

Mark Scheme (Final)

Summer 2015

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2015 Publications Code IA042726 All the material in this publication is copyright © Pearson Education Ltd 2015

General Marking Guidance

• All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.

• Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.

• Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.

• There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.

• All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

• Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.

• Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- _ or d... The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

June 2015 WST03 Statistics 3 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\{w\} = 018 \text{ or } 18$ 018 or 18	B1
(b)	${x} = 18$ 18	[1] B1
(c)	${\text{prob}} = 0$	[1] B1 [1]
(d)	 Advantage: Any one of: Simple or easy to use also allow "quick" or "efficient" (o.e.) It is suitable for large samples (or populations) Gives a good spread of the data Disadvantage: Any one of: The alphabetical list is (probably) not random Biased since the list is not (truly) random Some combinations of names are not possible 	B1 [2] (Total 5)
	Notes	
(d)	If no labels are given treat the 1 st reason as an advantage and the 2 nd as a disadvantag 1 st B1: for advantage 2 nd B1: for disadvantage "it requires a sampling frame" is 2 nd B0 since the alphabetical list is given. Note: Do not score both B1 marks for opposing advantages and disadvantages.	e

Question Number					Schem	ne						Marks	3
1 (01110 01		Α	В	С	L	N	R	S	Т	Y			
2. (a)	Judge 1	6	3	4	9	2	8	1	5	7			
	Judge 2	A 6 8	4	5	7	3	9	1	5 2	6			
	or											M1	
	Judge 1 Judge 2	S	N	В	С	Т	Α	Y	R	L			
	Judge 1	1	2	3	4	5	6	7	8	9 7			
	Judge 2	1	3	4	5	2	8	6	9	7			
	$\sum d^2 = 4 + $	1+1+	4 + 1 +	-1 + 0	+9+1	1						M1	
		or $0 + 1$					4 = 22				$\sum d^2 = 22$	A1	
	6(22	2)	01.00									M1;	
	$r_s = 1 - \frac{6(22)}{9(80)}$	$\frac{1}{2}; = 0$).81666	66							$\frac{49}{60}$ or awrt 0.817	A1	
			0										[5]
(b)	$\mathbf{H}_{0}: \boldsymbol{\rho} = 0 ,$	-			-							B1	
	Critical Valu										0.7833	B1	
	Since $r_s = 0$.							(o.e.)				M1	
	The two judg there is a pos	-	-		-			e two j	udges.			A1ft	
	• • •							-	<u> </u>] (Total	[4] 9)
						N	otes					(10tai	<u></u>
(a)	1 st M1 for a												
	2^{nd} M1 for a	n attem	npt at <i>d</i>	2 row ((may b	e impli	ed by s	sight of	f $\sum d^2$	= 22 o	or 221 for reverse ranks)	
	1 st A1 for	$\sum d^2 =$	= 22 (o	r 221 i	f rever	se rank	ting is	used) (Can be	implied	d by correct answer.		
	3^{rd} M1 for u	use of the	he corr	ect for	mula w	ith the	ir $\sum a$	² (if it	is clea	rly stat	ed)		
	If the second se	he ansv	ver is n	ot corr	ect the	n a coi	rect ex	pressio	on is re	quired			
False Ranking	e.g Alphabetic ranking: Gives Judge 1: 7 5 2 3 8 1 9 6 4 Judge 2: 7 8 5 2 3 9 4 1 6 $\sum d^2 = 162$ and $r_s = -0.35$												
	Scores: M0(for ranking), M1(for attempt at d^2 row), A0, M1 (for use of their $\sum d^2$), A0 i.e. 2 of												
							w thro				—		
(b)		y = 0.78	333 (inc	lepend	ent of t	their H	1 (no 2	-tail va	lue in	tables)	ust be compatible with <u>but</u> compatible sign w value.		;)
	e.g. "re												
	May be	e implie	ed by a	correc	t conte	xtual c	omme	nt.					
cv >1	If their					-					are in agreement" (c.c.)	for Alft	
											are in <u>agreement</u> " (o.e.) <u>ges</u> don't <u>agree</u> " (o.e.) f		
	Alft: for a c								ivi i all	a juuş	<u>ses</u> don t <u>agree</u> (0.e.) I		
		tive co		-				С ЛІ.					
								<u>re</u> in a	greeme	ent"			

