edexcel

Mark Scheme (Results)
November 2012

GCSE Physics
5PH2H/01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

November 2012
Publications Code UG034070
All the material in this publication is copyright
© Pearson Education Ltd 2012

GCSE Physics 5PH2H/ 01 Mark Scheme - November 2012

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i i)}$	substitution (1)	Correct answer with no working shown gains two marks.	(2)
	V $=0.5 \times 12$ evaluation (1) $\mathrm{V}=6(\mathrm{~V})$		

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (\text { iii) }}$	• P/ammeter reading would increase.		
	(1) Q / voltmeter reading would increase They(both) would increase for two marks	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{1 (a) (i v)}$	(current/it) would decrease (1)	smaller/lower/reduce/less Ignore slowing down	(1)

| $\begin{array}{l}\text { Question } \\ \text { Number }\end{array}$ | Answer | Acceptable answers | Mark | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 (b)}$ | $\begin{array}{c}\text { component } \\ \text { symbol }\end{array}$ | | graph | All three lines correct for 2 marks |
| One or two lines correct for 1 | | | | |$]$

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
2(a) (ii)	Any one of the following Rocks Food Radon gas Cosmic rays Own bodies Fall-out Sun/stars	Plausible named food such as coffee, brazil nut, bananas Space	(1)
	(1)	Specified medical/industrial use of x-rays	Ignore smoke alarms, power stations (in normal use)

Question Number	Answer	Acceptable answers	Mark
2(a) (iii)	An explanation linking personal circumstances such as geographical location nature of their work lifestyle	(1) the consequences such as radiation from radon gas/particular rocks/fall- out (eg Chernobyl) greater exposure to x-rays greater exposure to cosmic rays	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (a)}$ (iv)	D		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b) (i)}$	From the graph Time taken to fall (from 120 to) 60	Any other suitable pair of readings from graph	(2)
$=8$ days	(1)	8.1, 8.2 Full marks for correct answer even if no working is evident	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{2 (b)}$ (ii)	2.2 (days)	between 2.0 and 2.5 2	(1)

Question Number	Answer	Acceptable answers	Mark
2(b) (iii)	Any one of the following: \bullet Mutation of dna \bullet I Ionisation of cells \bullet (Increases risk of) cancer (1)	damage / mutate cells	
		(1)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (i)}$	B		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 (a) (\text { ii) }}$	(equivalent to a) helium nucleus	Two protons and two neutrons for 2 marks helium/mass of 4 for 1 mark charge of +2 for 1 mark correct statement of any property for 1 mark	(2)

Question Number	Answer	Acceptable answers	Mark
3 (b)	A description to include any four of the following - neutron - is captured by a U-235 nucleus - nucleus (is) unstable - nucleus splits - into 2 daughter nuclei (of similar size) - (2 or more) neutrons are released - energy is released	- collides with / absorbed by (U-235) nucleus - metastable - named isotopes	(4)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{3 ~ (c)}$	An explanation linking (moderator slows down (absorbs energy from) neutrons		
more likely to be captured /cause fission (if it collides with a U-235 nuclei)	Reverse argument	(2)	

Question Number	Answer	Acceptable answers	Mark
$\mathbf{4 (a)}$	C		(1)

Question Number	Answer	Acceptable answers	Mark	
$\mathbf{4}$ a(ii)	In the cloud : reason 3	(1)		
	At the tower: reason 2	(1)		

Question Number	Answer	Acceptable answers	Mark
4 a(iii)	An explanation linking \bullet the charge was neutralised • by a transfer/flow of (1) electrons	Discharged/ becomes zero gained electrons / negative charge	(2)

Question Number	Answer	Acceptable answers	Mark
4 (b)	substitution (1) $52=2600 \times$ time		
transposition			
time $=52 / 2600$	(1)	Full marks for correct answer even if no working is evident	(3)
	evaluation $0.02(\mathrm{~s})$	(1)	

Question Number	Answer	Acceptable answers	Mark
4 (c)	An explanation linking two of the following - charges flow through the metal wire		(2)
- to the ground / earth - preventing build-up of (excess) charge	discharged / neutral		
all objects at the same potential			

