Questions

Q1.

The curve *C*₁, shown in Figure 3, has equation $y = 4x^2 - 6x + 4$.

The point
$$P^{\left(\frac{1}{2}, 2\right)}$$
 lies on C_1

The curve C_2 , also shown in Figure 3, has equation $y = \frac{1}{2}x + \ln(2x)$.

The normal to C_1 at the point *P* meets C_2 at the point *Q*.

Find the exact coordinates of Q.

(Solutions based entirely on graphical or numerical methods are not acceptable.)

(8)

(Total for question = 8 marks)

Q2.

A curve has equation

$y = 2x^3 - 4x + 5$

Find the equation of the tangent to the curve at the point P(2, 13).

Write your answer in the form y = mx + c, where *m* and *c* are integers to be found.

Solutions relying on calculator technology are not acceptable.

(Total for question = 5 marks)

Q3.

A circle C with centre at (-2, 6) passes through the point (10, 11).

(a) Show that the circle *C* also passes through the point (10, 1).

The tangent to the circle *C* at the point (10, 11) meets the *y* axis at the point *P*

and the tangent to the circle C at the point (10, 1) meets the y axis at the point Q.

(b) Show that the distance *PQ* is 58 explaining your method clearly.

(7)

(3)

(Total for question = 10 marks)

Q4.

The curve *C* has equation

$$y = \frac{k^2}{x} + 1 \qquad x \in \mathbb{R}, \ x \neq 0$$

where *k* is a constant.

(a) Sketch *C* stating the equation of the horizontal asymptote.

(3)

The line *l* has equation y = -2x + 5

(b) Show that the x coordinate of any point of intersection of l with C is given by a solution of the equation

$$2x^2 - 4x + k^2 = 0$$

(c) Hence find the exact values of *k* for which *l* is a tangent to *C*.

(3)

(2)

(Total for question = 8 marks)

Q5.

Figure 4 shows a sketch of a circle C with centre N(7, 4)

The line *I* with equation $y = \frac{1}{3}x$ is a tangent to *C* at the point *P*.

Find

- (a) the equation of line *PN* in the form y = mx + c, where *m* and *c* are constants,
- (2)
- (b) an equation for C.

(4)

The line with equation $y = \frac{1}{3}x + k$, where k is a non-zero constant, is also a tangent to C.

(c) Find the value of *k*.

(3)

(Total for question = 9 marks)

Q6.

The circle C has centre A with coordinates (7, 5).

The line *I*, with equation y = 2x + 1, is the tangent to *C* at the point *P*, as shown in Figure 3.

(a) Show that an equation of the line *PA* is 2y + x = 17

(b) Find an equation for C.

(4)

(3)

The line with equation y = 2x + k, $k \neq 1$ is also a tangent to *C*.

(c) Find the value of the constant *k*.

(3)

(Total for question = 10 marks)

<u>Mark Scheme</u>

Q1.

Question	Scheme	Marks	AOs	
	Finds $\frac{dy}{dx} = 8x - 6$	M1	3.1a	
	Gradient of curve at P is -2	M1	1.1b	
	Normal gradient is $-1/m = 1/2$	M1	1.1b	
	So equation of normal is $(y-2) = \frac{1}{2} \left(x - \frac{1}{2} \right)$ or $4y = 2x+7$	A1	1.1b	
	Eliminates y between $y = \frac{1}{2}x + \ln(2x)$ and their normal equation to give an equation in x	M1	3.1a	
	Solves their $\ln 2x = \frac{7}{4}$ so $x = \frac{1}{2}e^{\frac{7}{4}}$	M1	1.1b	
	Substitutes to give value for y	M1	1.1b	
	Point <i>Q</i> is $\left(\frac{1}{2}e^{\frac{7}{4}}, \frac{1}{4}e^{\frac{7}{4}} + \frac{7}{4}\right)$	A1	1.1b	
(8 marks)				
Notes				
M1: Differentiates correctly				
M1: Substitutes $x = \frac{1}{2}$ to find gradient (may make a slip)				
A1: Correct equation for normal				
M1:Attempts to eliminate y to find an equation in x				
M1: Attempts to solve their equation using exp				
M1: Uses their x value to find y				
A1: Any correct exact form.				

Q2.

