Q	Question		Answer	Marks	Guidance
1	(a)		Quantum / packet of (electromagnetic) energy	B1	Allow: Particle of energy
			Any <u>one</u> from: Can travel in a vacuum / has speed of 3×10^8 m s ⁻¹ in a vacuum / has no charge / has no (rest) mass / causes ionisation / has momentum	B1	Allow: Travels at the speed of light / c in a vacuum
	(b)	(i)	number per second = $4.8 \times 10^{-3}/1.6 \times 10^{-19}$	M1	Note: This must be seen to gain a mark
			number per second = $3.0 \times 10^{16} \text{ s}^{-1}$	A0	
		(ii)	(incident power =) $150 \times 10^3 \times 4.8 \times 10^{-3}$ or (incident power =) $3.0 \times 10^{16} \times 150 \times 10^3 \times 1.6 \times 10^{-19}$	C1	Note an incident power of 720 (W) scores this C1 mark
			$(P = mc[\Delta\theta/\Delta t])$ $0.99 \times 720 = 0.0086 \times 140 \times [\Delta\theta/\Delta t]$	C1	
			rate of temperature increase = 590 (°C s ⁻¹)	A1	Note : Answer to 3 sf is 592 (°C s ⁻¹) Allow : 2 marks for 598 (°C s ⁻¹) or 600 (°C s ⁻¹); 99% omitted Allow : 2 marks for 1.97 × 10 ⁻¹⁴ (°C s ⁻¹); 3.0 × 10 ¹⁶ omitted
		(iii)	(photon energy = maximum KE of electron)		
			$E = 150 \times 10^{3} \times 1.6 \times 10^{-19}$ or $E = 2.4 \times 10^{-14}$ (J) $2.4 \times 10^{-14} = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{2}$ (Allow any subject)	C1	Allow : $E = 720/3.0 \times 10^{16}$
			wavelength = 8.3×10^{-12} (m)	A1	Allow : 1 mark 8.3×10^{-10} (m); $E = 2.4 \times 10^{-16}$ (J) used
	(c)		Contrast material / iodine is injected (into the vessels) Any one from:	B1	Not: barium for this B1 mark
			The contrast material	B1	
			 large attenuation / absorption coefficient has high Z (atoms) (and hence reveal the outline of the blood vessels) 		Not 'large μ'
			Total	10	

C	Question		Answer	Marks	Guidance
2	(a)		Gamma radiation will pass through the patient (and hence can be detected) / beta particles will be absorbed by the patient (and hence cannot be detected)	B1	
			Gamma radiation is not (very) ionising / gamma radiation does little damage to cells / beta particles are (very) ionising / beta particle damage cells	B1	Allow: 'Body' in place of 'cells'
	(b)		X-ray tube rotates around (the patient) / X-ray beam passes through the patient at different angles	B1	Not: Detector rotates around (the patient)
			A thin X-ray beam is used	B1	
			Image(s) of slice(s) / (cross) section(s) through the patient are taken	B1	
			X-ray tube moves / spirals along (the patient)	B1	Allow: Detectors moves / spirals along (the patient)
			The signals / information / pulses / data (from the detectors) are used by the computer (and its software) to produce a 3D image	B1	
			Total	7	

C	Question		Answer	Marks	Guidance
3	(a)		Change in the frequency / wavelength because of source / 'observer' moving	B1	Allow : There is blue / red shift because of relative motion between source and observer
	(b)		 Any two from: 1. Ultrasound transducer / device / probe emits and detects ultrasound 2. The transducer / device / probe is placed at an angle (to the artery) 3. Ultrasound is reflected by the blood / cells 	B1 × 2	
			QWC mark - change in frequency / wavelength (of the reflected ultrasound) is related to speed of blood	B1	Allow : speed of blood ∞ change in frequency Allow : $\Delta f = 2vf\cos\theta/c$, where v is the speed of blood, c = speed of ultrasound; no need to define the other labels Note : Do not award this mark if $\Delta f = fv/c$ is used to determine the speed v of the blood
	(c)	(i)	$Z = \rho c$ density = 1.66 × 10 ⁶ /1570		
			density = 1060 (kg m ⁻³)	B1	Allow : 1100 (kg m ⁻³)
		(ii)	$\lambda = 1570/2.4 \times 10^6$ wavelength = 6.5×10^{-4} (m)	B1	
	(d)		(fraction of intensity reflected =) $\frac{(Z_2 - Z_1)^2}{(Z_2 + Z_1)^2}$	C1	
			(fraction of intensity reflected =) $3^2/5^2$ (= 0.36)	C1	
			intensity = 64%	A1	Note : 2 marks for 36% or 0.36
	(e)		Gel is used (between transducer and skin).	B1	
			The acoustic impedance / Z of gel is similar to that for skin hence less <u>reflection</u> (at the skin)	B1	Allow: There is acoustic / impedance matching so less reflection Allow: Without the gel, there is large difference between acoustic impedances of air and skin, hence large reflection Note: Must have reference to reflection
			Total	11	

Que	Question		Answers	Marks	Guidance
4	(a)	(i)	Discrete energy (of electrons in an atom) / quantised energy (of electrons in an atom) / permitted energy (states of electrons in an atom).	B1	
		(ii)	$(E = \frac{hc}{\lambda})$ $E = \frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{7.2 \times 10^{-11}} \text{or} E = 2.763 \times 10^{-15} \text{ (J)}$ value of energy level = - (3.2 - 2.763) × 10 ⁻¹⁵ (J)	C1 C1	
			value of energy level = - 4.4×10^{-16} (J)	A1	Note : The answer must be <u>negative</u> to score the A1 mark Note : 4.4×10^{-16} (J) scores 2 marks
		(iii)	$(\lambda_0 \text{ is})$ halved.	M1	
			Explanation: Reference to (photon / electron kinetic) energy doubled and $E = hc/\lambda$ or $E \propto 1/\lambda$.	A1	Allow explanation in terms of $eV = hc/\lambda$.
	(b)	(i)	$(I=I_0e^{-\mu x})$ fraction transmitted = $e^{-(0.96\times 2.3)}$ fraction transmitted = 0.11 fraction absorbed or scattered = 1 – 0.11 fraction absorbed or scattered = 0.89	C1 C1 A1	Allow 3 marks for 89%. Allow 89/100
			ter contrast. or Muscle and fat have similar (values for) μ hence poor contrast.	40	
			Total	10	

Que	Question		Answers	Marks	Guidance
5	(a)		Ultrasound reflected at boundary (between materials). B-scan takes place in different directions. QWC: The <u>intensity</u> of the reflected ultrasound depends on the acoustic impedances of the materials (and this is greater when the difference between the acoustic impedances is greater).	B1 B1 B1	Allow B-scan is 'multiple A-scans'. Allow Z instead of acoustic impedance. Not attenuation coefficient for Z.
	(b)		 Any four from: The brain / body is surrounded by a ring of (gamma) detectors /gamma camera(s). The positrons (from the F-18 nuclei) annihilate electrons. The annihilation of a positron and an electron produces two (identical gamma) photons travelling in opposite directions. The delay time between these two photons / gamma rays is used to determine the location of the annihilation / F-18 / tracer. Computer connected to detectors / gamma camera and an image is formed by the computer (using the electrical signals from the detectors). 	B1×4	Not positrons and electrons annihilate to produce photons travelling in opposite directions for 3. Allow an answer in terms of arrival times.
			Total	7	