Question		Answer		Guidance		
1 (a)	(i)	Straight line through the origin	M1			
		Negative gradient and symmetrical about (0,0) by eye.	A1			
	(ii)	Linking gradient to $[2\pi f]^2$. Frequency= $\frac{\sqrt{\text{gradient}}}{2\pi}$	C1 A1	Allow: use of a single data point used in $a = (-)[2\pi f]^2 x$ Note frequency must be the subject of this equation		
(b)	(i)	$A = \frac{v_{\text{max}}}{2\pi f} = \frac{0.09}{2\pi \times 8.0}$ $A = 1.8 \times 10^{-3} \text{(m)}$	C1	Allow: values for <i>T</i> in range 0.125 to 0.13 s		
	(ii)	$a_{\text{max}} = (2\pi f)^2 A$ $a_{\text{max}} = (2\pi \times 8.0)^2 \times 1.8 \times 10^{-3}$ $a_{\text{max}} = 4.5 (\text{m s}^{-2})$	C1 A1	Possible ecf from b(i) Allow: Tangent drawn on graph at any $v = 0$ point (C1) calculation of gradient (A1)		
(c)		Curve with same frequency /period max velocities decreasing at three successive positive peaks	B1 B1	Allow: $\frac{1}{2}$ small square error on $v = 0$ points		
(d)		Axes labelled and graph showing correct bell shaped curve (amplitude increases then decreases)	B1	Allow this mark if curves are drawn asymptotically (to 8 Hz)		
		Maximum/largest amplitude or energy at f=8 Hz / natural frequency When driving/oscillator's frequency is equal to natural frequency / 8 Hz resonance occurs (AW).	B1 B1	May be scored on diagram or in text 'resonance'/ 'resonant' to be spelled correctly for this mark to be scored.		
		Total	13			

Question			Answer	Marks	Guidance	
2 ((a)	(i)	T = 2.4 (s) f = 1/T = 1/2.4	0.1	No marks for T = 2 (a) loading to f = 0.22 (LIP)	
		(ii)	$v_{\text{max}} = 2\pi f A$	A1	No marks for T = 3 (s) leading to f = 0.33 (Hz). Allow: Tangent drawn on graph at any x = 0 point (C1) calculation of gradient to give value in range 0.12 to 0.14 (m s ⁻¹) (A1)	
			$v_{\text{max}} = 2\pi \times \frac{1}{2.4} \times 50 \times 10^{-3}$	C1	Mark is for substitution. Possible ecf from a(i).	
			$v_{\text{max}} = 0.13 \text{ (m s}^{-1})$	A1	Answer to 3 sf = 0.131 (m s ⁻¹). Expect $v_{max} = 0.10$ (m s ⁻¹) if answer in (i) f = 0.33 Hz (T=3).	
((b)	(i)	frequency is the same / not changed since (in SHM) it is independent of amplitude / (starting) displacement (AW)	B1	Allow:since length of pendulum is unchanged	
		(ii)	(maximum velocity) is reduced because amplitude / (starting) displacement is reduced (AW)	B1 B1	Allow: (Max) KE is smaller since amplitude/ (starting) displacement is smaller Allow: (Max) KE is smaller because GPE is smaller	
			(Max) KE is reduced to one quarter / 4 times smaller			
((c)	(i)	<u>Straight line through origin</u> means acceleration ∝ displacement	B1	Allow: <u>Straight line through origin</u> means a ∞ x	
			Negative gradient means acceleration and displacement are in opposite directions / acceleration directed is towards the midpoint/equilibrium point (AW)	B1	Allow: 1 mark for <u>straight line through origin</u> and <u>negative</u> gradient means $a \propto -x$ (hence SHM)	
		(ii)	(Magnitude) Gradient = $\omega^2 = 5/0.004 = (2\pi f)^2$	C1	C1 mark is for substitution of gradient for ω^2 or $(2\pi f)^2$	
			f = 5.6 (Hz)	A1	Answer to 3 sf = 5.63 (Hz) Allow: 1 mark for $f = 0.178$ (Hz) not converting mm to m	
			Total	10		

