$ where $a = \text{constant}$

6(a)(i)
$$y = (4x^2 + 3x + 2)^{10}$$

 $\frac{dy}{dx} = 10(4x^2 + 3x + 2)^9(8x + 3)$
M1
A1

Proof $(x)(x) = (x^2 + 3x + 2)^{10}$
And is linear

2(a)
$$4(x-1)^3$$
 or in expanded form B1 1 allow $-4(1-x)^3$

Why so short?

Because the techniques learnt are embedded and checked in questions on other topics.