Questions

Q1.

Figure 3
The curve C_{1}, shown in Figure 3, has equation $y=4 x^{2}-6 x+4$.
The point $P\left(\frac{1}{2}, 2\right)$ lies on C_{1}
The curve C_{2}, also shown in Figure 3, has equation $y=\frac{1}{2} x+\ln (2 x)$.
The normal to C_{1} at the point P meets C_{2} at the point Q.
Find the exact coordinates of Q.
(Solutions based entirely on graphical or numerical methods are not acceptable.)

Q2.

A curve has equation

$$
y=2 x^{3}-4 x+5
$$

Find the equation of the tangent to the curve at the point $P(2,13)$.
Write your answer in the form $y=m x+c$, where m and c are integers to be found.
Solutions relying on calculator technology are not acceptable.
(Total for question = 5 marks)

Q3.

A circle C with centre at $(-2,6)$ passes through the point $(10,11)$.
(a) Show that the circle C also passes through the point $(10,1)$.

The tangent to the circle C at the point $(10,11)$ meets the y axis at the point P and the tangent to the circle C at the point $(10,1)$ meets the y axis at the point Q.
(b) Show that the distance $P Q$ is 58 explaining your method clearly.

Q4.

The curve C has equation

$$
y=\frac{k^{2}}{x}+1 \quad x \in \mathbb{R}, x \neq 0
$$

where k is a constant.
(a) Sketch C stating the equation of the horizontal asymptote.

The line $/$ has equation $y=-2 x+5$
(b) Show that the x coordinate of any point of intersection of / with C is given by a solution of the equation

$$
\begin{equation*}
2 x^{2}-4 x+k^{2}=0 \tag{2}
\end{equation*}
$$

(c) Hence find the exact values of k for which / is a tangent to C.

Q5.

Figure 4
Figure 4 shows a sketch of a circle C with centre $N(7,4)$
The line $/$ with equation $y=\frac{1}{3} x$ is a tangent to C at the point P
Find
(a) the equation of line $P N$ in the form $y=m x+c$, where m and c are constants,
(b) an equation for C.

The line with equation $y=\frac{1}{3} x+k$, where k is a non-zero constant, is also a tangent to C.
(c) Find the value of k.

Q6.

Figure 3
The circle C has centre A with coordinates $(7,5)$.
The line I, with equation $y=2 x+1$, is the tangent to C at the point P, as shown in Figure 3 .
(a) Show that an equation of the line $P A$ is $2 y+x=17$
(b) Find an equation for C.

The line with equation $y=2 x+k, \quad k \neq 1$ is also a tangent to C.
(c) Find the value of the constant k.

Mark Scheme

Q1.

Question	Scheme	Marks	AOs
Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}=8 x-6$ M1 Gradient of curve at P is -2	M1	1.1 a	
	Normal gradient is $-1 / m=1 / 2$	M1	1.1 b
	So equation of normal is $(y-2)=\frac{1}{2}\left(x-\frac{1}{2}\right)$ or $4 y=2 x+7$	A1	1.1 b
	Eliminates y between $y=\frac{1}{2} x+\ln (2 x)$ and their normal equation to give an equation in x	M1	3.1 a
	Solves their $\ln 2 x=\frac{7}{4}$ so $x=\frac{1}{2} \mathrm{e}^{\frac{7}{4}}$	M1	1.1 b
	Substitutes to give value for y	M1	1.1 b
	Point Q is $\left(\frac{1}{2} \mathrm{e}^{\frac{7}{4}}, \frac{1}{4} \mathrm{e}^{\frac{7}{4}}+\frac{7}{4}\right)$	1.1 b	
	Notes		

Q2.

Question	Scheme	Marks	AOs
	Attempts to differentiate $x^{n} \rightarrow x^{n-1}$ seen once	M1	1.1 b
	$y=2 x^{3}-4 x+5 \Rightarrow \frac{\mathrm{~d} y}{\mathrm{~d} x}=6 x^{2}-4$	A 1	1.1 b
	For substituting $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=6 x^{2}-4$	dM 1	1.1 b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13=" 20 "(x-2)$	ddM 1	1.1 b
	$y=20 x-27$	A 1	1.1 b
	$\mathbf{(5)}$		

Notes

M1: Attempts to differentiate $x^{n} \rightarrow x^{n-1}$ seen once. Score for $x^{3} \rightarrow x^{2}$ or $\pm 4 x \rightarrow 4$ or $+5 \rightarrow 0$
A1: $\quad\left(\frac{\mathrm{d} y}{\mathrm{~d} x}=\right) 6 x^{2}-4$ which may be unsimplified $6 x^{2}-4+C$ is A0
dM1: Substitutes $x=2$ into their $\frac{\mathrm{d} y}{\mathrm{~d} x}$. The first M must have been awarded.
Score for sight of embedded values, or sight of " $\frac{d y}{d x}$ at $x=2$ is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.
ddM1: For a correct method of finding a tangent at $P(2,13)$. Score for $y-13=" 20 "(x-2)$ It is dependent upon both previous M's.