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i)}$	substitution (1) work done $=84 \times 0.25$ evaluation (1) $21(\mathrm{~J})$	Full marks for correct answer even if no working is evident	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (i i)}$	21 J	Ecf from (a)(i)	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5 (a) (\text { iii) }}$	substitution (1) $\mathrm{KE}=1 / 2 \times 27 \times(2.3)^{2}$ evaluation (1) $=71.4$ (which is approx 71)	Reverse argument which shows that $\mathrm{V}=\sqrt{ } 5.3$ gains two marks two marks	(2)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{5}$ (a)(iv)	B		(1)

| Question
 Number | Indicative Content | Mark |
| :--- | :--- | :--- | :--- |
| QWC | *5(b) | An explanation linking some of the following points
 - kinetic energy varies during swing
 - kinetic energy maximum at bottom of swing
 - kinetic energy minimum at top of swing
 - gravitational potential energy(gpe) varies during swing
 - gpe maximum at top of swing
 - gpe minimum at bottom of swing
 - (continuous) interchange of KE and gpe
 - total amount of energy is constant during one swing
 - over a number of swings max KE and max PE decreases
 - energy is dissipated/'lost' to surroundings |
| - because of air resistance / friction | | |
| - amplitude/size of swings decrease (as energy 'lost' to | | |
| surroundings) | | |

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i)}$	C		(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (a) (i i)}$	acceleration	Recognisable mis-spellings More than one word written scores zero EXCEPT for the phrase Acceleration due to gravity which scores 1 mark	(1)

Question Number	Answer	Acceptable answers	Mark
$\mathbf{6 (b)}$	Substitution weight $=0.00008 \times 10$ evaluation $0.0008(N)$	(1)	(2)
		8×10^{-4}	
$1 / 1250$			

$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Answer } & \text { Acceptable answers } & \text { Mark } \\ \hline \mathbf{6 (c)} & \begin{array}{l}\text { Substitution } \\ \text { speed }=13 / 1.7\end{array} & \begin{array}{l}\text { An answer which rounds to 7.6 } \\ \text { eg } 7.647 \\ \text { evaluation }\end{array} & \text { (2) } \\ & 7.6(\mathrm{~m} / \mathrm{s}) & 7.65\end{array}\right]$

Question Number		Indicative Content	Mark
QWC	*6(d)	A explanation including some of the following points - drops near the top are accelerating - due to force of gravity - travel a greater distance in given time - there is air resistance on the drops as they fall - this increases with velocity - resultant force is downward - this reduces resultant force - eventually resultant force is zero - drops have reached terminal/ maximum velocity - drops near bottom are all travelling at terminal velocity - so travel same distance in given time	(6)
Leve I	0	No rewardable content	
1	1-2	- a limited explanation such as one which correctly addresses either why the drops at the bottom are evenly spaced or why the drops at the top are not e.g. drops at bottom are all going at the same speed OR drops at top are speeding up - the answer communicates ideas using simple language and uses limited scientific terminology - spelling, punctuation and grammar are used with limited accuracy	
2	3-4	a simple explanation such as a correct comparison of the motion of the drops at top bottom e.g. drops at bottom are travelling at terminal v whereas drops at top are still accelerating. Or a complete explanation of motion at either top or botto the bottom, air resistance and gravity forces are balanc travel at constant speed - the answer communicates ideas showing some evidence and organisation and uses scientific terminology approp - spelling, punctuation and grammar are used with some	ity g.at o they clarity ly
3	5-6	- a detailed explanation such as one which explains why of the drops at top and bottom are different e.g. The drops were initially accelerating due to a resultant downwards. The acceleration decreased as they fell and eventually reached zero. With no acceleration their velo constant and so equal distance travelled in given time a bottom. - the answer communicates ideas clearly and coherently range of scientific terminology accurately - spelling, punctuation and grammar are used with few e	motion was a

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UG034070 November 2012

Llywodraeth Cynulliad Cymru Welsh Assembly Government
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

