Question		on	Expected Answer	Mark	Additional Guidance
1	(a)		The speed of recession of a galaxy is proportional to its distance (from Earth / observer)	B1	
	(b)	(i)	$v = \frac{\Delta \lambda}{\lambda} \times c$ $v = 0.15 \times 3.0 \times 10^{8}$ $\text{speed} = 4.5 \times 10^{7} \text{ (m s}^{-1})$	M1 A0	Allow : '15% of $3.0 \times 10^8 = 4.5 \times 10^7$ (m s ⁻¹)' Not : '0.15 <i>c</i> '
		(ii)	distance = v/H_0 (Any subject) distance = $\frac{4.5 \times 10^7 \times 3.1 \times 10^{22}}{65 \times 10^3}$ distance = 2.15×10^{25} (m)	C1 A1	Possible ecf from (b)(i) Allow: 1 mark for 2.15×10^n , $n \ne 25$
		(iii)	$H_0 = \frac{65 \times 10^3}{3.1 \times 10^{22}} (= 2.10 \times 10^{-18} \text{ s}^{-1})$ $age = 1/H_0 = 4.77 \times 10^{17} \text{ (s)}$ $age = 1.49 \times 10^{10} \text{ (y)}$	C1 A1	Allow : 1 mark for 1.49×10^{n} , $n \ne 10$
	(c)		 Any two from: Spectra from galaxies show shift to longer wavelengths (suggests galaxies are moving away from the Earth) The more distant galaxies are moving faster (than the ones closer to our galaxy) Existenc of microwave background radiation (which is the same in all directions) / The temperature of universe is 3 K (after cooling due to expansion) / gamma (radiation) became microwaves (as the universe expanded) Existence of primordial helium (produced in the early stages of the universe) Temperature fluctuations (predicted and observed) 	B1 × 2	Not 'red-shift' for 1. Allow: Reference to CMB (radiation) in 3. Not bald 'ripples' for 5.
			Total	8	

C	Question		Expected Answer	Mark	Additional Guidance
2	(a)		Diagram showing (star,) 1 AU, 1 pc and angle of 1 arc second Distance from a base length of 1 AU that subtends an angle of 1 (arc) second or Parsec is a distance that gives a (stellar) parallax of 1 second (of arc) / 1/3600°	B1 B1	Allow : 1 pc is the <u>distance</u> calculated using: 1 AU/tan(1/3600°) Not : 1 pc = 3.26 ly Not : 1 pc = 3.1 ×10 ¹⁶ m
	(b)	(i)	distance (pc) = 1 / 0.275 distance = 3.64 (pc)	B1	
		(ii)	distance in m = $3.1 \times 10^{16} \times 3.64 = 1.127 \times 10^{17}$ (m) distance in ly = $1.127 \times 10^{17}/9.5 \times 10^{15}$ distance in ly = 11.9	C1	Possible ecf from (b)(i) Alternative: 1 pc = 3.26 ly distance = 3.26×3.64 distance 11.9 (y) A1
			Total	5	

C	Question		Expected Answer		Additional Guidance	
3	(a)	(i)	Any <u>five</u> from: 1. Gas / dust (cloud) drawn together by gravitational forces 2. Loss in (gravitational) PE / KE increases / PE changes	B1 × 5	Allow: 'Gravitational collapse of dust cloud'	
			 KE / temperature increase Fusion of protons / hydrogen nuclei (produces helium nuclei and energy) A stable star is formed when radiation pressure is equal to gravitational pressure When hydrogen runs out the <u>outer layers</u> of the star expands / <u>core</u> shrinks Red giant formed / eventually (the core becomes) a white dwarf QWC mark for 'correct sequencing of the processes from birth to death' 	B1		
		(ii)	Supernova followed by	B1		
			neutron star / black hole	B1		
	(b)		$\Delta E = \Delta mc^2$ energy = $2.0 \times 10^{30} \times 10^{-6} \times (3.0 \times 10^8)^2$ or $1.8(0) \times 10^{41}$ (J) time = $1.80 \times 10^{41}/3.8 \times 10^{26}$ (= 4.74×10^{14} s) time = $4.74 \times 10^{14}/3.2 \times 10^7$	C1 C1	Alternative: rate = 4.22×10^9 (kg s ⁻¹) C1 time = $2.0 \times 10^{24}/4.22 \times 10^9$ (= 4.74×10^{14} s) C1 time = 1.5×10^7 (y)	
			time = 1.5×10^7 (y)	A1		

Quest	ion	Expected Answer	Mark	Additional Guidance
(c)	(i)	 Any four from: Protons / hydrogen nuclei to produce He nuclei (positrons and neutrinos) There is electrostatic repulsion (between the protons) / The protons repel (each other because of their positive charge) High temperatures / 10⁷ K needed (for fusion) (At high temperatures some of the fast moving) protons come close enough to each other for the strong (nuclear) force (to overcome the electrostatic repulsion) High density / pressure (in the core of the Sun) There is a decrease in mass, hence energy is released / products have greater binding energy 	B1 × 4	Not: 'heat' in place of temperature in 3.
	(ii)	Kinetic (energy) Electromagnetic / photons	B1 B1	Not: heat / thermal (energy) Not: 'radiation' / 'wave energy'' Allow: Gamma
	(iii)	BE = $4 \times 7.2 = 28.8$ (MeV) BE = $28.8 \times 1.6 \times 10^{-13}$ BE = 4.6×10^{-12} (J)	C1 A1	Possible ecf if BE value is incorrect
		Total	19	