If the form $y=m x+c$ is used they must proceed as far as $c=\ldots$
A1: Completely correct $y=20 x-27$ (and in this form)

Q3.

Question	Scheme		Marks	AOs
(a)	Way 1: Finds circle equation $\begin{aligned} & (x \pm 2)^{2}+(y \mp 6)^{2}= \\ & \quad(10 \pm(-2))^{2}+(11 \mp 6)^{2} \end{aligned}$	Way 2: Finds distance between $(-2,6) \text { and }(10,11)$	M1	3.1a
	Checks whether $(10,1)$ satisfies their circle equation	Finds distance between $(-2,6)$ and (10,1)	M1	1.1b
	Obtains $(x+2)^{2}+(y-6)^{2}=13^{2}$ and checks that $(10+2)^{2}+(1-6)^{2}=13^{2} \text { so }$ states that $(10,1)$ lies on C^{*}	Concludes that as distance is the same $(10,1)$ lies on the circle C^{*}	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$		M1	3.1a
	Finds gradient perpendicular to their radius using $-\frac{1}{m}$		M1	1.1b
	Finds (equation and) y intercept of tangent (see note below)		M1	1.1b
	Obtains a correct value for y intercept of their tangent i.e. 35 or 23		A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of $P Q$ from symmetry $((0,6))$	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $P Q=35+23=58^{*}$		A1*	1.1 b
			(7)	
(10 marks)				

Notes

(a) Way 1 and Way 2 :

M1 : Starts to use information in question to find equation of circle or radius of circle
M1 : Completes method for checking that $(10,1)$ lies on circle
A1*: Completely correct explanation with no errors concluding with statement that circle passes through $(10,1)$
(b) M1: Calculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m)

M1: Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$) This is referred to as m^{\prime} in the next note.
M1: Attempts $y-11=$ their $\left(-\frac{12}{5}\right)(x-10)$ or $y-1=$ their $\left(\frac{12}{5}\right)(x-10)$ and puts $x=0$, or uses vectors to find intercept e.g. $\frac{y-11}{10}=-m^{\prime}$
A1: One correct intercept 35 or -23

Qu 17(b) continued

Way 1 :
M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$
M1: Attempts the second tangent equation and puts $x=0$ or uses vectors to find intercept
e.g. $\frac{11-y}{10}=m^{\prime}$

Way 2 :
M1: Finds midpoint of $P Q$ from symmetry. (This is at $(0,6)$)
M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. $35-6=29$ then $6-29=-23$ so second intercept is at $(-23,0)$

Ways 1 and 2:
A1*: Obtain 58 correctly from a valid method.

Q4.

Question	Scheme	Marks	AOs
(a)	1	M1	1.1b
		A1	1.1b
	Asymptote $y=1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^{2}}{x}+1=-2 x+5$	M1	1.1b
	$(\times x) \Rightarrow k^{2}+1 x=-2 x^{2}+5 x \Rightarrow 2 x^{2}-4 x+k^{2}=0 *$	A1*	2.1
		(2)	
(c)	Attempts to set $b^{2}-4 a c=0$	M1	3.1a
	$8 k^{2}=16$	A1	1.1b
	$k= \pm \sqrt{2}$	A1	1.1b
		(3)	
(8 marks)			

Notes

(a)

M1: For the shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axis and have acceptable curvature. Look for a negative gradient changing from $-\infty$ to 0 condoning "slips of the pencil". (See Practice and Qualification for clarification)
A1: Correct shape and position for both branches.
It must lie in Quadrants 1,2 and 3 and have the correct curvature including asymptotic behaviour
B1: Asymptote given as $y=1$. This could appear on the diagram or within the text.
Note that the curve does not need to be asymptotic at $y=1$ but this must be the only horizontal asymptote offered by the candidate.
(b)

M1: Attempts to combine $y=\frac{k^{2}}{x}+1$ with $y=-2 x+5$ to form an equation in just x
A1*: Multiplies by x (the processed line must be seen) and proceeds to given answer with no slips.

