

Mark Scheme (Results)

Summer 2014

Pearson Edexcel International A Level in Statistics 3 (WST03/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014 Publications Code IA040147 All the material in this publication is copyright © Pearson Education Ltd 2014

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. Ignore wrong working or incorrect statements following a correct answer.

PMT

Question Number	Scheme	Marks
1. (a)	165, 8	B1
(b)	Select <u>every 6th person</u> {having chosen the first person by} Selecting a random number between 1 and 6 or	[1] B1
	selecting a random number and then loop back to start when you reach the end.	dB1
(b)(ii)	The <u>list</u> is alphabetical and <u>has not been sorted by gender</u> .	B1 [3]
(c)	Label male members 1- 180, female members $1 - 120$	M1
	<u>Use random numbers</u> to select a Simple random sample of <u>30 male</u> members and <u>20 female</u> members	M1 A1
	ompre random sampre of <u>oo made</u> memoers and <u>oo remare</u> memoers	[3]
(d)	 Any one of It (a stratified sample) is <u>not biased</u> as the members are chosen randomly. You <u>can estimate the sampling errors</u> (for a stratified sample) It (a stratrified sample) gives <u>more accurate estimates</u> as it is a random process. A quota sample may <u>be biased</u> (whereas a stratified sample is not). It's <u>not possible</u> to <u>estimate/find</u> the <u>sampling errors</u> for a <u>quota sample</u> 	В1
	(whereas you can for a stratified sample)	[1] 8
	Notes	
(a) (b)(i)	 B1 165 followed by 8 or 008. 1st B1 For selecting every 6th (name on the list) 2nd dB1 <i>is dependent on the first B1 mark being awarded.</i> For idea of using random numbers to select first from 1 to 6 or 0 to 5 (o.c. or selecting a random number between 1 and 300 and then looping back end of the list has been reached. 	
(b)(ii)	 B1 A comment that implies the list (or sampling frame) has not been sorted Note B0 for "the ordered list is not truly random" Note B0 for "sample does not divide the members into gender." 	by gender.
(c)	 1st M1 For suitable labelling of all 180 males and all 120 females. E.g. Allow labelling female members 181 – 300. Also allow labelling male members 0 – 179 and female members either 0 to 119 or 180 to 299. 	
	 2nd M1 For use of random numbers to select males and females. A1 For 30 males and 20 females (dependent on 2nd M1 only) 	
(d)	NoteA simple random sample of 30 males and 20 females scores 2nd M1 andNoteB0 for "a stratified sample can reflect the population structure."B0 for "estimates obtained from each of the strata."	A1.

Question Number		Scheme	Mar	·ks
2.	X follows	a continuous unform distribution over $[\alpha - 3, 2\alpha + 3]$		
(a)	$\left\{ \mathrm{E}(\overline{X}) = \right\}$	$\mu = \frac{2\alpha + 3 + \alpha - 3}{2}$	M1	
		$=\frac{3\alpha}{2}$. So \overline{X} is a biased estimator.	A1	
	bias $\left\{=\frac{3}{2}\right\}$	$\left(\frac{\alpha}{2} - \alpha\right) = \pm \frac{\alpha}{2}$ bias = $\pm \frac{\alpha}{2}$	B1	
(b)	$k = \frac{2}{3}$	$\frac{2}{3}$	B1	[3]
				[1]
(c)	$\alpha = \frac{2}{3}\overline{X} =$	$=\frac{2}{3}(8)$ "their k" × 8	M1	[-]
	Max value	$e = 2\left(\frac{16}{3}\right) + 3$ $2 \times " their \alpha" + 3$ See notes	M1	
		$=\frac{41}{3}$ $\frac{41}{3}$ or $13\frac{2}{3}$ or awrt 13.7	A1	
				[3] 7
		Notes		/
(a)	M1	Using the formula $\left(\frac{a+b}{2}\right)$ or getting $\frac{3\alpha}{2}$		
	A1	$\frac{3\alpha}{2}$ and concluding. Allow A1 for $\frac{3\alpha}{2} \neq \alpha$.		
	Note	Also allow A1 for bias = $\pm \frac{\alpha}{2} \neq 0$		
(c)	1 st M1	An attempt to use the sample data given to find \overline{x} and multiply by	their k	
		Allow full expression for \overline{x} or $\frac{\sum x}{n}$.		
	Note	1 st M1 can be implied by a correct recovery leading to $\alpha = \frac{16}{3}$		
	2 nd M1	$2 \times$ "their α " + 3 where their α is a function of the sample mean - which	h found	l by
		applying $\frac{\sum x}{n}$ from the data values given in the question.		
	Note	n^{n} 2(13) + 3 = 39 is M0M0A0		

