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STEP 1 2014 Hints and Solutions 
 
Q1 This question is the traditional starter, involving ideas that should certainly be familiar to all 
candidates. That doesn’t necessarily mean it is easy, just that everyone should be able to make a 
start with it, and make some good progress thereafter. In fact, parts (i), (ii) and (iii) are each 
especially amenable to all; and (i) is intended to help get you started along this particular road by 
having you first write out some numerical examples of differences of two squares, before asking 
you to move on to the algebra. 
 To begin with, (ii) requires only the observation that each odd number is the difference of 

consecutive squares, 2k – 1  k2 – (k – 1)2; and then (iii) relies on noting that multiples of 4 arise 

from the difference of squares of numbers that are two apart, namely 4k  (k + 1)2 – (k – 1)2. Part 
(iv) develops these ideas further, although it is important now to deconstruct the problem into its 
building blocks; in this case, that means examining the four possible cases for a2 – b2 when a and b 
are either odd or even, none of which cases yield an even answer that is not automatically a multiple 
of 4. Alternatively, this is very easily addressed by examining squares modulo 4. 
 Part (v) draws on ideas of factorisation of (positive) integers into factor-pairs. Here, you are 
given the product pq where both p and q are odd. Using the difference of two squares factorisation, 
if pq = a2 – b2 = (a – b)(a + b), then either a – b = 1 and a + b = pq OR a – b = p and a + b = q 
(taking  p < q  w.l.o.g.), giving the (exactly) two required factorisations. However, if p = 2, then pq 
is a multiple of 2, but not 4, and we have already shown this case to be impossible. 
 The final part of the question pulls all these ideas together in a numerical example, and we 

need only prime-factorise 675 = 3352 and note that this yields (3 + 1)(2 + 1) = 12 factors and hence 
six factor-pairs. 
 
 
Q2 The main ideas behind this question are relatively straightforward, but there are many 

difficulties in the execution of them. In (i), an integral of the form  )ln(x  dx would usually have to 

be approached by writing it as the product 1)ln(  x  dx and integrating by parts. On this occasion, 

however, with a given result, it is perfectly possible to verify by differentiation. Curve-sketching 
(rather than plotting) is a key skill and one that needs practice. The things to look for are crossing-
points on the two coordinate axes (which arise here when  ln(1)  appears), asymptotes (from when 
we get ln(0)), symmetries and – if further detail is required – turning points. It should be obvious 
here, for instance, that the curve is an even function, so there is a turning point when x = 0. In (iii), 
you are given the area to be found so that you can check you are doing everything correctly before 
you go on to answer the rather tougher part (iv). You should first realise (from your sketch-graph) 

that it is required to integrate ln(4 – x2) between 3  and 3 , though you should always be on the 

lookout for opportunities to make the working easier – here, you could integrate between 0 and 3  

and then double the answer. Next, there is a very strong hint supplied by part (i) to split the log. 
term up as  ln(2 – x) + ln(2 + x), the first term of which has already been done and the second can be 
deduced from it with a bit of care. 
 Part (iv) actually asks nothing new. Curve B is just curve A with all portions drawn above 
the x-axis and it is only required that you deal with the extra bit(s) of area, and the awkwardness of 
finding an area up to the asymptote is covered for you by the footnote that follows (iv). 



Q3 This question was actually devised to address what happens when students misunderstand or 
mis-apply a “rule” of mathematics and it turns out to give the right answer. Part (i) starts you off 

gently: integrating both terms, squaring the RHS and solving very quickly gives b = 3
4 . Part (ii) 

develops in much the same way, but with a non-zero lower limit to the integrals, and we 
immediately see that the algebra gets much more involved. Importantly, it should be very clear that 
whatever expression materialises must have (b – 1) as a factor (since setting b = a would definitely 
give a zero area, thus trivially satisfying the given integral statement). This leads to the required 
cubic equation. 
 The final part of (ii) requires a mixture of different ideas (and can be done in a number of 
different ways). The most basic approach to demonstrating that a cubic curve has only one zero is to 
illustrate that both of its TPs lie on the same side of the x-axis (or to show there are no TPs). The 
popular Change-of-Sign Rule for continuous functions can be used to identify the position of this 
zero. 
 Having got you started with some simple lower limits, part (iii) develops matters more 
generally, and derives the (perhaps) surprising result that the exploration of this initial “stupid idea” 
requires b and a  to be “not too far apart” to an extent that is easily identifiable. 
 
 
Q4 This is quite a sweet little question, and deals with the movements of the hands of a clock. 

Using the Cosine Rule and differentiating gives 

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constant (so that extra terms in the use of the Chain Rule simply cancel). Then, differentiating again 

with respect to  , equating to zero and solving leads to the quadratic equation in C = cos : 

abC2 –  22 ab  C + ab = 0 

which can be factorised (or solved otherwise). Only one of these solutions gives | C | < 1, and 

substituting cos  = 
b

a
 gives the required result. [In the normal course of events, one should justify 

that this is a maximum value rather than a minimum – but it is rather clear that it must be so in this 

case.] Finally, 
6

11

d

d


t
 is the constant rate of change of , the angle between the two hands, and 

solving   2
1

6
11cos   gives a time of 11

2 hours  11 minutes, as required. 

 
  



 
Q5 This is another question that asks you to deploy your graph-sketching skills – in association 
with the supporting algebra, of course – and finding the coordinates of the TPs of the family of 
cubics given here, at (a, 0) and  (–5a, 108a3) makes it clear that the requested result holds. 
However, the case a = 0 (despite its relative triviality) still needs to be addressed separately.  

 Using (i)’s result with a = y then immediately gives 27xy2  (x + 2y)3  33 so that xy2  1. 

Equality holds (from part (i)) when x = a = y and from when x + 2y = 3  x = y = 1. 
 Part (iii) requires a little more care and perseverance, but setting x = p and 2a = q + r gets 
you off to a good start. There is now a little bit of “working to one side” needed if you are to 

convince yourself that qr
rq







  2

2
. Those students who have previously encountered the 

Arithmetic Mean – Geometric Mean Inequality will have spotted this straightaway; otherwise, this 

result becomes obvious upon rearrangement, as it is true  (q – r)2 ≥ 0, which is clearly true. 
Having to write it out in this way does have the advantage of highlighting that equality holds if and 
only if q = r here (leading to p = q = r for the main result). 
 