Question	Scheme	Marks	AOs
	Attempts to differentiate $x^n \rightarrow x^{n-1}$ seen once	M1	1.1b
	$y = 2x^3 - 4x + 5 \Longrightarrow \frac{dy}{dx} = 6x^2 - 4$	A1	1.1b
	For substituting $x = 2$ into their $\frac{dy}{dx} = 6x^2 - 4$	dM1	1.1b
	For a correct method of finding a tangent at $P(2,13)$. Score for $y-13 = "20"(x-2)$	ddM1	1.1b
	y = 20x - 27	A1	1.1b
		(5)	
(5 marks)			

Notes

- **M1:** Attempts to differentiate $x^n \to x^{n-1}$ seen once. Score for $x^3 \to x^2$ or $\pm 4x \to 4$ or $\pm 5 \to 0$
- A1: $\left(\frac{dy}{dx}\right) = 6x^2 4$ which may be unsimplified $6x^2 4 + C$ is A0
- **dM1:** Substitutes x = 2 into their $\frac{dy}{dx}$. The first M must have been awarded. Score for sight of embedded values, or sight of " $\frac{dy}{dx}$ at x = 2 is" or a correct follow through. Note that 20 on its own is not enough as this can be done on a calculator.
- **ddM1**: For a correct method of finding a tangent at P(2,13). Score for y-13 = "20"(x-2)It is dependent upon both previous M's.

If the form y = mx + c is used they must proceed as far as c = ...

A1: Completely correct y = 20x - 27 (and in this form)

Question	Scheme			AOs
(a)	Way 1: Finds circle equation $(x \pm 2)^2 + (y \mp 6)^2 =$ $(10 \pm (-2))^2 + (11 \mp 6)^2$	Way 2: Finds distance between (-2,6) and (10, 11)	M1	3.1a
	Checks whether (10,1) satisfies their circle equation	Finds distance between $(-2,6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10,1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C^*	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$	or $\frac{1-6}{10-(-2)}$ (m)	M1	3.1a
	Finds gradient perpendicular to their radius using $-\frac{1}{m}$		M1	1.1b
	Finds (equation and) y intercept of tangent (see note below)		M1	1.1b
	Obtains a correct value for <i>y</i> intercept of their tangent i.e. 35 or – 23		A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of PQ from symmetry ((0,6))	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance PQ=35+23=	58*	A1*	1.1b
			(7)	
			(10	marks)

Notes

(a) Way 1 and Way 2:

M1 : Starts to use information in question to find equation of circle or radius of circle

M1 : Completes method for checking that (10, 1) lies on circle

A1*: Completely correct explanation with no errors concluding with statement that circle passes through (10, 1)

(b) M1: Calculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m) M1: Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$) This is referred to as m' in the next note. M1: Attempts $y-11 = their\left(-\frac{12}{5}\right)(x-10)$ or $y-1 = their\left(\frac{12}{5}\right)(x-10)$ and puts x = 0, or uses vectors to find intercept e.g. $\frac{y-11}{10} = -m'$ A1: One correct intercept 35 or -23 Qu 17(b) continued Way 1: M1: Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$ M1: Attempts the second tangent equation and puts x = 0 or uses vectors to find intercept e.g. $\frac{11-y}{10} = m'$ Way 2: M1: Finds midpoint of *PQ* from symmetry. (This is at (0,6)) M1: Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. 35 - 6 = 29 then 6 - 29 = -23 so second intercept is at (-23, 0) Ways 1 and 2: A1*: Obtain 58 correctly from a valid method.

Q4.

Question	Scheme		AOs
(a)	$\frac{1}{x}$ shape in 1st quadrant	M1	1.1b
	Correct	A1	1.1b
	Asymptote $y = 1$	B1	1.2
		(3)	
(b)	Combines equations $\Rightarrow \frac{k^2}{x} + 1 = -2x + 5$	M1	1.1b
	$(\times x) \Rightarrow k^2 + 1x = -2x^2 + 5x \Rightarrow 2x^2 - 4x + k^2 = 0 *$	A1*	2.1
		(2)	
(c)	Attempts to set $b^2 - 4ac = 0$	M1	3.1a
	$8k^2 = 16$	A1	1.1b
	$k = \pm \sqrt{2}$	A1	1.1b
		(3)	
(8 marks)			