Number	Scheme											
	$\widehat{\lambda} = \frac{0(47) + 10}{2}$	(57) + 2(46) - 20	+3(35) + 4(9)	1000000000000000000000000000000000000	$\frac{0}{0} = 1.6$ *	Full exp' or at products and 3		B1 *	[1]			
(b)	$r = 200 \times \frac{\mathrm{e}^{-1.6}}{\mathrm{e}^{-1.6}}$	$\frac{(1.6)^2}{2!} = 51$.68550861}		Us	ing $r = 200$	$\times \frac{\mathrm{e}^{-1.6}(1.6)^2}{2!}$	M1	[1]			
	s = 200 - (40.	38 + 64.61 +	their $r + 27.5$	57 + 11.03) {=	4.72449139	} <u>or</u> their	r + s = 56.41	M1				
	r = 51.685508	361 and <i>s</i> =	= 4.72449139)	r = awrt	51.69 and s	e = awrt 4.72	A1	[2]			
(c)	H_0 : Poisson (H_1 : Poisson (B1	[3]			
	Number of	Observed	Expected	Combined	Combined	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$					
	accidents	Observed	Expected	Observed	Expected	E	Ē					
	0	47	40.38	47	40.38	1.0853	54.7053					
	1	57	64.61	57	64.61	0.8963	50.2863					
	2 3	46 35	51.69	46 35	51.69	0.6264	40.9364					
	4	9	27.57 11.03		27.57	2.0024	44.4324					
	≥5	6	4.72	15	15.75	0.0357	14.2857	M1				
					Totals	4.6461	204.6461					
	$X^2 = \sum \frac{(O - I)}{I}$	$(E)^2$	$\neg O^2$	4 5 4 5 1				M1;				
	$X^2 = \sum \frac{1}{B}$	$\frac{1}{E}$ or \sum	$-\frac{1}{E}$ - 200	;= 4.6461			awrt 4.65	A1				
	v = 5 - 1 - 1 =	3					3	B1 ft				
	$\chi_3^2(0.10) = 6.2$	$251 \Rightarrow CR:$	$X^2 \ge 6.251$				6.251	B1 ft				
	[Since $X^2 = 4$.	.6461 does no	ot lie in the C	R, then there is	s insufficient of	evidence to re	eject H ₀]					
	The number of the <i>supervisor</i>	-	•	modelled by a l	Poisson distri	bution <u>or</u>		A1 ft				
	-							(Tota	[7] 11)			
				Note	es			(2000))			
(b)	Note: Allow	v A1 for $s = a$	awrt 4.74 (fo	und as a result	of using expe	ected values t	o full accuracy	y.)				
(c)	Allov Inclu	w Poisson is a usion of 1.6 fo	a "good fit/m or mean in hy	oning Poisson a odel" but <u>not</u> " potheses is B0 nts and ≥ 5 acc	good method' but condone	in conclusion		is M0				
No pooling		wrt 4.65 (sco	re M1M1A1	ic, at least 2 con if awrt 4.65 set if $X^2 = 5.33$ is	en)	ons/values (to	o awrt 2 d.p.)					
Pooring	2^{nd} B1ft: For						B1B1 may be in					
			-		n-1-1 from		6.251 (if pooling	g) or 7.7	79			
	3 rd B1ft: For a correct ft for their $\chi_k^2(0.10)$, where $k = n - 1 - 1$ from their <i>n</i> . 2 nd A1ft: (<i>Dep. on the</i> 2 nd M1) For correct comment in context based on their test statistic and the value that mentions <i>accidents</i> or <i>supervisor</i> . Condone mention of Po(1.6) in conclu											
	Score A0 for inconsistencies e.g. "significant" followed by "supervisor's belief is just											
	Note: Full acc								,			
		.64855 and				L	L					

Question Number	Scheme		Marks						
4. (a)	Let X = weight of a sack of potatoes, $X \sim N(25.6, 0.24^2)$								
	So $D = X_1 - X_2 \sim N(0, 2(0.24)^2)$ or $D \sim N(0, 0.1152)$	Attempt at D and $D \sim N(0,)$ $(0.24)^2 + (0.24)^2$; 0.1152	M1 A1; A1						
	$\left\{ P(D > 0.5) = \right\} 2 P(D > 0.5)$	$2 \times P(D > 0.5)$ can be implied	dM1						
	$= 2 \times P\left(Z > \frac{0.5}{\sqrt{0.1152}}\right)$		dM1						
	$= 2 \times P(Z > 1.4731) \underline{or} = 2(1 - 0.9292)$ = 0.1416	ownt 0 141 or ownt 0 142	A 1						
	- 0.1410	awrt 0.141 or awrt 0.142	A1 [6						
(b)	Let Y = weight of an empty pallet, $Y \sim N(20.0, 0.32^2)$ So $T = V + V + V + V + V$								
	So $T = X_1 + X_2 + \dots + X_{30} + Y$	30(25.6) + 20 <u>or</u> 788	B1						
	$T \sim N(30(25.6) + 20, 30(0.24)^2 + 0.32^2)$	$30(0.24)^2 + 0.32^2$	M1						
	$T \sim N(788, 1.8304)$	N and 1.8304 or awrt 1.83	A1						
	$\left\{ P(T > 785) = \right\} P\left(Z > \frac{785 - 788}{\sqrt{1.8304}}\right)$		M1						
	= P(Z > -2.2174)	(0.00 7	. 1						
	= 0.9868	awrt 0.987	A1 [5						
			(Total 1						
(a)	Notes 1 st M1: For clear definition of D and normal distribution with the second secon	the maan of 0 (Con he implied by	2rd M1)						
(<i>a</i>)	1 st A1: for correct use of Var($X_1 - X_2$) formula	the mean of o (Can be implied by	5 111)						
	2 nd A1: for 0.1152	ist and the second s	~						
	2^{nd} dM1: For realising need $2 \times P(D > 0.5)$ (Dependent on 1 3^{rd} dM1: Dep on 1st M1 for standardising with 0.5, 0 and the	-							
	3^{rd} dM1: Dep on 1st M1 for standardising with 0.5, 0 and the P(Z > 1.47) implies 1^{st} M1 1^{st} A1 2^{nd} A1 and 3^{rd} M1 Correct answer only will score 6 out of 6		+ ve)(0.e.						
(b)	B1: For a mean of $30(25.6) + 20$. Can be implied by 78	88.							
	1 st M1: For $30(0.24)^2 + 0.32^2$. Can be implied by 1.8304 or awrt 1.83								
	Allow M1 for swapping error i.e. $30 \times 0.32^2 + 0.24^2$ if the expression is seen 1 st A1: For normal and correct variance of 1.8304 or awrt 1.83. Normality may be implied by standardisation								
	2 nd M1: For standardising with 785 with their mean and st. dev($\neq 0.24$) Must lead to P(Z > - ve)								
	2 nd A1: awrt 0.987 Correct answer only will score 5 out of 5								
	Note: Calculator answers are (a) 0.14071, (b) 0.98670.								

Question Number				Sc	heme				Ma	rks			
5.	H_0 : Grades H_1 : Grades	-			-			ated) "grades" and "gender" mentioned at least once.	B1	(1)			
	Observed	d	Male Female			e							
	Distinctio	n	37		44			An attempt to convert percentages to observed frequencies.	M1				
	Merit		127		96								
	Unsatisfact	ory	36		20			All observed frequencies are correct.	A1				
	Expected	1	Male	;	Female	e	Totals	Some attempt at (Row Total)(Column Total)	M1				
	Distinctio	n	45		36		81	(Grand Total)	M1				
	Merit		123.88	<u>89</u>	99.111		223	Can be implied by a correct E_i					
	Unsatisfactor Totals	ory	31.11 200	1	24.889 160)	56 360	All expected frequencies are correct to nearest integer.	A1				
								At least 2 correct terms for					
	Observed		Expected		$\frac{(E-E)^2}{E}$		$\frac{O^2}{E}$	$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct	M1				
	37		45		.422		30.422	expressions with their E_i .					
	44		6		1.778		53.778	Accept 2 sf accuracy for the M1 mark.					
	127		.889		0.078		130.189						
	96				0.098		92.987	All correct $\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ terms					
	36	31.			0.768		41.657	to either 2 dp or better.	A1				
	20				0.960 5.104		16.071 365.104	Allow truncation. $(\Rightarrow$ by awrt 5.1 if 3 rd M1 seen)					
	Totals 5.104 365.104 (\Rightarrow by awrt 5.1 if 3 rd M1 see $X^2 = \sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 360$;= awrt 5.1 awrt 5.1												
	v = (3-1)(2-1) = 2 (<i>v</i> =) 2 (Can be implied by 5.99)												
	$\chi^2_2(0.05) = 5.991 \implies CR: X^2 \ge 5.991$ For 5.991 only												
	Since $X^2 = 5.1$ does not lie in the CR, then there is insufficient evidence to reject H ₀												
	Business Studies grades and gender are independent \underline{or}												
	There is no association between Business Studies grades and gender. Or												
	Head of department's (belief) is correct												
	Notes												
	Final M1: For a correct statement linking their test statistic and their critical value (> 3.8) Note: Contradictory statements score M0. E.g. "significant, do not reject H_0 ".												
	 Final A1ft: For a correct ft statement in context – must mention "grades" and "gender" or "sex" or "head of department" Condone "relationship" or "connection" here but not "correlation". e.g. "There is no evidence of a relationship between grades and gender" 												
5.10 only	Just seeii	ng 5.10	0 only	' can	imply 1st	3 N	As but lose	s 1 st 3 As so can score 4 out of 7 (Qu says	s "show	·")			
	Note: Full accuracy gives $X^2 = 5.104356$ and p-value 0.0779												