 
Q6 Applying the given recurrence relation leads to 

u1 = 4 sin2 (1 – sin2)  = 4 sin2 cos2  = sin2(2) , 
though the question becomes very difficult indeed without the use of the two very basic 
trigonometric identities involved to this point. A moment’s thought will help you avoid unnecessary 
further working at this stage, as the determination of u2 from u1 = sin2(some angle) should 

obviously give us the result u2 = sin2(twice that angle) in exactly the same way. Thus u2 = sin2(4) 

and, in general, un = sin2(2n). Establishing the result inductively requires no more working than 
that which was given two sentences ago, with the n = 1 “baseline” case having been given to you. 
 In part (ii), we approach a more awkward looking recurrence relation by transforming it 
using the given substitution, and then comparing it with the required form. This gives the following 
relationships: 

p = 4,   q – 2p = 4   and   (q – 1)  + r = p 2 

from which the required result follows. Upon checking, the final r.r. satisfies the appropriate 

conditions, and since u0 = sin2  4
1 , we have un = sin2  4

1.2n  and so vn = 4sin2  4
1.2n  – 1. 

However, it should be noted that sin  4
1.2n  = 0 for all n ≥ 2, so that {vn} = {1, 3, –1, –1, –1 …}. 

 
  



 
Q7 When it boils down to it, this vectors question actually involves little more than the use of a 
standard ratio result, vector equations of lines, and finding intersections of lines. Note first that, if a 

point T divides a line segment XY in the ratio p : q = 
qp

p


: 

qp

q


, then the respective position 

vectors of these points are related thus: t = yx 

















 qp

p

qp

q
. Indeed, it is precisely this result 

that leads to the vector equation of a line in the form r = (1 – )a + d (for the line AD here). 
Writing BE’s equation similarly and substituting for d and e in terms of r, s, a and b then gives the 
point of intersection of AD and BE by equating the two and comparing terms in a and b, deriving 
the given form for g.  

 The equation of the line OG is then r = g, which meets AB at F, which is known to cut AB 
in the ratio t : 1, which gives us two forms for the position vector of F. Comparing terms again 
yields the required answer. 
 Incidentally, those students and teachers more familiar with standard results in Euclidean 
Geometry will spot that this problem is actually an application of, first, Menelaus’ Theorem and 
then Ceva’s Theorem. 
 
 

Q8 Part (i) directs you to finding the equation of La, which is )(
1

1 ax
a

y 





  , and it follows 

immediately that Lb has equation )(
1

1 bx
b

y 





   similarly. Solving simultaneously yields their 

point of intersection at  )1)(1(, baab  . As b  a, this point of intersection   22 )1(, aa  , and 

it is clear that a = x , so that 0 < x  < 1 and 0 < x < 1, and that  21 xy  . 

 Differentiating this gives 
xx

y 1
1

d

d
  which, at the point C  2)1( , cc  , gives a tangent 

with equation    cx
c

cy 









1
11

2
. This rearranges into the form  cx

c
y 










1
1 , 

which is simply 
c

L  where 0 < c  < 1, as required. 

  



 
Q9 This question provides rather a nice twist to the standard sort of projectiles question. Firstly, 
there is a non-zero horizontal component of the acceleration. However, since this doesn’t affect the 

vertical motion, it is still the case that TH = 
g

U sin
 and TL = 

g

U sin2
. Next, the time T = 

kg

U cos
 

is introduced, which is quickly identified as the time when the horizontal component of the velocity 

is zero. Writing it in the form T = 



tan

1sin

kg

U
  at an early stage is really helpful, partly because 

it pulls out the common factor of 
g

U sin
, but mostly as it identifies the factor of  k tan  which is 

the major determining feature of the question. Having done this, you should realise that the three 
cases do little more than ask you to sketch what happens depending upon when the wind (for surely 
that is what is supplying this opposing force on the projectile) causes the particle to “trun round” 
horizontally, relative to when the maximum height and greatest range are achieved. In the first case, 
we get a “shortened” parabola compared to the usual shape of a non-wind-resisted projectile (so that 
T isn’t reached before landing); in the second, the particle turns round horizontally before landing; 
and in the third, the wind is so strong that the particle begins to be blown backwards before 
reaching its greatest height. In the case of the “afterthought”, the particle is constrained to move up 
and down in a straight line, returning to the point of projection. 
 
 
Q10 In this question, we examine the dropping of two balls together, smaller on top of larger, 
which leads to the surprising outcome where the smaller ball bounces so much higher than one 
would expect it to. To begin with, we examine the bounce of the larger ball when it falls on its own. 
Since it falls a distance H, it hits the ground with speed u given by u2 = 2gH, either by energy 
considerations or by using the (“suvat”) constant acceleration formulae. It then leaves the ground 
with speed v = eu according to Newton’s (Experimental) Law of Restitution, attaining a height H1 
given by v2 = 2g(H1 – R). Substituting for v and then u gives the printed answer. 

 In the extended situation, we again use gHu 2  (for both balls) and v = eu (for the larger 

ball after it bounces on the ground), though these do not need to be substituted immediately into the 
“collision” statements that are gained when using the principle of Conservation of Linear 
Momentum and N(E)LR for the subsequent collision between the balls. Solving simultaneously, the 

upwards speed of the smaller ball is found to be 
 

u
mM

mMeMe
x





22

. Using x2 = 2gd, where d is 

the distance travelled by the small ball’s centre of mass, and u2 = 2gH, we deduce the result that  

H
mM

mMeMe
d

22 2











 ; and then h = 2R + r + d. 

 In the final part of the question, substituting in the given numbers yields the answer 9
m

M
. 

[Of course, this part of the question has really been asked back-to-front, as the real issue is to 
explore the speed of the smaller ball after the collision; however, the numerical working would have 
been much less favourable that way round.] 
 
 



Q11 Part (i) of this question is a very straightforward single-pulley scenario, with the tension in 
the string equal throughout its length, which is constant, and the accelerations of the particles equal 
(relative to the string). Using Newton’s Second Law for each particle gives the acceleration (as 

shown) and the tension in the string given by 
mM

Mmg
T




4
.  

