Question			Answer	Marks	Guidance
1	(a)	(i)	Straight line through the origin Negative gradient and symmetrical about $(0,0)$ by eye.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	
		(ii)	Linking gradient to $[2 \pi f]^{2}$. $\text { Frequency }=\frac{\sqrt{\text { gradient }}}{2 \pi}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: use of a single data point used in $a=(-)[2 \pi f]^{2} x$ Note frequency must be the subject of this equation
	(b)	(i)	$\begin{aligned} & A=\frac{v_{\max }}{2 \pi f}=\frac{0.09}{2 \pi \times 8.0} \\ & A=1.8 \times 10^{-3} \quad(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: values for T in range 0.125 to 0.13 s
		(ii)	$\begin{aligned} & a_{\max }=(2 \pi f)^{2} A \\ & a_{\max }=(2 \pi \times 8.0)^{2} \times 1.8 \times 10^{-3} \\ & a_{\max }=4.5 \quad\left(\mathrm{~ms}^{-2}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf from b(i) Allow: Tangent drawn on graph at any $v=0$ point (C1) calculation of gradient (A1)
	(c)		Curve with same frequency/period max velocities decreasing at three successive positive peaks	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: $1 / 2$ small square error on $v=0$ points
	(d)		Axes labelled and graph showing correct bell shaped curve (amplitude increases then decreases) Maximum/largest amplitude or energy at $\mathrm{f}=8 \mathrm{~Hz} /$ natural frequency When driving/oscillator's frequency is equal to natural frequency / 8 Hz resonance occurs (AW).	B1 B1 B1	Allow this mark if curves are drawn asymptotically (to 8 Hz) May be scored on diagram or in text 'resonance'/ 'resonant' to be spelled correctly for this mark to be scored.
			Total	13	

Question			Answer	Marks	Guidance
2	(a)	(i)	$\begin{aligned} & \mathrm{T}=2.4(\mathrm{~s}) \\ & \mathrm{f}=1 / \mathrm{T}=1 / 2.4 \\ & =0.42(\mathrm{~Hz}) \end{aligned}$	A1	No marks for $\mathrm{T}=3$ (s) leading to $\mathrm{f}=0.33(\mathrm{~Hz})$.
		(ii)	$\begin{align*} & v_{\text {max }}=2 \pi f A \\ & v_{\text {max }}=2 \pi \times \frac{1}{2.4} \times 50 \times 10^{-3} \tag{A1}\\ & v_{\text {max }}=0.13 \quad\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{align*}$	C1 A1	Allow: Tangent drawn on graph at any $x=0$ point (C1) calculation of gradient to give value in range $0.12 \text { to } 0.14\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Mark is for substitution. Possible ecf from a(i). Answer to $3 \mathrm{sf}=0.131\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$. Expect $v_{\max }=0.10\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ if answer in (i) $\mathrm{f}=0.33 \mathrm{~Hz} \quad(\mathrm{~T}=3)$.
	(b)	(i)	frequency is the same / not changed since (in SHM) it is independent of amplitude / (starting) displacement (AW)	B1	Allow: ...since length of pendulum is unchanged
		(ii)	(maximum velocity) is reduced because amplitude / (starting) displacement is reduced (AW) (Max) KE is reduced to one quarter / 4 times smaller	B1 B1	Allow: (Max) KE is smaller since amplitude/ (starting) displacement is smaller Allow: (Max) KE is smaller because GPE is smaller
	(c)	(i)	Straight line through origin means acceleration \propto displacement Negative gradient means acceleration and displacement are in opposite directions / acceleration directed is towards the midpoint/equilibrium point (AW)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \end{aligned}$	Allow: Straight line through origin means $\mathrm{a} \propto \mathrm{x}$ Allow: 1 mark for straight line through origin and negative gradient means $a \propto-x$ (hence SHM)
		(ii)	$\begin{aligned} & \text { (Magnitude) Gradient }=\omega^{2}=5 / 0.004=(2 \pi f)^{2} \\ & f=5.6 \quad(\mathrm{~Hz}) \end{aligned}$	C1 A1	C1 mark is for substitution of gradient for ω^{2} or $(2 \pi f)^{2}$ Answer to $3 \mathrm{sf}=5.63(\mathrm{~Hz})$ Allow: 1 mark for $f=0.178(\mathrm{~Hz})$ not converting mm to m
			Total	10	

Question			Answer	Marks	Guidance
4	(a)		acceleration proportional to displacement (from the equilibrium position) and is always acting towards the equilibrium position / the mid-point of the motion (AW)	B1	displacement must be spelled correctly to score the mark. Allow: acceleration proportional to distance from equilibrium position with equilibrium spelled correctly for first B1 Allow: 'acceleration is in the opposite direction to displacement' for the second B1 mark Use tick or cross on Scoris
	(b)	(i)	$\begin{aligned} & v_{\max }=2 \pi f A \quad f=1 / 0.08=12.5 \\ & v_{\max }=2 \pi\left(\frac{1}{0.080}\right) \times 1.2 \times 10^{-3}\left(=2 \pi \times 12.5 \times 1.2 \times 10^{-3}\right) \\ & v_{\max }=9.4 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	$\left\{\begin{array}{l} \text { If } A=0.6 \mathrm{~mm} \text { used } \\ v_{\max }=2 \pi\left(\frac{1}{0.080}\right) \times 0.6 \times 10^{-3} \quad(\checkmark) \\ v_{\max }=4.7 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \quad(\checkmark) \end{array}\right\}$ Note: Answer to 3 sf is $9.42 \times 10^{-2}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$ Allow: 1 mark for 94(.2) ($\mathrm{m} \mathrm{s}^{-1}$) not converting mm to m
		(ii)	This occurs at the highest point (top) of the oscillations When acceleration of plate equals/exceeds free fall acceleration $/ \mathrm{g} / 9.81$ $\begin{aligned} & g=(2 \pi f)^{2} A_{0} \text { hence } A_{0}=\frac{9.81}{\left(2 \pi \times \frac{1}{0.080}\right)^{2}} \\ & A_{0}=1.6 \times 10^{-3}(\mathrm{~m}) \end{aligned}$		Allow: equation with any subject for this mark Note: Answer to 3 sf is $1.59 \times 10^{-3}(\mathrm{~m})$
	(c)	(i)	Resonance Driving / drum frequency matches natural frequency (of casing) (AW)	$\begin{aligned} & \mathrm{B} 1 \\ & \mathrm{~B} 1 \\ & \hline \end{aligned}$	
		(ii)	Graph with peak amplitude less than original peak amplitude Similar shape curve with peak at the same or lower frequency than given curve Curve is lower than given curve at all frequencies	$\begin{aligned} & \text { M0 } \\ & \text { A1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	Must see this before subsequent marks can be scored.
			Total	12	