Question Number				Sc	cheme				Marks				
5.	Mark Scheme for candidates who use percentages instead of observed values.												
	H ₀ : Grades and gender are independent (or not associated) "grades" and "gender"												
	H_1 : Grades and gender are dependent (or associated) mentioned at least once.												
	Observe	Male Fem			e		These marks cannot be obtained.	M0 A0					
	Distinctio	n	18.5	5	27.5			These marks cannot be obtained.	MO AO				
	Merit		63.5	5	60.0								
	Unsatisfact	ory	18.0)	12.5								
	Some attempt at												
	Expected	ł	Male	e	Female	e To	otals	(Row Total)(Column Total)					
	Distinctio	n	23		23	2	46	(Grand Total)	M1				
	Merit		61.7	5	61.75	12	23.5	Can be implied by one of these E_i 's					
	Unsatisfact	ory	15.2	5	15.25	3	0.5						
	Totals	Totals 10		100 100		2	200	Expected frequencies are not correct.	A0				
	At least 2 "correct" terms for												
	Observed Ex		postad	(6	$(D - E)^2$	$\frac{(-E)^2}{E}$ $\frac{O^2}{E}$		$\frac{(O-E)^2}{E}$ or $\frac{O^2}{E}$ or correct					
			Expected		$\frac{(O-E)^2}{E}$				M1				
	18.5		23	C).8804	14.8804		expressions with their E_i .	1,11				
	27.5		23	C	0.8804	32.88	804	Accept 2 sf accuracy for the M1 mark.					
	63.5	6	1.75	0).0496	65.29	996	for the W1 mark.					
	60.0	6	1.75	0).0496	58.29	996						
	18.0	1	5.25	0).4959	21.24	459	This mark cannot be obtained.	A0				
	12.5	1	5.25	0).4959	10.24	459						
			Totals	2	2.8518	202.8	518						
	$X^2 = \sum \frac{(O)}{(O)}$	$\frac{-E}{E}$	- or	$\sum \frac{c}{h}$	$\frac{P^2}{E}$ - 360	;= 2.85	18	This mark cannot be obtained.	A0				
	v = (3-1)(2-1) = 2 (<i>v</i> =) 2 (Can be implied by 5.991)												
	$\chi^2_2(0.05) = 5$.991	\Rightarrow CR:	X^2	≥ 5.991			For 5.991 only	B1				
	Since $X^2 = 2$	2.86 (does not	lie i	n the CR,	then the	re is ir	sufficient evidence to reject H_0	M1				
								Not available since comes from incorrect working.	A0				
									[1 (Total 1				
	TC 1' 1				.1 .1	1	Not		<u> </u>				
			-	-	If a candidate uses percentages rather than observed values then they can obtain a maximum of They can get B1 M0A0 M1A0 M1A0A0 B1B1M1A0.								