 In the second part of the question, we apply exactly the same assumptions and principles in 
exactly the same way, but there is a complication imposed now by the relative accelerations of the 
two particles on the P1 pulley system. If we assume that the P1 system has the “same” acceleration 
as the particle on the LHS of P, then (assuming that the m1 particle accelerates downwards within 
this sub-system) the two particles on the RHS have accelerations b – a2 and b + a2 respectively. 
Also, since P1 is taken to have zero mass, the tension in the main string is twice the tension in the 
sub-system. Without this set-up, the following working is most unlikely to be meaningful in any 
mark-scoring capacity. N2L applied several times, for the different particles, then leads to a set of 
equations that gives the second printed answer. 
 With two given answers, the very final part of the question can be done as a “stand alone” 
piece of work. Notice, however, that this is an if and only if proof and thus requires either two 
separate arguments or one in which every step is reversible. In point of fact, it transpires that a1 = a2 
if and only if (m1 – m2)

2 = 0, which is equivalent to m1 = m2. 
 
 
 
Q12  As with all such questions, one can make this much easier to deal with by being systematic, 
and by presenting one’s working in a clear and coherent manner. To begin with, for instance, set out 
a table of the six possible outcomes, along with their associated probabilities. Of course, the reason 
why you are then asked for E(X  2) rather than E(X) is clearly because squaring negates any concerns 
about the sign of whatever is inside a pair of “modulus” lines, so that they can simply be replaced 
by ordinary brackets. You are then told that the (given) answer is a positive integer, which restricts 
(k – 1) to being a multiple of 6 … namely, 1 or 7. Checking each of these in the possible E(X)’s that 
arise enables you to eliminate k = 1 and confirm that k = 7. 
 Now that this information is known, it is possible to draw up the probability distribution for 

X (again, a table works very well), work out the probabilities P(X > 25) = 144
21  and P(X = 25) = 144

4 , 

and then evaluate the expected payout  

E(W) =    )(P ww  =     01 144
4

144
21 w  

for the gambler (where W represents “winnings”). For this to be in the casino’s favour, this 
expression must be negative, giving w < 7 and so the largest integer value of w is 6. 
 
  



 
Q13 Although you are not asked for a sketch, a quick diagram might well help prevent stupid 
mistakes. Since the area under the triangle’s two sloping sides is equal to 1, it follows that the 

height of the triangle is 
ab

h



2

, and so the gradient of the first line is this divided by (c – a) and 

the equation – that is, g(x) – follows immediately. Without further working, h(x) can be written 
down immediately by substituting b for a appropriately (i.e. not in the bit of the expression for h; 
and remembering that c – b is negative).  
 In (i), it is definitely not enough to think “Aha! I recognise that expression” and simply 
throw the word “centroid” at the problem and hope to get all the points. You won’t. The question 
makes it clear that it is intended for you to do the work to show that this expression is the mean. 
(For a start, the values a, b and c lie on a line and aren’t “masses” placed at the vertices of the 
triangle.) The value of E(X) must be found by integrating over the two regions, and then sorted out 
algebraically.  
 For the final part of the question, it is important first to spend a moment making sure that 
you can identify the different possible cases that arise. These depend upon whether c is < , = , or > 

than )(2
1 ba  . The equality case is the easiest, and the easiest to overlook, since then m = c (by 

symmetry). In the first case, the median lies under the first of the sloping line segments, and will be 

gained by setting the area of a triangle equal to 2
1 . In a similar way to earlier, the third case can be 

dealt with by “working down from b” instead of “working up from a). These give, respectively, 

))((2
1 acabam    and  ))((2

1 cbabbm  . 
 



STEP II 2014 

Question 1: 

Drawing a diagram and considering the horizontal and vertical distances will establish the 

relationships for 𝑥 cos 𝜃 and 𝑥 sin 𝜃 easily. The quadratic equation will then follow from use of the 

identity cos2 𝜃 + sin2 𝜃 ≡ 1. The same reasoning applied to a diagram showing the case where P 

and Q lie on AC produced and BC produced will show that the same equation is satisfied. 

(*) will be linear if the coefficient of 𝑥2 is 0, so therefore cos(𝛼 + 𝛽) will need to equal −
1

2
, which 

gives a relationship between 𝛼 and 𝛽. For (*) to have distinct roots the discriminant must be 

positive. Using some trigonometric identities it can be shown that the discriminant is equal to 

4(1 − (sin 𝛼 − sin 𝛽)2) and it should be easy to explain why this must be greater than 0. 

The first case in part (iii) leads to 𝑥 = √2 ± 1 and so there are two diagrams to be drawn. In each 

case the line joining P to Q will be horizontal. 

The second case in part (iii) is an example where (*) is linear. This leads to 𝑥 =
√3

3
. Therefore Q is at 

the same point as C and so the point P is the midpoint of AC. 

Question 2: 

By rewriting in terms of cos 2𝑛𝑥 it can be shown that ∫ sin2 𝑛𝑥 𝑑𝑥
𝜋

0
=

𝜋

2
 and ∫ 𝑛2cos2 𝑛𝑥 𝑑𝑥

𝜋

0
=

𝑛2𝜋

2
. 

Therefore (*) must be satisfied as 𝑛 is a positive integer. The function 𝑓(𝑥) = 𝑥 does not satisfy (*) 

and  𝑓(0) = 0 but 𝑓(𝜋) ≠ 0. The function 𝑔(𝑥) = 𝑓(𝜋 − 𝑥) will therefore provide a 

counterexample where g(𝜋) = 0, but 𝑔(0) ≠ 0. 

In part (ii), 𝑓(𝑥) = 𝑥2 − 𝜋𝑥 will need to be selected to be able to use the assumption that (*) is 

satisfied. The two sides of (*) can then be evaluated: 

∫ 𝑥4 − 2𝜋𝑥3 + 𝜋2𝑥2
𝜋

0

𝑑𝑥 =
𝜋5

30
 

∫ 4𝑥2 − 4𝜋𝑥 + 𝜋2
𝜋

0

𝑑𝑥 =
𝜋3

3
 

Substitution into (*) then leads to the inequality 𝜋2 ≤ 10. 

To satisfy the conditions on 𝑓(𝑥) for the second type of function, the values of 𝑝, 𝑞 and 𝑟 must 

satisfy 𝑞 + 𝑟 = 0 and 𝑝 + 𝑟 = 0. Evaluating the integrals then leads to 𝜋 ≤ 22

7
. 

Since (22

7
)

2
< 10, 𝜋 ≤ 22

7
 leads to a better estimate for 𝜋2. 