Question Number		Scheme	Marks
3. (a)	$\mathbf{H}_0: \boldsymbol{\mu}_A = \boldsymbol{\mu}_B \qquad \mathbf{H}_1:$	$\mu_A > \mu_B$	B1
	s.e. = $\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}$ {	= 4.81170448}	M1 A1
	$z = \frac{532 - 520}{"4.8117}$; =	= 2.4939 $\frac{\pm (532 - 520)}{"4.8117"}$	dM1;
	4.0117	awrt 2.49	A1
		2.3263 or CR: $Z \ge 2.3263$ Critical value of 2.3263 $006 < 0.01$ or " 0.994 " > 0.99 Or a correct probability comparison.	B1
		t/Reject $H_0 / "0.006" < 0.01 / "0.994" > 0.99$]	
	from <u>farm A</u> <u>farm B</u> . that the <u>aver</u> <u>grapefruit</u> from than that of <u>f</u> or	n weight of grapefruit is greater than that ofA correct conclusion in context which is based on <i>their z</i> -value and <i>their</i> critical value, where $ c.v. > 1$.age weight of om farm A is greater farm B. er's belief is correct.where $ c.v. > 1$.	A1
	<u>_</u>	<u></u>	[7] 7
		Notes	1
	B1 If μ_1, μ_2	u_2 used then it must be clear which refers to farm A and to fa	arm <i>B</i> .
	1 st M1 Condo	ne minor slips e.g. $\sqrt{\frac{35^2}{100} + \frac{28^2}{80}}$ or $\sqrt{\frac{35}{80} + \frac{28^2}{100}}$ etc.	
		apped n or one s.d. and one variance.	
		$\frac{35^2}{80} + \frac{28^2}{100}$. Or can be implied by s.e. = awrt 4.81	
		indent upon the 1st M1. In follow through their s.e. if 1 st M1 mark has been awarded	
	Note M1A1	dM1 is scored for writing $z = \pm \frac{(532 - 520)}{\sqrt{\frac{35^2}{80} + \frac{28^2}{100}}}$	
	Special Case SC: M	1A0M0A0 for s.e. = $\sqrt{\frac{35}{80} + \frac{28}{100}}$ {= 0.847}	
	-	lent on the first two method marks being scored.	
		ontextualised comment which is rejecting H_0 . dictory statements score final A0. E.g. "significant, do not reject	н"
		for 2 nd "M1A1B1" marks: Let $D = \overline{x}_A - \overline{x}_B$	11 ₀ .
	$2.3263 = \frac{D-0}{4.8117}$		53 / 2.32 / 2.33
		A1: $D = awrt 11.2$	
	So, $D = 11.193$	B1: 2.3263	