C	Question		Answer		Guidance
3	(a)		Is in the opposite direction to the displacement Increases as the speed of the object decreases	B1 B1	If more than 2 ticks are given mark all and deduct 1 mark for each error
	(b)	(i)	$f = \frac{1}{T} = \frac{1}{1.2}$ f = 0.83 (Hz)	B1	Allow: the fraction 5/6 only
		(ii)	$V_{\text{max}} = (2\pi f) A$		Possible ecf from (b)(i)
			$0.08 = (2\pi \times 0.83)A$	C1	Note: Mark is for substitution; any subject
			$A = \frac{0.08}{(2\pi \times 0.83)} = 0.015 \text{(m)}$	A1	Answer is 0.0153 (m) to 3 sf
		(iii)	$a_{\text{max}} = (2\pi f)^2 A$		Possible ecf from (b)(i) and (ii)
			$a_{\text{max}} = (2\pi \times 0.83)^2 \times 0.015$	C1	Note: Mark is for substitution
			$a_{\text{max}} = 0.42 \text{ (m s}^{-2})$	A1	Ignore sign Expect to see 0.41 if 2 sf values are used Allow: tangent used at $v = 0$ (M1) gradient of tangent calculated in range 0.37 to 0.44 (m s ⁻²) to 2sf (A1). Accept gradient of tangent =0.4 (m s ⁻²)
	(c)	(i)	Graph(s) tending to single peak with axes labelled in words or appropriate symbols Peak labelled as $\underline{\text{natural / resonant}}$ frequency (of system) or f_o	B1 B1	Can be scored even if horizontal axis is not correctly labelled
			Resonance occurs when the <u>driving frequency</u> matches <u>natural / resonant</u> frequency (of system)	B1	correctly labelled
			• the <u>amplitude</u> of vibrations / energy (transferred) is then a <u>maximum</u> (AW)	B1	
		(ii)	A valid example of resonance	B1	Allow: Mirror in car, Washing machine, Child on swing, microwave (oven), radio (tuning), Structures (in wind etc) MRI
			Explanation to include		Not musical instruments
			what does the driving and what is being driven	D4	
			that this occurs at specific (driver) frequency Table Tabl	B1	
			Total	13	

Question		on	Answer		Guidance
4	(a)		acceleration proportional to displacement (from the equilibrium position)	B1	displacement must be spelled correctly to score the mark. Allow: acceleration proportional to distance from equilibrium position with equilibrium spelled correctly for first B1
			and is always acting towards the equilibrium position / the mid-point of the motion (AW)	B1	Allow: 'acceleration is in the opposite direction to displacement' for the second B1 mark Use tick or cross on Scoris
	(b)	(i)	$v_{\text{max}} = 2\pi f A \qquad f = 1/0.08 = 12.5$ $v_{\text{max}} = 2\pi \left(\frac{1}{0.080}\right) \times 1.2 \times 10^{-3} \left(= 2\pi \times 12.5 \times 1.2 \times 10^{-3}\right)$	C1	$\begin{cases} \text{If A} = 0.6 \text{ mm used} \\ v_{\text{max}} = 2\pi \left(\frac{1}{0.080}\right) \times 0.6 \times 10^{-3} & (\checkmark) \\ v_{\text{max}} = 4.7 \times 10^{-2} \text{ (m s}^{-1}) & (\checkmark) \end{cases}$
			$v_{\text{max}} = 9.4 \times 10^{-2} \text{ (m s}^{-1})$	A1	Note: Answer to 3 sf is 9.42 x 10 ⁻² (m s ⁻¹) Allow: 1 mark for 94(.2) (m s ⁻¹) not converting mm to m
		(ii)	This occurs at the highest point (top) of the oscillations When acceleration of plate equals/exceeds free fall acceleration /g/ 9.81	B1 B1	
			$g = (2\pi f)^2 A_0$ hence $A_0 = \frac{9.81}{\left(2\pi \times \frac{1}{0.080}\right)^2}$	C1	Allow: equation with any subject for this mark
			$A_0 = 1.6 \times 10^{-3} \text{ (m)}$	A1	Note : Answer to 3 sf is 1.59 x 10 ⁻³ (m)
	(c)	(i)	Resonance Driving / drum frequency matches natural frequency (of casing) (AW)	B1 B1	
		(ii)	Graph with peak amplitude less than original peak amplitude Similar shape curve with peak at the same or lower frequency than given curve Curve is lower than given curve at all frequencies	M0 A1 A1	Must see this before subsequent marks can be scored.
			Total	12	