  



Question 3: 

By drawing a diagram and marking the shortest distance a pair of similar triangles can be used to 

show that 
𝑐

𝑚⁄

𝑐√𝑚2+1
𝑚⁄

=
𝑑

𝑐
, which simplifies to 𝑑 = 𝑐

√𝑚2 + 1
⁄ . 

For the second part, the tangent to the curve at the general point (𝑥, 𝑦) will have a gradient of 𝑦′ 

and so the 𝑦-intercept will be at the point (0, 𝑦 − 𝑥𝑦′). Therefore the result from part (i) can be 

applied using 𝑚 = 𝑦′ and 𝑐 = 𝑦 − 𝑥𝑦′ to give 𝑎 =
(𝑦 − 𝑥𝑦′)

√(𝑦′)2 + 1
⁄ , which rearranges to give 

the required result. 

Differentiating the equation then gives 𝑦′′(𝑎2𝑦′ + 𝑥(𝑦 − 𝑥𝑦′)) = 0 and so either 𝑦′′ = 0 or  

𝑎2𝑦′ + 𝑥(𝑦 − 𝑥𝑦′) = 0. 

If 𝑦′′ = 0 then the equation will be of a straight line and the 𝑦-intercept can be deduced in terms of 

𝑚. 

If 𝑎2𝑦′ + 𝑥(𝑦 − 𝑥𝑦′) = 0, then the differential equation can be solved to give the equation of a 

circle. 

Part (iii) then requires combining the two possible cases from part (ii) to construct a curve which 

satisfies the conditions given. This must be an arc of a circle with no vertical tangents, with straight 

lines at either end of the arc in the direction of the tangents to the circle at that point. 

Question 4: 

In part (i), if the required integral is called 𝐼 then the given substitution leads to an integral which can 

be shown to be equal to −𝐼. This means that 2𝐼 = 0 and so 𝐼 = 0. 

In part (ii), once the substitution has been completed, the integral will simplify to ∫
arctan 1

𝑢

𝑢

𝑏

1/𝑏
𝑑𝑢. 

Since arctan 𝑥 + arctan (
1

𝑥
) =

𝜋

2
 the integral can be shown to be equal to 

1

2
∫

𝜋

2𝑥

𝑏

1/𝑏
𝑑𝑥, which then 

simplifies to the required result. 

In part (iii), making with the substitution in terms of 𝑘 and simplifying will show that the integral is 

equivalent to  

∫
𝑘𝑢2

(𝑎2𝑢2 + 𝑘2)2

∞

0

𝑑𝑢 

Therefore choosing 𝑘 = 𝑎2, the integral can be simplified further to 

1

𝑎2
∫

𝑢2

(𝑎2 + 𝑢2)2

∞

0

𝑑𝑢 =
1

𝑎2
∫

1

𝑎2 + 𝑢2

∞

0

𝑑𝑢 −
1

𝑎2
∫

𝑎2

(𝑎2 + 𝑢2)2

∞

0

𝑑𝑢 

The result then follows by using the given value for ∫
1

𝑎2+𝑥2

∞

0
𝑑𝑥. 

  



Question 5: 

Using the substitution 𝑦 = 𝑥𝑢, the differential equation can be simplified to  

𝑥
𝑑𝑢

𝑑𝑥
=

1 + 4𝑢 − 𝑢2

𝑢 − 2
 

This can be solved by separating the variables after which making the substitution 𝑢 =
𝑦

𝑥
 and 

substituting the point on the curve gives the required quadratic in 𝑥 and 𝑦. 

In part (ii), 
𝑑𝑌

𝑑𝑋
 can be shown to be equal to 

𝑑𝑦

𝑑𝑥
. The values of 𝑎 and 𝑏 need to be chosen so that the 

right hand side of the differential equation has no constant terms in the numerator or denominator. 

This leads to the simultaneous equations: 

𝑎 − 2𝑏 − 4 = 0 

2𝑎 + 𝑏 − 3 = 0 

Solving these and substituting the values into the differential equation gives 
𝑑𝑌

𝑑𝑋
=

𝑋−2𝑌

2𝑋+𝑌
, and so  

𝑑𝑋

𝑑𝑌
=

2𝑋 + 𝑌

𝑋 − 2𝑌
 

This is the same differential equation as in part (i), with 𝑥 = 𝑌 and 𝑦 = 𝑋. Most of the solution in 

part (i) can therefore be applied, but the point on the curve is different, so the constant in the final 

solution will need to be calculated for this case. 

Question 6: 

One of the standard trigonometric formulas can be used to show that  

sin (𝑟 +
1

2
) 𝑥 − sin (𝑟 −

1

2
) 𝑥 = 2 cos 𝑟𝑥 sin 1

2
𝑥. 

Summing these from 𝑟 = 1 to 𝑟 = 𝑛 will then give the required result.  

In part (i), the definition can be rewritten as 𝑆2(𝑥) = sin 𝑥 + 1

2
sin 2𝑥. The stationary points can then 

be evaluated by differentiating the function. The sketch is then easy to complete. 

For part (ii), differentiating the function gives 𝑆𝑛
′ (𝑥) = cos 𝑥 + cos 2𝑥 + ⋯ + cos 𝑛𝑥. Applying the 

result from the start of the question, this can be written as  

𝑆𝑛
′ (𝑥) =

sin(𝑛+
1
2

𝑥) − sin 1
2

𝑥

2 sin 1
2

𝑥
 

Since sin 1
2

𝑥 ≠ 0 in the given range, the stationary points are where sin (𝑛+
1
2

)𝑥 − sin 1
2

𝑥 = 0. This can 

then be simplified to the required form by splitting sin (𝑛+
1
2

)𝑥 into functions of 𝑛𝑥 and 
1

2
𝑥 and noting 

that sin 1
2

𝑥 ≠ 0  and cos 1
2

𝑥 ≠ 0 in the given range, so both can be divided by. By noting that the 

difference between 𝑆𝑛−1(𝑥) and 𝑆𝑛(𝑥) is 
1

𝑛
sin 𝑛𝑥 the result just shown can be used to show the 

final result of part (ii). Part (iii) then follows by induction. 