Question Number					Sc	heme							Ma	rks
	Man	\boldsymbol{A}	B	С	D	E	F	G	H	Ι	J			
4. (a)	Rank <i>x</i>	1	2	3	4	5	6	7	8	9	10	Attempt to rank		
	Rank w	2	7	4	3	1	9	6	5	8	10	both for <i>x</i>		
	or							I		T		and for <i>w</i> .	M1	
	Man	A	B	С	D	E	F	G	H	Ι	J	(at least four		
	Rank <i>x</i>	10	9	8	7	6	5	4	3	2	1	correct).		
	Rank w	9	4	7	8	10	2	5	6	3	1			
									ł	for fin	ding tl	he difference between		
	$\sum d^2 = 1$	+ 25 +	1+1+	- 16 + 1	9 + 1 +	- 9 + 1	+ 0: =	= 64				each of the ranks and evaluating $\sum d^2$.	M1	
				10 .			,	0.			č			
												$\sum d^2 = 64$	A1	
									IL	ina 1	6 <u>></u>	$\frac{\sum d^2}{(99)}$ with their $\sum d^2$	13 (1	
	$r_s = 1 - \frac{6}{10}$	6(64)	- 0.61	21212					Us	sing 1	$-\frac{100}{100}$	$\overline{(99)}$ with then $\sum a$	dM1;	
	$r_{s} - 1 - \frac{1}{10}$	0(99), -	- 0.01	21212	•••									
												$\frac{101}{165}$ or awrt 0.612	A1	
														[:
(b)	$H_0: \rho = 0$), H ₁ :	$\rho > 0$							Both	hypot	theses stated correctly	B1	
	Critical V	alue r _s	= 0.56	36 or	CR:	$r_s \ge 0$).5636)			Cı	ritical value of 0.5636	B1	
	Either													
	• Si	nce $r_s =$	= 0.612	21 li	es <u>in</u> t	he <u>CR</u>							MI	
	• R	esult is	signifi	cant								see notes	M1	
		eject H												
	conclude t					elatior	<u>i</u> betw	een				Conclusion in context	A1	
	systolic <u>bl</u>	ood pre	ssure a	and <u>we</u>	eight.									
(a)	Both eithe													[4
(c)		ritical V	Value r	-0.5	19/1									
		R: $r \ge$			+/+									
	and either		01017											
		nce $r =$	0.511	4 doe	s not l	ie in tł	ne CR							
		esult is											M1	
		o not re	-			H_0)							IVI I	
	Conclude						<u>on</u>				Cont	text not required here.	A1	
				-								•		[2
(d)	Either		-		-			,				•		
		comme						"as x i	ncreas	ses, w	increas	-	D1	
		nd "the There is						e relat	onchi	n is no	n_line	these or equivalent.	B1	
		ata is no					uu ul	e reidi	onsinj	P 15 110	11-1110			
		15 IN			, 115111									[1
														1

		Notes
4. (a)	3 rd dM1 Note	<i>is dependent on</i> I^{st} <i>MI</i> for use of $1 - \frac{6 \sum d^2}{10(99)}$ with their $\sum d^2$ If a candidate finds $\sum d^2 = 266$, leading to $r_s = \text{awrt} - 0.612$ then award M1M1A1M1A1.
(b)	1 st B1	Both hypotheses stated in terms of ρ .
	M1	For a correct statement relating their r_s ($ r_s < 1$) with their c.v. where their c.v. < 1
	A1	For a contextualised comment which is rejecting H_0 , which must mention " <u>positive</u> <u>correlation</u> ", " <u>blood pressure</u> " and " <u>weight</u> ". (Use of "association" is A0.) Follow through their r_s with their c.v. (provided their c.v. < 1)
	Two-tailed test	Applying a two-tailed test scores a maximum of B0B1M1A0
		So Award SC B0B1 for $H_0: \rho = 0$, $H_1: \rho \neq 0$ followed by critical value $r_s = (\pm) 0.6485$ and allow access to the M1 mark only.