Condone if the order of the terms are different $2 x^{2}+k^{2}-4 x=0$
(c)

M1: Deduces that $b^{2}-4 a c=0$ or equivalent for the given equation.
If a, b and c are stated only accept $a=2, b= \pm 4, c=k^{2}$ so $4^{2}-4 \times 2 \times k^{2}=0$
Alternatively completes the square $x^{2}-2 x+\frac{1}{2} k^{2}=0 \Rightarrow(x-1)^{2}=1-\frac{1}{2} k^{2} \Rightarrow " 1-\frac{1}{2} k^{2} n=0$
A1: $8 k^{2}=16$ or exact simplified equivalent. $\mathrm{Eg} 8 k^{2}-16=0$
If a, b and c are stated they must be correct. Note that b^{2} appearing as 4^{2} is correct

A1: $k= \pm \sqrt{2} \quad$ and following correct a, b and c if stated
A solution via differentiation would be awarded as follows
M1: Sets the gradient of the curve $=-2 \Rightarrow-\frac{k^{2}}{x^{2}}=-2 \Rightarrow x=(\pm) \frac{k}{\sqrt{2}}$ oe and attempts to
substitute into $2 x^{2}-4 x+k^{2}=0$
A1: $\quad 2 k^{2}=(\pm) 2 \sqrt{2} k$ oe
A1: $\quad k= \pm \sqrt{2}$

Q5.

Question	Scheme	Marks	AOs
(a)	Deduces the line has gradient " -3 " and point $(7,4)$ $\mathrm{Eg} \quad y-4=-3(x-7)$	M1	2.2a
	$y=-3 x+25$	A1	1.1 b
		(2)	
(b)	Solves $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously	M1	3.1a
	$P=\left(\frac{15}{2}, \frac{5}{2}\right)$ oe	A1	1.1b
	Length $P N=\sqrt{\left(\frac{15}{2}-7\right)^{2}+\left(4-\frac{5}{2}\right)^{2}}=\left(\sqrt{\frac{5}{2}}\right)$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y=\frac{1}{3} x+k$ meets C using vectors $\text { Eg: }\binom{7.5}{2.5}+2 \times\binom{-0.5}{1.5}$	M1	3.1a
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$ to find k	M1	2.1
	$k=\frac{10}{3}$	A1	1.1 b
		(3)	

(9 marks)
\($$
\begin{array}{|c|c|c|c|}\hline \text { (c) } & \begin{array}{l}\text { Attempts to find where } y=\frac{1}{3} x+k \text { meets } C \text { via } \\
\text { simultaneous equations proceeding to a 3TQ in } x \text { (or } y \text {) } \\
\text { FYI } \frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0\end{array}
$$ \& M1 \& 3.1a

\)\cline { 2 - 4 } \& Uses$\left.b^{2}-4 a c=0 \text { oe and proceeds to } k=\ldots\end{array}\right)$ M1 | 2.1 |
| :---: |
| |

Notes:

(a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of $P N$ is -3 with point $(7,4)$ to find the equation of line $P N$
So sight of $y-4=-3(x-7)$ would score this mark
If the form $y=m x+c$ is used expect the candidates to proceed as far as $c=\ldots$ to score this mark.

A1: Achieves $y=-3 x+25$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving their $y=-3 x+25$ and $y=\frac{1}{3} x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

A1: $P=\left(\frac{15}{2}, \frac{5}{2}\right)$

M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=\left(\frac{15}{2}, \frac{5}{2}\right)$ and $(7,4)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: Full and careful work leading to a correct equation. $\mathrm{Eg}(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ or its expanded form. Do not accept $(x-7)^{2}+(y-4)^{2}=\left(\sqrt{\frac{5}{2}}\right)^{2}$
(c)

M1: Attempts to find where $y=\frac{1}{3} x+k$ meets C using a vector approach
M1: For a full method leading to k. Scored for substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y=\frac{1}{3} x+k$
A1: $k=\frac{10}{3}$ only

Alternative I

M1: For solving $y=\frac{1}{3} x+k$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both b and c are dependent upon k. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $\frac{10}{9} x^{2}+\left(\frac{2}{3} k-\frac{50}{3}\right) x+k^{2}-8 k+\frac{125}{2}=0$ oe
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=\frac{10}{3}$ only

Alternative II

M1: For solving $y=-3 x+25$ with their $(x-7)^{2}+(y-4)^{2}=\frac{5}{2}$, creating a 3TQ and solving.
M1: For substituting their $\left(\frac{13}{2}, \frac{11}{2}\right)$ into $y=\frac{1}{3} x+k$ and finding k
A1: $k=\frac{10}{3}$ only

Q6.