  



Question 7: 

By considering the regions 𝑥 ≤ 𝑎, 𝑎 < 𝑥 < 𝑏 and 𝑥 ≥ 𝑏, 𝑓(𝑥) can be written as 

𝑓(𝑥) =
𝑎 + 𝑏 − 2𝑥 𝑥 ≤ 𝑎

𝑏 − 𝑎 𝑎 < 𝑥 < 𝑏
2𝑥 − 𝑎 − 𝑏 𝑥 ≥ 𝑏

 

Therefore the graph of 𝑦 = 𝑓(𝑥) will be made up of two sloping sections (with gradients 2 and -2 

and a horizontal section). The graph of 𝑦 = 𝑔(𝑥) will have the same definition in the regions 𝑥 ≤ 𝑎 

and 𝑥 ≥ 𝑏, with the sloping edges extending to a point of intersection on the 𝑥-axis. The 

quadrilateral with therefore have sides of equal length and right angles at each vertex, so it is a 

square. 

In part (ii), sketches of the cases where 𝑐 = 𝑎 and 𝑐 = 𝑏 show that these cases give just one 

solution. If 𝑎 < 𝑐 < 𝑏 there will be no solutions and in the other regions there will be two solutions. 

In part (iii) the graphs for the two sides of the equation can be related to graphs of the form of 𝑔(𝑥) 

(apart from the section which is replaced by a horizontal line) in the first part of the question. Since 

𝑑 − 𝑐 < 𝑏 − 𝑎, the horizontal sections of the two graphs must be at different heights so the number 

of solutions can be seen to be the same as the number of intersections of the graphs of the form of 

𝑔(𝑥). 

Question 8: 

The coefficients from the binomial expansion should be easily written down. It can then be shown 

that  
𝑐𝑟+1

𝑐𝑟
=

𝑏(𝑛 − 𝑟)

𝑎(𝑟 + 1)
 

This will be greater than 1 (indicating that the value of 𝑐𝑟 is increasing) while 𝑏(𝑛 − 𝑟) > 𝑎(𝑟 + 1), 

which simplifies to 𝑟 <
𝑛𝑏−𝑎

𝑎+𝑏
. Similarly, 

𝑐𝑟+1

𝑐𝑟
= 1 if 𝑟 =

𝑛𝑏−𝑎

𝑎+𝑏
 and 

𝑐𝑟+1

𝑐𝑟
< 1 if 𝑟 >

𝑛𝑏−𝑎

𝑎+𝑏
. Therefore the 

maximum value of 𝑐𝑟 will be the first integer after 
𝑛𝑏−𝑎

𝑎+𝑏
 (and there will be two maximum values for 

𝑐𝑟 if 
𝑛𝑏−𝑎

𝑎+𝑏
 is an integer. The required inequality summarises this information. 

In parts (i) and (ii) the values need to be substituted into the inequality. Where there are two 

possible values, it needs to be checked that they are equal before taking the higher if this has not 

been justified in the first case. 

In part (iii) the greatest value will be achieved when the denominator takes the smallest possible 

value, therefore 𝑎 = 1, and then in part (iv) the greatest value will be achieved by maximising the 

numerator. Since the maximum possible value of 𝐺(𝑛, 𝑎, 𝑏) is 𝑛, 𝑏 ≥ 𝑛 will achieve this maximum. 

 



Question 9: 

Once a diagram has been drawn the usual steps will lead to the required result: 

Resolving vertically: 
𝐹 + 𝑇 cos 𝜃 = 𝑚𝑔 

Resolving horizontally: 
𝑇 sin 𝜃 = 𝑅 

Taking moments about A: 
𝑚𝑔(𝑎 cos 𝜑 + 𝑏 sin 𝜑) = 𝑇𝑑 sin(𝜃 + 𝜑) 

Limiting equilibrium, so 𝐹 = 𝜇𝑅: 
𝜇𝑇 sin 𝜃 + 𝑇 cos 𝜃 = 𝑚𝑔 

Therefore: 
𝑇𝑑 sin(𝜃 + 𝜑) = 𝑇(𝜇 sin 𝜃 + cos 𝜃)(𝑎 cos 𝜑 + 𝑏 sin 𝜑) 

And so: 
𝑑 sin(𝜃 + 𝜑) = (𝜇 sin 𝜃 + cos 𝜃)(𝑎 cos 𝜑 + 𝑏 sin 𝜑) 

 
If the frictional force were acting in the opposite direction, then the only change to the original 

equations would be the sign of 𝐹  in the first equation. Therefore the final relationship will change to  

𝑑 sin(𝜃 + 𝜑) = (−𝜇 sin 𝜃 + cos 𝜃)(𝑎 cos 𝜑 + 𝑏 sin 𝜑) 

For the final part, the first and third of the equations above can be used to show that  

𝐹 =
𝑇𝑑 sin(𝜃 + 𝜑)

𝑎 cos 𝜑 + 𝑏 sin 𝜑
− 𝑇 cos 𝜃 

Since 𝐹 > 0 if the frictional force is upwards, this then leads to the condition 𝑑 >
𝑎+𝑏 tan 𝜑

tan 𝜃+tan 𝜑
. Since 

the string must be attached to the side 𝐴𝐵, 𝑑 cannot be bigger than 2𝑏, which leads to the final 

result of the question. 

Question 10: 

Consideration of the motion horizontally and vertically and eliminating the time variable leads to a 

Cartesian equation for the trajectory: 

𝑦 = 𝜆𝑥 −
𝑔𝑥2

2𝑢2
(1 + 𝜆2) 

The maximum value can be found either by differentiation or by completing the square. Completing 

the square gives: 

𝑦 = −
𝑔𝑥2

2𝑢2 (𝜆 −
𝑢2

𝑔𝑥
) +

𝑢2

2𝑔
−

𝑔𝑥2

2𝑢2
 

Which shows that 𝑌 =
𝑢2

2𝑔
−

𝑔𝑥2

2𝑢2. If this graph is sketched then the region bounded by the graph and 

the axes will represent all the points that can be reached. 

The maximum achievable distance must lie on the curve and the distance, 𝑑, of a point on the curve 

can be shown to satisty 𝑑2 = (
𝑢2

2𝑔
+

𝑔𝑥2

2𝑢2)
2

, which must be maximised when 𝑥 takes the maximum 

value possible. 



Question 11: 

A diagram shows that the coordinates of 𝑃 are (𝑥 + (𝐿 − 𝑥) sin 𝛼 , −(𝐿 − 𝑥) cos 𝛼) 

Therefore, by differentiating the 𝑦-coordinate of 𝑃 shows that the vertical acceleration of 𝑃 is 

�̈� cos 𝛼 and applying Newton’s Second Law gives 

𝑇 cos 𝛼 − 𝑘𝑚𝑔 = 𝑘𝑚�̈� cos 𝛼 

A similar method for the horizontal motion of 𝑃 and 𝑅 gives the two equations 

𝑇 sin 𝛼 = −𝑘𝑚(1 − sin 𝛼)�̈� 

𝑇 − 𝑇 sin 𝛼 = −𝑚�̈� 

For part (ii), eliminating 𝑇 from the last two equations gives the required relationship. A sketch of 

the graph of 𝑦 =
𝑥

(1−𝑥)2 will then show that for any value of 𝑘 there is a possible value between 0 

and 1 for sin 𝛼. 

In part (iii), elimination of T from the two equations formed by considering the motion of 𝑃 gives the 

required result. 

Question 12: 

The required probability in the first part is given by 

𝑃(𝑡 < 𝑇 < 𝑡 + 𝛿𝑡)

𝑃(𝑇 > 𝑡)
=

𝐹(𝑡 + 𝛿𝑡) − 𝐹(𝑡)

1 − 𝐹(𝑡)
 

In the case of small values of 𝛿𝑡, 𝐹(𝑡 + 𝛿𝑡) − 𝐹(𝑡) ≈ 𝑓(𝑡)𝛿𝑡, which leads to the correct probability. 

In part (ii), differentiation gives 𝑓(𝑡) =
1

𝑎
, and substituting into the definition of the hazard function 

gives ℎ(𝑡) =
1

𝑎−𝑡
. Both graphs are simple to sketch. 

In part (iii), using the definition of the hazard function gives 
𝐹′(𝑡)

1−𝐹(𝑡)
=

1

𝑡
. Integrating gives 

− ln|1 − 𝐹(𝑡)| = ln|𝑘𝑡|, and so the probability density function can be found by rearranging to find 

𝐹(𝑡) and then differentiating. 

A similar method in part (iv) shows that if ℎ(𝑡) is of the form stated then 𝑓(𝑡) will be of the given 

form. Similarly, if 𝑓(𝑡) has the given form then ℎ(𝑡) can be shown to have the form stated. 

In part (v), a differential equation can again be written using the definition of the hazard function 

and this can again be solved by integrating both sides with respect to 𝑡. 

  



Question 13: 

Considering the sequence of events for 𝑋 = 4, the 1st, 2nd and 3rd numbers must all be different and 

then the 4th must be the same as one of the first three. The probability is therefore 

𝑃(𝑋 = 4) = (1 −
1

𝑛
) (1 −

2

𝑛
)

3

𝑛
 

The same reasoning applied to 𝑋 = 𝑟 gives  

𝑃(𝑋 = 𝑟) = (1 −
1

𝑛
) (1 −

2

𝑛
) ⋯ (1 −

𝑟 − 2

𝑛
)

𝑟 − 1

𝑛
 

The result of part (i) is then found by observing that the probabilities of all possible outcomes add up 

to 1. 

Substituting the probabilities into the formula for 𝐸(𝑋) gives 

𝐸(𝑋) =
2

𝑛
+ 3 (1 −

1

𝑛
)

2

𝑛
+ 4 (1 −

1

𝑛
) (1 −

2

𝑛
)

3

𝑛
+ ⋯ + (𝑛 + 1) (1 −

1

𝑛
) (1 −

2

𝑛
) ⋯ (1 −

𝑛 − 1

𝑛
) 

For part (iii) observe that any case where 𝑋 ≥ 𝑘 will have the first 𝑘 − 1 numbers all different from 

each other. Therefore 

𝑃(𝑋 ≥ 𝑘) = (1 −
1

𝑛
) (1 −

2

𝑛
) ⋯ (1 −

𝑘 − 2

𝑛
) 

The first formula in part (iv) can be shown by considering 𝑘𝑃(𝑌 = 𝑘) to be equal to the sum of 𝑘 

copies of 𝑃(𝑌 = 𝑘) and then regrouping the sum for 𝐸(𝑌). Finally this gives two different 

expressions for 𝐸(𝑌), which must be equal to each other: 

2

𝑛
+ 3 (1 −

1

𝑛
)

2

𝑛
+ 4 (1 −

1

𝑛
) (1 −

2

𝑛
)

3

𝑛
+ ⋯ + (𝑛 + 1) (1 −

1

𝑛
) (1 −

2

𝑛
) ⋯ (1 −

𝑛 − 1

𝑛
)

= 1 + 1 + (1 −
1

𝑛
) + (1 −

1

𝑛
) (1 −

2

𝑛
) + (1 −

1

𝑛
) (1 −

2

𝑛
) ⋯ (1 −

𝑛 − 1

𝑛
) 

Rearranging and using the result from part (i) then gives the required result. 



STEP 3 2014 Hints and Solutions 

1.  The stem results are obtained through algebraic expansion and equating coefficients.  Using 

the expression  ሺ1 ൅ ሻሺ1ݔܽ ൅ ሻሺ1ݔܾ ൅ ሻ for  1ݔܿ ൅ ଶݔݍ ൅  ଷ , manipulating the logarithmݔݎ

of the product, and the series expansions for expressions like  lnሺ1 ൅  ሻ  yields theݔܽ
displayed result.  In parts (ii), (iii), and (iv), it is simplest to find  ܵଶ ൌ െݍ , ܵଷ ൌ ହܵ , ݎ ൌ െݎݍ, 

ܵ଻ ൌ and  ܵଽ ,  ݎଶݍ ൌ
௥య

ଷ
െ by expanding the series for  ln൫1  ݎଷݍ ൅ ሺݔݍଶ ൅  ଷሻ൯ , andݔݎ

choosing a counter‐example, selecting  a, b and c so that  ݎ ് 0 . 

2.  The first part is solved using the given method, the formula  cosh ݔ2 ൌ 2 coshଶ ݔ െ 1 , and 
then employing partial fractions or the standard form quoted in the formula book.  The 

second part requires the substitution,  ݑ ൌ sinh the formula  cosh , ݔ ݔ2 ൌ 1 ൅ 2 sinhଶ  , ݔ

and a standard form to give  
√ଶ

ଶ
	tanିଵ √2 ݑ ൅ ܿ  .  The third part can be approached by 

making the substitution  ݑ ൌ ݁௫  and division of the resulting fraction in the numerator and 

denominator by  ݁ଶ௫ to give half the difference of the integrals in the first two parts.  
Alternatively, a similar style of working with the substitution  ݑ ൌ ݁ି௫  results in a sum 

instead of a difference. 

3.  (i) Given that the shortest distance between the line and the parabola will be zero if they 

meet, investigating the solution of the equations simultaneously , and the discriminant of 

the resulting quadratic equation, the first result of the question is the case that they do not 

meet.  The closest approach is the perpendicular distance of the point on the parabola 

where the tangent is parallel to the line, so using the standard parametric form, it is the 

perpendicular distance of  ቀ
௔

௠మ ,
ଶ௔

௠
ቁ  from ൌ ݔ݉ ൅ ܿ , giving the required result with care 

being taken over the sign of the numerator bearing in mind the inequalities. 

(ii) The shortest distance of a point on the axis from the parabola, is either the distance from 

the vertex to the point, or the distance along one of the normals (which are symmetrically 

situated) which is not the axis.  If the normal at  ሺܽݐଶ, ,݌ሻ passes through  ሺݐ2ܽ 0ሻ , then 

ൌ 2ܽ ൅   if  ݌  ଶ .  From this it can be simply shown that shortest distance isݐܽ
௣

௔
൏ 2 , and is 

2ඥܽሺ݌ െ ܽሻ  if  
௣

௔
൒ 2 . 

Then for the circle, the results follow simply, that the shortest distance will be ݌ െ ܾ  if  

݌ ൐ ܾ , and 0 otherwise if  
௣

௔
൏ 2 , and 2ඥܽሺ݌ െ ܽሻ െ ܾ  if  4ܽሺ݌ െ ܽሻ ൐ ܾଶ  or 0 otherwise if 

௣

௔
൒ 2 . 

4.  Expanding the bracket in the integral  ܫଵ , and employing  secଶ ݔ ൌ 1 ൅ tanଶ  plus  ܫ yields  ݔ
the integral of a perfect differential which can be evaluated simply.  For  ܫ ൌ 0 , 
ᇱݕ  ൅ ݕ tan ݔ ൌ 0  over the interval which can be solved using an integrating factor and then 
the condition  ݕ ൌ 0	, ݔ ൌ 1 enables the arbitrary constant to be evaluated giving the 
required result.  In part (ii), similar working can be undertaken with the integral which is to 

be considered, given  ܾ ൌ ܽ .  The argument requires no discontinuity in the interval so  

ܽ ൏
గ

ଶ
 .  The function  ݕ ൌ cos  .can be shown to meet the requirement  ݔܽ



5.  ABCD is a parallelogram if and only if  ܤܣሬሬሬሬሬԦ ൌ  ሬሬሬሬሬԦ which yields the required result.  To be aܥܦ	
square as well, angle  ܥܤܣ ൌ 90௢ , and  |ܤܣ| ൌ 	 ܿ  so , |ܥܤ| െ ܾ ൌ ݅ሺܾ െ ܽሻ .  Treating the 
two results as simultaneous equations to be solved for  ܽ  and  ܿ  in terms of  ܾ  and ݀, the 
second result of the stem can be shown with reversible logic.  For part (i) the same logic can 

be used for ܲܺܳ  as just used for ܥܤܣ.  From the stem, XYZT is a square if and only if  

݅ሺݔ െ ሻݖ ൌ ݕ െ  and , ݐ

ݔ ൅ ݖ ൌ ݕ ൅  and given the working for X in part (i), these can be shown to be true  ݐ
treating Y, Z, and T similarly 

6.  Starting from  ݂′′ሺݐሻ ൐ 0  for  0 ൏ ݐ ൏ ׬		⟹   ଴ݔ ݂′′ሺݐሻ
௧బ
଴ ݐ݀ ൐ 0  where  0 ൏ ଴ݐ ൏  ଴ , withݔ

the given conditions yields  ݂ᇱሺݐ଴ሻ ൐ 0 , and then repeating the argument with  ݂′ሺݐሻ  
instead gives  ݂ሺݐሻ ൐ 0 .  Choosing  ݂ሺݔሻ ൌ 1 െ cos ݔ cosh  and applying the applying the  ݔ
stem of the question for  0 ൏ ݔ ൏ gives the required inequality for   0 , ߨ ൏ ݔ ൏  in  2/ߨ
particular.  For part (ii), choosing  ݃ሺݔሻ ൌ ଶݔ െ sin ݔ sinh ሻݔin which case  ݃′′ሺ)  ݔ ൌ 2݂ሺݔሻ , 
where  ݂ሺݔሻ was the suggested choice for part (i)) and  ݄ሺݔሻ ൌ sin ݔ cosh ݔ െ  provide the  ݔ
desired results once care is taken with positivity of functions over the required interval when 

dividing inequalities. 

7.  Part (i), the intersecting chords theorem, is basic bookwork relying on angle properties in 

circles to establish similar triangles and hence the result.  Part (ii) can be obtained by 

considering that  ܳ  lies on   ଵܲ ଷܲ  and so  ࢗ ൌ ૚࢖ ൅ ૜࢖ሺߣ െ   ૚ሻ  , that ܳ  also lies on࢖ ଶܲ ସܲ 

producing a similar result and then equating these two expressions, finally rearranging to 

give (*).  Assuming that  ܽଵ ൅ ܽଷ ൌ 0  and using (*) leads to  ܽଵሺ࢖૚ െ ૜ሻ࢖ ൌ ܽଶሺ࢖૝ െ  ૛ሻ࢖
which, in view of the distinctness of the four points ܲ  and the intersection of  ଵܲ ଷܲ   and   

ଶܲ ସܲ  at  ܳ , leads to the contradiction  ܽଵ ൌ ܽଶ ൌ ܽଷ ൌ ܽସ ൌ 0 .  Re‐writing  
	௔భ࢖૚ା௔య࢖૜

௔భା௔య
 as  

૚࢖ ൅
	௔యሺ࢖૜ି࢖૚ሻ

௔భା௔య
  and similarly, using (*), as   

௔మ࢖૛ା௔ర࢖૝
௔మା௔ర

 and re‐writing, the expression can be 

shown to be the position vector of  ܳ .The final result comes from applying (i) using the 

information just gained and calculating both expressions by taking scalar products of the 

vectors whose magnitudes are quoted in (i). 