Question Number			S	Scheme			Ma	urks
5. (a)	0				-	nder (independent) Correct hder (dependent) hypotheses	B1	
	Expected	Tea	Coffee	Hot Chocolate	Total	Some attempt at (Row Total)(Column Total) (Grand Total)	M1	
	Male Female	46.53 52.47	34.31 38.69	13.16 14.84	94 106	$\begin{array}{c} \text{Can be implied by} \\ \text{at least one correct } E_i \text{ to 1d.p.} \end{array}$	111	
	Total	99	73	28	200	$\begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	A1	
	Observed 57 26 11	Expected 46.53 34.31 13.16	$\begin{array}{c c} 1 & \frac{(O-E)}{E} \\ \hline 2.3559 \\ \hline 2.0127 \\ 0.3545 \end{array}$	69.825 19.702	9 7	Condone exact fractions. At least 2 correct terms for $\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ or correct}$ expressions with their E_i . Accept 2 sf accuracy for the dM1 mark.	dM1	
	42 47 17	52.47 38.69 14.84 Total	2.0892 1.7849 0.3144 s 8.9116	57.094 19.474	9 4	At least 5 correct $\frac{(O-E)^2}{E} \text{ or } \frac{O^2}{E} \text{ terms to}$ either 2 dp or better. Allow truncation.	A1	
	v = (2 - 1)(3	(-1) = 2	— L	200 ;= 8.911	6	For applying either $\sum \frac{(O-E)^2}{E} \text{ or } \sum \frac{O^2}{E} - 200$ 8.9 or awrt (8.88 - 8.91) v = 2	dM1 A1 B1	
	$\chi^2_2(0.05) = 5$ [in the CR/sig			991		5.991 or ft $\chi^2_{\text{their }\nu}(0.05)$	B1ft	
	-	there is an ed and gene	association	between type are not	of	A correct conclusion in context which is based on <i>their</i> X^2 -value and <i>their</i> χ^2 -critical value.	A1	[10
(b)	$\chi_2^2(0.005) =$ [not in the CH					Critical value of 10.597	B1	[10
	and g • The c	gender (or t	hey are inde	ependent).		rink preferred been rejected Any one of these.	B1	[2

		Notes
5. (a)	1 st B1	For both hypotheses. Must mention "drink" and "gender" or "sex" at least once. Use of "relationship" or "correlation" or "connection" is B0.
	2 nd dM1	Dependent on the first method mark. At least 2 correct terms (as in 3^{rd} or 4^{th} column) or <i>correct expressions</i> with their E_i
	2 nd A1 3 rd dM1	All correct terms to either 2 d.p. or better. Allow truncated answers. Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 200$
	3 rd A1	8.9 or awrt (8.88 – 8.91)
	2 nd B1	v = 2 This mark can be implied by a correct critical value of 5.991
	Note	If 8.9 or awrt (8.88 – 8.91) is seen (from a calculator) without the expected frequencies
		stated then award special case M0A0M1A1M1A1.
	Final A1	Dependent on the third method mark.
		A correct contextualised conclusion which is rejecting H_0 .
		Must mention "drink" and "gender" or "sex". No follow through. If e.g. hypotheses are the wrong way round A0 here.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone "relationship" or "connection" here but not "correlation".
		e.g. "There is evidence of a relationship between grades and gender"
	Note	Full accuracy gives $X^2 = 8.911619$ and p-value 0.0116 to 0.0117

6. (a) (b)	$\hat{p} = \frac{0(2) + 0}{8(2)}$	1(21) -							:ks
(b)		+21+	+ 2(45) + 3 + 45 + 42 + 1	(42) + 4(12) 2 + 3) or 8	$\frac{20}{(125)} + \frac{5(3)}{10} = \frac{3}{10}$	$\left. \frac{00}{000} \right\} = 0.3 (*)$	Answer is given. See notes.	M1 A	
		5		(23} (formula 625} (tables)	l)			[2]
	s = 125 - (3)	7.21 +	24.71 + 37	.06 + their	,	3) $\{= 1.40477 \text{ or } \}$	1.4075}	M1	
	or $s = 125$ r = 31.7652	23 or 3	31.7625 or	31.7575			7 or $r = awrt 31.76$	A1	
	<i>s</i> = 1.40477	7 or 1.4	4075 or 1.4	125		s = 1.4 or awrt1.	40 or $s = awrt1.41$	A1	[3]
(c)	# failed	0	F	Comb	Comb	$(O - E)^2$	O^2		
	tasks	O_{i}	E_i	O_i	E_i	$\frac{(O-E)^2}{E}$	$\frac{O^2}{E}$		
	0	2	7.21	2	7.21	3.7648	0.5548		
	1	21	24.71	21	24.71	0.5570	17.8470		
	2	45	37.06	45	37.06	1.7011	54.6411		
	3	42	31.77	42	31.77	3.2941	55.5241		
	5	42	(31.76)	42	(31.76)	(3.3016)	(55.5416)		
	4	12	17.02	12	17.02	1.4806	8.4606		
	5	3	5.83		7.23	2.4748	1.2448	N II	
	≥6	0	1.40 (1.41)	3	(7.24) {7.25}	(2.4831)	(1.2431)	M1 M1	
					Totals	13.2724 (13.2882)	138.2724 (138.2882)		
	$X^2 = \sum \frac{(0)}{2}$	$\frac{(D-E)}{E}$	$\frac{2}{-}$ or \sum	$\frac{O^2}{F} - 125$;= awrt 13.3		For applying either or $\sum \frac{O^2}{E} - 125$	dM1	
		L		L		— L	awrt 13.3	A1	
	v = 6 - 1 - 1	1 = 4					see notes	B1 ft	
						a correct ft	for their $\chi_k^2(0.05)$,		
	$\chi_4^2(0.05) =$	9.488	\Rightarrow CR: X	$X^2 \ge 9.488$			1 - 1 from their <i>n</i> .	B1	
	H_0 : Binon	nial dis	tribution is	a good(or s	suitable) model	(or fit).	Correct hypotheses	B1	
	H ₁ : Binon	nial dis	tribution is	not a suital	ble model.		Correct hypotheses	DI	
	[in the CR/s	signific	ant/Reject	H ₀]					
					A	correct conclusion (c	context not required		
	Binomial di	istribut	ion is not a	suitable m	odel.	here) which is based	on <i>their</i> X^2 -value	A1	
						and <i>thei</i>	$r \chi^2$ -critical value.		103
(d)				clusion in p	oart (c), a comn	nent conveying eithe	er		[8]
		not co						B1	
	• emj	ployer'	s belief is r	not justified	l .				F43
									[1] 14