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
	$\left\{\hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \right\} \ \overline{x} = 31.4 \qquad \qquad \overline{x} = 31.4$	B1 cao
	$\begin{cases} \hat{\mu} = \frac{\sum x}{n} = \frac{1570}{50} = \\ \hat{x} = 31.4 \\ \hat{\sigma}^2 = \frac{\sum x^2 - n\bar{x}^2}{n-1} = \\ s_x^2 = \frac{49467.58 - 50(31.4)^2}{50 - 1} \end{cases}$	M1 A1ft
	= 3.460816 awrt 3.46	A1 [4]
(b)	[Let Y = time taken to complete obstacle course in the afternoon.]	
	$\mathbf{H}_{0}:\boldsymbol{\mu}_{x}=\boldsymbol{\mu}_{y}, \ \mathbf{H}_{1}:\boldsymbol{\mu}_{x}>\boldsymbol{\mu}_{y}$	B1
	$(z =) \frac{"31.4" - 30.9}{}$	
	$(z =) \frac{"31.4" - 30.9}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$	M1 A1ft
	= 1.38781 awrt 1.39	A1
	CR: $Z \ge 1.6449$ or probability = awrt 0.082 or awrt 0.083 Let 49 or better Since $z = 1.28781$ does not lie in the CP, then there is insufficient evidence to reject U	B1
	Since $z = 1.38781$ does not lie in the CR, then there is insufficient evidence to reject H ₀ Conclude that the <u>mean time</u> to complete the obstacle course is the same for the early <u>morning</u> and late <u>afternoon</u> .	M1 A1
		[7]
(c)	\overline{X} and \overline{Y} are both approx. <u>normally distributed or</u> $\overline{X} - \overline{Y}$ normal (Condone \overline{x} and \overline{y})	B1 [1]
(d)	Have assumed $s^2 \approx \sigma^2$ or variance of sample \approx variance of population	B1 [1]
		(Total 13)
(-)	Notes	
(a)	B1: 31.4 cao Allow 31 minutes, 24 seconds. 1^{st} M1: A correct expression for either <i>s</i> or s^2 (ignore label)	
	1 st A1ft: A correct expression for s^2 with their ft \overline{x} . 3 rd A1: awrt 3.46 (Correct answer scores 3 out of 3)	
(b)	1 st B1: Both hypotheses stated correctly, with some indication of which μ is which. Eg:	$\mu_{_M}$, $\mu_{_A}$
	1 st M1: For an attempt at $\frac{a-b}{\sqrt{\frac{c}{50} + \frac{d}{50}}}$ with at least 3 of <i>a</i> , <i>b</i> , <i>c</i> or <i>d</i> correct. Allow \pm	
	1 st A1ft: for $\pm \frac{\text{their } 31.4 - 30.9}{\sqrt{\frac{\text{their } 3.46}{50} + \frac{3.03}{50}}}$ Allow $D = \overline{x} - \overline{y}$ 1.64 ~ 1.65 $= \frac{D - 0}{\sqrt{\frac{"3.46"}{50} + \frac{3.03}{50}}}$ [SE = 0.164 ~ 1.65 = $\frac{D - 0}{\sqrt{\frac{10}{50} + \frac{3.03}{50}}}$.360277]
	2 nd A1: for awrt 1.39 (possibly \pm)(Allow for CV D = awrt 0.593) (NB d = 0.5) Correct answer scores M1A1ftA1 <u>but</u> $0-(31.4-30.9) \rightarrow -1.39$ loses this 2 nd A matrix	urk
	 2nd B1: Critical value of 1.6449 or better (seen). Allow for probability = awrt 0.082 or awrt 0. Note: p-values are 0.0823 (tables) and 0.0826 (calculator). 	
	 2nd M1: For a correct statement linking their test statistic and their critical value. Note: Contradictory statements score M0. E.g. "significant, do not reject H₀". 	
	3 rd A1: For a correct statement in context that accepts H ₀ (no ft) Condone "no difference in me Must mention " <u>mean time</u> ", " <u>morning</u> " and " <u>afternoon</u> " or " <u>both times of day</u> "	an times"
(c)	B1 E.g. $\overline{X} \sim N()$ need both. Allow in words e.g "sample means are normally distributed	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
(d)	B1 condone only mentioning "x" or "y" <u>but</u> watch out for $s_x = s_y$ or $\sigma_x = \sigma_y$ which scores	B0

Question Number	Scheme	Marks
7.	Let $X =$ score on a die	
(a)	E(S) = 3.5, Var(S) = $\frac{35}{12}$ E(S) = 3.5 Var(S) = $\frac{35}{12}$ or awrt 2.92	B1 B1
(b)	So, $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ or $\overline{S} \sim N\left("3.5", \frac{7}{96}\right)$	[2] B1ft
	$P(\overline{S} < 3) = P\left(Z < \frac{3 - "3.5"}{\sqrt{\frac{7}{96}}}\right) \{= P(Z < -1.85164)\}$	M1
	$\{=1-0.9678\}=0.0322$ 0.032 to 0.032 to 0.032	A1
		[3] (Total 5)
(a)	Notes 2 nd B1 allow awrt 2.92	
(b)	B1ft for $\overline{S} \sim N\left("3.5", \frac{"\left(\frac{35}{12}\right)"}{40}\right)$ seen or implied. Follow through their E(S) and their Var(S) NB $\frac{7}{96} = 0.07291\dot{6}$ accept awrt 0.0729	
	M1 for an attempt to standardise with 3, their mean (>3) and $\sqrt{\frac{\text{their Var}(S)}{40}}$. Must lead to P A1 for 0.032 ~ 0.0322	(Z < -ve)
ΑLΤ ΣS	B1ft for $\sum S \sim N\left(140, \frac{350}{3}\right)$ where 140 is 40× their E(S) and variance is 40× their Var(S) M1 for $P\left(Z < \frac{120 - "140"}{\sqrt{\frac{350}{3}}}\right)$ or $P\left(Z < \frac{119.5 - "140"}{\sqrt{\frac{350}{3}}}\right) \{= P(Z < -1.8979)\}$	
	$\left(\begin{array}{c} \sqrt{\frac{350}{3}} \end{array}\right) \left(\begin{array}{c} \sqrt{\frac{350}{3}} \end{array}\right)$ A1 for 0.032~0.0322 or (with continuity correction) 0.0287 (tables) or 0.0289 (calculator).	

Question Number	Scheme	Marks
8. (a)	$\left\{\overline{x} = \frac{29.74 + 31.86}{2}\right\} \implies \overline{x} = 30.8$ This can be implied. See note.	B1
	"1.96" $\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 30.8$ or $2("1.96") \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29.74$	M1
	$SE_{\bar{x}} = \frac{31.86 - 30.8}{1.96} = 0.540816 = 0.54 (2dp)$ awrt 0.54	A1
(b)	A 90% CI for μ is $\overline{x} \pm 1.6449 \left(\frac{\sigma}{\sqrt{n}}\right)$	[3] B1
	$= 30.8 \pm 1.6449(0.54) $ (their \overline{x}) \pm (their z)(their SE _x from (a)) = (29.91, 31.69) (awrt 29.9 , awrt 31.7)	M1 A1
(c)	Let $X =$ number of confidence intervals containing μ	[3]
	or $Y =$ number of confidence intervals not containing μ So $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	M1
	$P(X \ge 3) \text{ or } P(Y \le 1) = {}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4} $ ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$	A1 oe
	$= 0.2916 + 0.6561 = 0.9477 \qquad 0.9477 \text{ or } 0.948$	A1
		[3] (Total 9)
	Notes	
(a)	B1: $\overline{x} = 30.8 \text{ may be implied by } 1.96 \left(\frac{\sigma}{\sqrt{n}}\right) = [31.86 - 30.8] = 1.06 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.8 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 + 30.86 \text{ or } 2(1.96) \left($.86 – 29.74
	M1: A correct equation for either a width or a half-width involving a <i>z</i> -value $1.5 \le z \le 2$	
	Eg: "their $z''\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - "30.8"$ ft their \overline{x} or $2("their z'')\left(\frac{\sigma}{\sqrt{n}}\right) = 31.86 - 29$	
	or "their $z''(SE_{\bar{x}}) = 31.86 - "30.8"$ or $2("their z'')(SE_{\bar{x}}) = 31.86 - 29.74$ are fine	for M1.
	A1: 0.54 or awrt 0.54 Must be seen as final answer to (a) NB $\frac{53}{98}$ as final answer is A0	
	Condone $\overline{x} \pm 1.96\sigma =$ for B1 and M1 but A0 even if they say " σ = standard error = 0. Otherwise answer only of 0.54 scores 3 out of 3	54"
(b)	B1 for use of 1.6449 or better in an attempt at a CI formula. Need at least 1.6449 (their SE M1 for attempt at CI ft their values and provided $1 \le z \le 1.7$	
(c)	M1: States or applies either $X \sim Bin(4, 0.9)$ or $Y \sim Bin(4, 0.1)$	
	Condone M1 for $0.9^4 + 0.9^3 \times 0.1$ (o.e.)	
	1 st A1: ${}^{4}C_{3}(0.9)^{3}(0.1) + (0.9)^{4}$ or $(0.9)^{4} + {}^{4}C_{1}(0.1)(0.9)^{3}$ oe	
	2^{nd} A1: 0.9477 or 0.948	

G. B. Attwood 30/05/15

PhysicsAndMathsTutor.com

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R ORL, United Kingdom