Notes
(a)
M1: For the shape of a $\frac{1}{x}$ type curve in Quadrant 1. It must not cross either axis and have
 acceptable curvature. Look for a negative gradient changing from -∞ to 0 condoning "slips of the pencil". (See Practice and Qualification for clarification) A1: Correct shape and position for both branches. It must lie in Quadrants 1, 2 and 3 and have the correct curvature including asymptotic behaviour B1: Asymptote given as y = 1. This could appear on the diagram or within the text.
Note that the curve does not need to be asymptotic at $y = 1$ but this must be the only horizontal asymptote offered by the candidate.
(b)
M1: Attempts to combine $y = \frac{k^2}{x} + 1$ with $y = -2x + 5$ to form an equation in just x
A1*: Multiplies by x (the processed line must be seen) and proceeds to given answer with no slips.
Condone if the order of the terms are different $2x^2 + k^2 - 4x = 0$ (c)
M1: Deduces that $b^2 - 4ac = 0$ or equivalent for the given equation.
If a, b and c are stated only accept $a = 2, b = \pm 4, c = k^2$ so $4^2 - 4 \times 2 \times k^2 = 0$
Alternatively completes the square $x^2 - 2x + \frac{1}{2}k^2 = 0 \Rightarrow (x-1)^2 = 1 - \frac{1}{2}k^2 \Rightarrow "1 - \frac{1}{2}k^2" = 0$
A1: $8k^2 = 16$ or exact simplified equivalent. Eg $8k^2 - 16 = 0$
If a, b and c are stated they must be correct. Note that b^2 appearing as 4^2 is correct
A1: $k = \pm \sqrt{2}$ and following correct <i>a</i> , <i>b</i> and <i>c</i> if stated
A solution via differentiation would be awarded as follows
M1: Sets the gradient of the curve $= -2 \Rightarrow -\frac{k^2}{x^2} = -2 \Rightarrow x = (\pm)\frac{k}{\sqrt{2}}$ oe and attempts to
substitute into $2x^2 - 4x + k^2 = 0$
A1: $2k^2 = (\pm)2\sqrt{2}k$ oe
A1: $k = \pm \sqrt{2}$

Q5.

Question	Scheme	Marks	AOs
(a)	Deduces the line has gradient "-3" and point $(7, 4)$ Eg $y-4=-3(x-7)$	M1	2.2a
	y = -3x + 25	A1	1.1b
		(2)	
(b)	Solves $y = -3x + 25$ and $y = \frac{1}{3}x$ simultaneously	M1	3.1a
	$P = \left(\frac{15}{2}, \frac{5}{2}\right) $ oe	A1	1.1b
	Length $PN = \sqrt{\left(\frac{15}{2} - 7\right)^2 + \left(4 - \frac{5}{2}\right)^2} = \left(\sqrt{\frac{5}{2}}\right)$	М1	1.1b
	Equation of <i>C</i> is $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ o.e.	A1	1.1b
		(4)	
(c)	Attempts to find where $y = \frac{1}{3}x + k$ meets <i>C</i> using vectors	М1	3.1a
	$Eg: (2.5)^{+2\times}(1.5)$		
	Substitutes their $\left(\frac{13}{2}, \frac{11}{2}\right)$ in $y = \frac{1}{3}x + k$ to find k	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	
	-		(9 marks)
(C)	Attempts to find where $y = \frac{1}{3}x + k$ meets C via		
	simultaneous equations proceeding to a 3TQ in x (or y) FYI $\frac{10}{9}x^2 + \left(\frac{2}{3}k - \frac{50}{3}\right)x + k^2 - 8k + \frac{125}{2} = 0$	M1	3.1a
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1
	$k = \frac{10}{3}$	A1	1.1b
		(3)	

Notes: (a)

M1: Uses the idea of perpendicular gradients to deduce that gradient of *PN* is -3 with point (7,4) to find the equation of line *PN* So sight of y-4=-3(x-7) would score this mark If the form y = mx + c is used expect the candidates to proceed as far as c = ... to score this mark.

A1: Achieves y = -3x + 25

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving their y = -3x + 25 and $y = \frac{1}{3}x$ simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates.

 $\mathbf{A1:} \ P = \left(\frac{15}{2}, \frac{5}{2}\right)$

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their $P = \left(\frac{15}{2}, \frac{5}{2}\right)$ and (7,4). There must be an attempt to find the difference between the coordinates in the use of Pythagoras A1: Full and careful work leading to a correct equation. Eg $(x-7)^2 + (y-4)^2 = \frac{5}{2}$ or its expanded

form. Do not accept $(x-7)^2 + (y-4)^2 = \left(\sqrt{\frac{5}{2}}\right)^2$

Question	Scheme	Marks	AOs
(a)	Deduces that gradient of <i>PA</i> is $-\frac{1}{2}$	M1	2.2a
	Finding the equation of a line with gradient " $-\frac{1}{2}$ " and point (7,5) $y-5=-\frac{1}{2}(x-7)$	M1	1.1b
	Completes proof $2y + x = 17$ *	A1*	1.1b
		(3)	
(b)	Solves $2y + x = 17$ and $y = 2x + 1$ simultaneously	M1	2.1
	P = (3,7)	A1	1.1b
	Length $PA = \sqrt{(3-7)^2 + (7-5)^2} = (\sqrt{20})$	M1	1.1b
	Equation of C is $(x-7)^2 + (y-5)^2 = 20$	A1	1.1b
		(4)	
(c)	Attempts to find where $y = 2x + k$ meets C using $\overrightarrow{OA} + \overrightarrow{PA}$	M1	3.1a
	Substitutes their (11,3) in $y = 2x + k$ to find k	M1	2.1
	k = -19	A1	1.1b
		(3)	
			(10 marks)

(c)	Attempts to find where $y = 2x + k$ meets C via simultaneous equations proceeding to a 3TQ in x (or y)	M1	3.1a	
	FYI $5x^2 + (4k - 34)x + k^2 - 10k + 54 = 0$			
	Uses $b^2 - 4ac = 0$ oe and proceeds to $k =$	M1	2.1	
	k = -19	A1	1.1b	
		(3)		
Notes: (a)				
M1: Uses the idea of perpendicular gradients to deduce that gradient of <i>PA</i> is $-\frac{1}{2}$. Condone $-\frac{1}{2}x$ if				
followed by correct work. You may well see the perpendicular line set up as $y = -\frac{1}{2}x + c$ which scored this				
mark				
M1: Award for the method of finding the equation of a line with a changed gradient and the point $(7,5)$				
So sight of $y-5=\frac{1}{2}(x-7)$ would score this mark				
If the form $y = mx + c$ is used expect the candidates to proceed as far as $c =$ to score this mark.				

A1*: Completes proof with no errors or omissions 2y + x = 17

(b)

M1: Awarded for an attempt at the key step of finding the coordinates of point *P*. ie for an attempt at solving 2y + x = 17 and y = 2x + 1 simultaneously. Allow any methods (including use of a calculator) but it must be a valid attempt to find both coordinates. Do not allow where they start 17 - x = 2x + 1 as they have set 2y = y but condone bracketing errors, eg $2 \times 2x + 1 + x = 17$ A1: P = (3, 7)

M1: Uses Pythagoras' Theorem to find the radius or radius ² using their P = (3, 7) and (7, 5). There must be an attempt to find the difference between the coordinates in the use of Pythagoras

A1: $(x-7)^2 + (y-5)^2 = 20$. Do not accept $(x-7)^2 + (y-5)^2 = (\sqrt{20})^2$

(c)

M1: Attempts to find where y = 2x + k meets C.

Awarded for using $\overrightarrow{OA} + \overrightarrow{PA}$. (11,3) or one correct coordinate of (11,3) is evidence of this award.

M1: For a full method leading to k. Scored for either substituting their (11,3) in y = 2x + k

or, in the alternative, for solving their $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Rightarrow k = ...$ Allow use of a calculator here to find roots. Award if you see use of correct formula but it would be implied by ± correct roots Al: k = -19 only

Alternative I

M1: For solving y = 2x + k with their $(x-7)^2 + (y-5)^2 = 20$ and creating a quadratic eqn of the form $ax^2 + bx + c = 0$ where both *b* and *c* are dependent upon *k*. The terms in x^2 and *x* must be collected together or implied to have been collected by their correct use in " $b^2 - 4ac$ " FYI the correct quadratic is $5x^2 + (4k-34)x + k^2 - 10k + 54 = 0$ M1: For using the discriminant condition $b^2 - 4ac = 0$ to find *k*. It is not dependent upon the previous M

M1: For using the discriminant condition $b^2 - 4ac = 0$ to find k. It is not dependent upon the previous M and may be awarded from only one term in k.

 $(4k-34)^2 - 4 \times 5 \times (k^2 - 10k + 54) = 0 \Rightarrow k = \dots$ Allow use of a calculator here to find roots.

Award if you see use of correct formula but it would be implied by \pm correct roots A1: k = -19 only

Alternative II

M1: For solving 2y + x = 17 with their $(x-7)^2 + (y-5)^2 = 20$, creating a 3TQ and solving. M1: For substituting their (11,3) into y = 2x + k and finding k A1: k = -19 only Other method are possible using trigonometry.