		Notes
6. (a)	M1	Must show clearly how to get either 300 or 1000.
	A1 cso	Showing how to get <u>both</u> 300 and 1000 and reaching $p = 0.3$
(b)	M1	For any correct method (or a correct expression) for finding either r or s.
	A1	r = awrt 31.77 or $r = $ awrt 31.76
	A1	s = 1.4 or awrt1.40 or $s = awrt1.41$
(c)	1 st M1	For an attempt to pool 5 failed tasks and ≥ 6 failed tasks ONLY.
	Note	Give 1 st M0 for pooling 0 failed tasks and 1 failed task.
	2 nd M1	For an attempt at the test statistic, at least 2 correct expressions/values
	3 rd dM1	(to awrt 2 d.p. or truncated 2 d.p.)
		Dependent on the second method mark.
		For applying either $\sum \frac{(O-E)^2}{E}$ or $\sum \frac{O^2}{E} - 125$
	1 st A1	awrt 13.3
	1 st B1ft	For their evaluated $n - 1 - 1$. i.e. realising that they must subtract 2 from their n.
	2 nd B1	For a correct ft for their $\chi_k^2(0.05)$, where $k = n - 1 - 1$ from their <i>n</i> .
	3 rd B1	Must have both hypotheses and mention Binomial at least once.
		Inclusion of 0.3 for p in hypotheses is B0 but condone in conclusion.
	Final A1	Dependent on the 2^{nd} and 3^{rd} Method marks only.
		A correct conclusion (context not required) which is rejecting H_0 .
	Note	No follow through on their hypotheses if they are stated the wrong way round.
	Note	Contradictory statements score A0. E.g. "significant, do not reject H_0 ".
	Note	Condone mentioning of $Bin(8, 0.3)$ in conclusion
	Note	Full accuracy gives a combined expected frequency of 7.245956, $\frac{(O-E)^2}{E} = 2.4880$,
		$\frac{O^2}{E} = 1.2421, X^2 = 13.28333$
	Note	p-value for the test is 0.0099 to 0.0100
	Note	No combining gives $X^2 = 13.58$
	Note	Combining 0/1 and $4/5 \ge 6$ gives $X^2 = 11.02$