8.  The initial result is obtained by extending the given inequality so that each term of the sum 

is compared with  ݂ሺ݇௡ሻ  and  ݂ሺ݇௡ାଵሻ .  Part (i) is obtained using the stem, the given 

function, ൌ 2 , and summing the sums.  The deduction relies on considering the lower limit 

of the sum.  The same approach applies to part (ii), with the new function given and 

considering the upper limit which is obtained as a geometric progression.  Counting the 

number of elements of  ܵሺ1000ሻ gives the method for obtaining  ߪሺ݊ሻ using the same 

function as part (i) except ݂ሺݎሻ ൌ 0  if  ݎ  has one or more 2 s in its decimal representation 

and with  ݇ ൌ 10 , again with the sum of a geometric progression.  The final result is 

particularly attractive, demonstrating how few terms need  to be removed from the non‐

convergent harmonic progression (of part (i)) in order to produce a convergent sequence. 

9.  ܞ ൌ
ଵିୣషౡ౪

୩
܏ ൅ eି୩୲ܝ   and a further differentiation yields m܉ ൌ m܏ െmkܞ .  Using  r. j ൌ 0 

  obtains the first displayed result after re‐arrangement, as does  tan ߚ ൌ
ܒ.ܞି

ܑ.ܞ
 the second. 



  tan ߚ െ tan   can be shown to be  ߙ
ଶ୥

୳୩ ୡ୭ୱఈ൫ଵିୣషౡ౐൯
ሺsinh kT െ kTሻ  which leads to the two 

final inequalities. 

10.  The first result is obtained by considering Newton’s second law applied to the mass X under 

the tension in PX and the thrust of XY.   ݉
ௗమ௬

ௗ௧మ
ൌ െ

ఒሺ௫ାଶ௬ሻ

௔
  is similarly obtained considering 

Y.  Subtracting the two equations gives a SHM second order differential equation for െݕ , 
and adding them gives similar for ݔ ൅   Solving these using initial conditions give  . ݕ

ݔ െ ݕ ൌ
ଵ

ଶ
ܽ cos߱ݐ  and   ݔ ൅ ݕ ൌ െ

ଵ

ଶ
ܽ cos  ,The final result is particularly elegant  .  ݐ3߱√

and possibly a little surprising that a conservative oscillating system does not return to its 

starting position.  Treating the previous two results as simultaneous equations for ݔ  and  ݕ, 

and solving  ݕ ൌ െ
ଵ

ଶ
ܽ , yields 1 ൌ cos√3߱ݐ  and  1 ൌ cos߱ݐ , so that √3߱ݐ ൌ   and  ߨ2݊

ݐ߱ ൌ for non‐zero integers  ݊  and  ݉ , yielding the contradiction  √3  ߨ2݉ ൌ
௡

௠
 . 

11.  Resolving vertically and horizontally, and solving the resulting simultaneous equations and 

then tidying up the trigonometric expressions yields   ஺ܶ ൌ ݉
൫௚ ୱ୧୬ఉାఠమ௫ ୱ୧୬ఈ ୡ୭ୱఉ൯

ୱ୧୬ሺఈାఉሻ
  and  

஻ܶ ൌ ݉
൫ఠమ௫ ୱ୧୬ఈ ୡ୭ୱఈି௚ ୱ୧୬ఈ൯

ୱ୧୬ሺఈାఉሻ
 .  Trivially, the former is positive, but the same condition 

applied to the latter, given that its denominator and the common factor of the numerator 

can be shown to be positive, yields the first required inequality.  The geometric inequality 

could be proved, as candidates tended to, by use of the cosine rule and then completing the 

square to obtain  ሺݔ െ ݄ cos ሻଶߙ ൌ ݀ଶ െ ݄ଶ ൅ ݄ଶ cosଶ  However, use of the sine rule and  . ߙ
the maximum of the sine function, or the shortest distance of B from AP gives  ݀ ൒ ݄ sin  , ߙ
which along with  cosଶ ߙ ൅ sinଶ ߙ ൌ 1 , give the required inequality.  In the particular case, 

it can be shown that   ஺ܶ ൌ 	
௠௚

ୡ୭ୱ∝
 and the knowledge of the unattainable maximum value of 

the cosine function along with the geometric inequality previously obtained leads to the 

final inequalities.  The geometry is that the strings are perpendicular, which can be 

appreciated by considering the equality case of   ݀ ൒ ݄ sin  . ߙ

12.  The first result,  ݕ௠ ൌ ݁௫೘  , is obtained merely by considering probabilities, and the given 

pdf of Y can be obtained by standard techniques or by consideration of changing the variable 

in the integral of the pdf of X.  The mode result relies on differentiation of the pdf of Y 

equated to zero to give a stationary value.  The explanation in part (iii) is simply that the 

required integral is merely that of the pdf of a Normal variable with mean  ߤ ൅  ଶ.  Theߪ
expectation of Y is obtained in the standard manner, using an integral and the pdf of Y, and 

then a change of variable, in which exponential terms can be combined so as to use the 

explained result having completed the square in the exponent.  Using the three previous 

parts gives  ߣ ൌ ݁ఓିఙ
మ
௠ݕ ,  ൌ ݁௫೘ ൌ ݁ఓ  because X is symmetric, and, as stated,  

ሺܻሻܧ  ൌ ݁ఓା
భ
మ
ఙమ  , hence satisfying part (iv). 

13.  The first result is a trivial application of the definition of a probability generating function, 

and the second similarly.  In order to obtain the first printed result in part (iii), it is necessary 

to obtain a similar result to those in parts (i) and (ii)  giving ܩݐሺݐሻ  as the score is one higher 
and then applying the conditionality of the probabilities of these three results which is done 



by considering  the probability of a score  ݊  in the three cases to give the coefficient of  ݐ௡.  
Re‐arranging the formula for  ܩሺݐሻ , either differentiation or the binomial theorem can be 

used to find the required probability formula.  Finding  ߤ ൌ ᇱሺ1ሻܩ ൌ ܿ ܽ⁄   and the 

knowledge that  ܽ ൅ ܾ ൅ ܿ ൌ 1  enables the result of part (iii) to be rearranged to that of 
part (iv). 

 



	

	

	