Question	Scheme	Marks	AOs
(a)	Deduces that gradient of $P A$ is $-\frac{1}{2}$	M1	2.2a
	$\begin{aligned} & \text { Finding the equation of a line with gradient } "-\frac{1}{2} \text { " and point }(7,5) \\ & \qquad y-5=-\frac{1}{2}(x-7) \end{aligned}$	M1	1.1b
	Completes proof $\quad 2 y+x=17$ *	A1*	1.1 b
		(3)	
(b)	Solves $2 y+x=17$ and $y=2 x+1$ simultaneously	M1	2.1
	$P=(3,7)$	A1	1.1b
	Length $P A=\sqrt{(3-7)^{2}+(7-5)^{2}}=(\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^{2}+(y-5)^{2}=20$	A1	1.1 b
		(4)	
(c)	Attempts to find where $y=2 x+k$ meets C using $\overrightarrow{O A}+\overrightarrow{P A}$	M1	3.1a
	Substitutes their (11,3) in $y=2 x+k$ to find k	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
(10 marks)			

(c)	Attempts to find where $y=2 x+k$ meets C via simultaneous equations proceeding to a 3 TQ in x (or y) FYI $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$	M1	3.1a
	Uses $b^{2}-4 a c=0$ oe and proceeds to $k=\ldots$	M1	2.1
	$k=-19$	A1	1.1b
		(3)	
M1: Uses the idea of perpendicular gradients to deduce that gradient of $P A$ is $-\frac{1}{2}$. Condone $-\frac{1}{2} x$ if followed by correct work. You may well see the perpendicular line set up as $y=-\frac{1}{2} x+c$ which scored this mark M1: Award for the method of finding the equation of a line with a changed gradient and the point $(7,5)$			

A1*: Completes proof with no errors or omissions $2 y+x=17$
(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point P. ie for an attempt at solving $2 y+x=17$ and $y=2 x+1$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start $17-x=2 x+1$ as they have set $2 y=y$ but condone bracketing errors, eg $2 \times 2 x+1+x=17$
Al: $P=(3,7)$
M1: Uses Pythagoras' Theorem to find the radius or radius ${ }^{2}$ using their $P=(3,7)$ and $(7,5)$. There must be an attempt to find the difference between the coordinates in the use of Pythagoras
Al: $(x-7)^{2}+(y-5)^{2}=20$. Do not accept $(x-7)^{2}+(y-5)^{2}=(\sqrt{20})^{2}$
(c)

M1: Attempts to find where $y=2 x+k$ meets C.
Awarded for using $\overrightarrow{O A}+\overrightarrow{P A}$. $(11,3)$ or one correct coordinate of $(11,3)$ is evidence of this award.
M1: For a full method leading to k. Scored for either substituting their $(11,3)$ in $y=2 x+k$
or, in the alternative, for solving their $(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative I

M1: For solving $y=2 x+k$ with their $(x-7)^{2}+(y-5)^{2}=20$ and creating a quadratic eqn of the form $a x^{2}+b x+c=0$ where both b and c are dependent upon k. The terms in x^{2} and x must be collected together or implied to have been collected by their correct use in " $b^{2}-4 a c$ "
FYI the correct quadratic is $5 x^{2}+(4 k-34) x+k^{2}-10 k+54=0$
M1: For using the discriminant condition $b^{2}-4 a c=0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.
$(4 k-34)^{2}-4 \times 5 \times\left(k^{2}-10 k+54\right)=0 \Rightarrow k=\ldots$ Allow use of a calculator here to find roots.
Award if you see use of correct formula but it would be implied by \pm correct roots
A1: $k=-19$ only

Alternative II

M1: For solving $2 y+x=17$ with their $(x-7)^{2}+(y-5)^{2}=20$, creating a 3TQ and solving.
M1: For substituting their $(11,3)$ into $y=2 x+k$ and finding k
A1: $k=-19$ only
Other method are possible using trigonometry.