ırks	Mar	Scheme	Question Number
		$X = 4Y - 3W$, $Y \square N(40, 3^2)$, $W \square N(50, 2^2)$; Y, W are independent.	7. (a)
	B1	$\{E(X) = 4E(Y) - 3E(W) = 4(40) - 3(50)\} \Rightarrow E(X) = 10$ E(X) = 10 (seen or implied)	
	M1	Either (4^2) Vor (V) or $+(2^2)$ Vor (W)	
	M1	Var(X) = 16Var(Y) + 9Var(W) For adding the variances	
	A1	${\operatorname{Var}(X) = 16(9) + 9(4)} \Rightarrow {\operatorname{Var}(X) = 180}$ ${\operatorname{Var}(X) = 180}$	
		$\{$ So $X \square N(10, 180) \}$	
	M1	$\{P(X > 25) = \} P\left(Z > \frac{25 - 10}{\sqrt{180}}\right)$ Standardising (±) with their mean and their standard deviation	
	A1	= P(Z > 1.11803) awrt ± 1.12	
		= 1 - 0.8686	
	A1	= 0.1314 (or 0.131777) awrt 0.131 or awrt 0.132	
[7			
		$A = \sum_{i=1}^{3} K = C \square N(115 = -2^{2}) \square D(A = C = 0) \square D(2 = A = C \text{ are independent})$	
		$A = \sum_{i=1}^{3} Y_i$, $C \square N(115, \sigma^2)$; $P(A - C < 0) = 0.2$; A, C are independent.	(b)
	B1	$\{E(A - C) = 3E(Y) - E(C) = 3(40) - (115)\} \Rightarrow E(A - C) = 5$ $E(A - C) = 5$	
	M1	Var(A - C) = 3Var(Y) + Var(C) $3Var(Y) and a +$	
	A1	$\{ \operatorname{Var}(A - C) = 3(9) + \sigma^2 \} \Rightarrow \operatorname{Var}(A - C) = 27 + \sigma^2 $ $\operatorname{Var}(A - C) = 27 + \sigma^2$	
	AI		
		{So $A - C \square$ N(5, 27 + σ^2)}	
		$\{P(A - C < 0) = 0.2\} \implies P\left(Z < \frac{-5}{\sqrt{27 + \sigma^2}}\right) = 0.2$	
		$\left(2\left(1+\sigma^2\right)^{-1}\right)^{-1}\left(2+\sqrt{27+\sigma^2}\right)^{-1}$	
		Standardising (\pm) with their mean and their standard deviation	
	M1	$\frac{-5}{-5} = k (-0.8416)$ which is in terms of σ^2 and setting the result equal to k,	
		$\frac{-5}{\sqrt{27 + \sigma^2}} = k \ (= -0.8416)$ which is in terms of σ^2 and setting the result equal to k, where $ k $ is in the interval [0.84, 0.85].	
	B1	± 0.8416 or awrt ± 0.8416	
	A1	Correct equation. See notes	
	13 (1	$\begin{pmatrix} -5 \end{pmatrix}^2$ 27 \downarrow 27	
	dM1	$\sigma^{2} = \left(\frac{-5}{-0.8416}\right)^{2} - 27 \implies \sigma^{2} = \dots$ Squaring and rearranging leading to a positive value for σ^{2} .	
 30	A1 cs	$\sigma^2 = 8.2962 \ (= 8.4308 \text{ from using } -0.84)$ awrt 8.3 or awrt 8.4	
[8]		(= 8.2945 from calculator, so need awrt 8.29 for full marks if no prior working is shown.)	
1			
	•	Note Condone applying reversed variances, e.g. $16(4) + 9(9)$ for the first 2 method marks.	(a)
		Note $Var(X) = 180$ with no working gets M1M1A1	
		Note $Var(X) = 48$ with no working gets M0M1A0	
		Note $Var(X) = 108$ with no working gets M1M0A0	
		Note $Var(X) = 24$ with no working gets M0M0A0	
		2nd M1 Allow $\frac{\pm \text{ their } E(A-C)}{\sqrt{\text{their } Var(A-C)}} = k$, where $ k $ is in the interval (0.84, 0.85).	(b)
		2nd B1 For either -0.8416 or 0.8416	
		2nd A1 E.g. Allow $\frac{-5}{\sqrt{27+\sigma^2}} = [-0.85, -0.84]$ or $\frac{5}{\sqrt{27+\sigma^2}} = [0.84, 0.85]$	
		3^{rd} M1 Dependent on the 2^{nd} M1 mark being awarded.	

PMT

PMT

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE