AQA Maths Statistics 2

Mark Scheme Pack

2006-2015

PhysicsAndMathsTutor.com

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2006 examination – January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and	l is for method	and accuracy			
E	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct x marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B			-	
Question	Solution	Marks	Total	Comments
1(a)(i)	$P(X=2) = \frac{e^{-1.5} \times (1.5)^2}{2!} = 0.251$	M1A1	2	
(ii)	$p = (0.251)^3 = 0.0158$	M1A1√	2	on their <i>p</i> from (i)
(b)(i)	$Y \sim P_a(9.0)$	B1	1	
(ii)	$P(Y \ge 12) = 1 - P(Y \le 11)$			
	=1-0.8030	N/1		
	= 0.197	A1	2	
(c)	attacks patients: randomly (<i>p</i> constant)	B1		mean of 1.5 $\Rightarrow p$ small (B1) (unless very few patients)
	independently	B1	2	(unless very lew patients)
	Total		9	
2(a)	H_o : Choice independent of gender	B1		gender not associated with choice
	Squash BadmintonArcheryHockeyMale5/3.516/1430/24.519/28Female4/5.520/2233/38.553/44	M1		
	Combine Squash and Badminton	M1		$E_i < 5$ (Similar categories)
	S & B Archery Hockey Male 21/17.5 30/24.5 19/28 Female 24/27.5 33/38.5 53/44	M1 M1		
	χ^2 values S & B Archery Hockey Male 0.7000 1.2347 2.8928 Female 0.4455 0.7857 1.8409	M1		
	$\chi^2_{\rm calc} = 7.90$	A1		(7.8 to 7.9)
	$\nu = 2$	B1		
	$\chi^2_{5\%}(2) = 5.991$	B1ft		(on their <i>v</i>)
	Reject H _o Sufficient evidence, at the 1% level of	A1ft	10	reject H_0 and H_0 stated or
	between the choice of sport and gender			statement in context
(b)	More females and fewer males chose to participate in bockey than expected	B1 B1	2	
	Total		12	
	I otal		14	

MS2B (c	ont)
---------	------

Question	Solution	Marks	Total	Comments
3 (a)	$\overline{x} = 8.0$	B1		
	<i>S</i> = 2.121	B1		
	v = 8	B1		
	t = 1.860	B1√		(on their v)
	90% confidence interval for μ			
	$=8\pm1.860\left(\frac{2.121}{3}\right)$	M1		
	$=8\pm1.315$	A1ft		
	=(6.68,9.32)	A1	7	(6.68 to 6.69, 9.31 to 9.32)
(b)	The Headteacher's claim seems to be slightly optimistic	E1ft		Headteacher's claim isn't supported by the evidence and
	because value of 5 outside the confidence interval	E1ft	2	It appears that the mean time to see a mathematics teacher is greater than 5 minutes
	Total		9	

MS2B (MS2B (cont)						
Question	Solution	Marks	Total	Comments			
4(a)(i)	Area = $k(b-a) = 1$						
(ii)	$\Rightarrow \qquad k = \frac{1}{b-a}$ $E(X) = \int_{a}^{b} kx dx$	E1 M1	1	AG			
	$= \left(\frac{kx^2}{2}\right)\Big _a^b$	A1					
	$= \frac{1}{2}k(b^2 - a^2)$ $= \frac{1}{2} \times \frac{1}{(b-a)} \times (b-a)(a+b)$	M1A1		(factors shown)			
	$=\frac{1}{2}(a+b)$		4	AG			
(b)(i)	$\mu = 1$	B1	1				
(ii)	$\sigma^{2} = \operatorname{Var}(X) = \frac{1}{12}(b-a)^{2}$ $= \frac{1}{12} \times 6^{2}$ $= 3$	M1					
	$\therefore \sigma = \sqrt{3}$	A1	2	1.7321			
(iii)	$P\left(X < \frac{2-\mu}{\sigma}\right) = P\left(X < \frac{1}{\sqrt{3}}\right)$	M1√		(on their μ and σ)			
	$=\frac{1}{6}\times 2.577$	M1√					
	= 0.430	A1	3	cao			
	Total		11				

Question	Solution	Marks	Total	Comments
5(a)	$E(X) = \sum x P(X = x)$			
	all x			
	= 50	B1		(cao)
	$\mathbf{P}(\mathbf{w}^2) \sum_{i=1}^{2} \mathbf{P}(\mathbf{w}_i)$			
	$E(X^{2}) = \sum_{x \in Y} x^{2} P(X = x)$			
	= 2602.6(0)	M1		
	2002.0(0)	IVI I		
	$\operatorname{Var}(X) - \operatorname{E}(X^2) - \left[\operatorname{E}(X)\right]^2$			
	$\operatorname{val}(X) = \operatorname{L}(X) \operatorname{val}(X)$			
	$= 2602.6 - 50^{2}$	M1		
	=102.6(0)			
	\rightarrow standard deviation (V) = 10.12	A 1	4	
	\Rightarrow standard deviation (x) = 10.15	AI	4	(to nearest 1p)
(b)	$\mathbf{E}(Y) = \boldsymbol{\mu} = \mathbf{E}(10X + 250)$			
	$=10 \times E(X) + 250$			
	= 750	B1√		(on their $E(X)$)
	100	DIV		
	$s.d(Y) = 10 \times 10.1$			
	=101	B 1√	2	(on their $sd(X)$)
	Total		6	
6(9)	$\frac{1000}{1000}$		0	
0(a)	$\Pi_0 \cdot \mu = 0.5$			
	$H_1: \mu < 65$	B1		1-tailed test
	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$			
	$\overline{X} \sim N \left[65, \frac{61}{25} \right]$			
	z = -1.6449	B1		
	- crit	21		
	61.5-65 2 20	N (1 A 1		for σ^2/mad
	$z = \frac{1}{9/1000000000000000000000000000000000000$	MIAI		$n \ln \frac{n}{n}$ used
	/ \sqrt{35}			
	Reject H at 5% level of significance	A1 ^		(on their z values)
		AI√		(on men z-values)
	Evidence to suggest students may be	E1	6	
	under-achieving			
(b)	Reject H_0 when H_0 true	E1		
	↓ ↓			
	Conclude that students are under-			
	achieving when in fact they are not	E1	2	
	Total		8	

MS2B (cont)					
Question	Solution	Marks	Total	Comments	
7(a)	$\mathbf{E}(T) = \int_{0}^{1} t \mathbf{f}(t) \mathrm{d}t$				
	$= \int_{0}^{1} 4t^{2} \left(1 - t^{2}\right) \mathrm{d}t$	M1			
	$=\left(\frac{4t^3}{3} - \frac{4t^5}{5}\right)\Big _{0}^{1}$	A1			
	$=\frac{4}{3}-\frac{4}{5}$	A1			
	$=\frac{8}{15}$		3	AG	
(b)(i)	$\mathbf{F}(t) = \mathbf{P}(T \le t) = \int_{0}^{t} \mathbf{f}(t) \mathrm{d}t$				
	$=\int_{0}^{t}4t\left(1-t^{2}\right)\mathrm{d}t$	M1			
	$= \left(2t^2 - t^4\right)\Big _0^t$				
	$=2t^{2}-t^{2}$	Al	2		
(ii)	$P(\mu < T < m) = F(m) - F(\mu)$ $\downarrow\downarrow$	M1			
	F(m) = 0.5	B1			
	$F(\mu) = F\left(\frac{8}{15}\right) = 0.4880$	B1			
	$P(\mu < T < m) = 0.5 - 0.4880$	M1√		$0.5 - \text{their F}(\mu)$	
	= 0.012	A1	5		
	Total		10		

MS2B	(cont)
	concy

Question	Solution	Marks	Total	Comments
8	$H_{o}: \mu = 1000$ $H_{1}: \mu \neq 1000$	B1		2-tailed test
	$\overline{x} = \frac{12036}{12} = 1003$	B1		
	<i>S</i> = 5.444	B1		$(S^2 = 29.6)$
	$\nu = 12 - 1 = 11$	B1		
	$t = \frac{\overline{x} - \mu}{S / \sqrt{n}} = \frac{1003 - 1000}{5.444 / \sqrt{12}} = 1.91$	M1 A1ft A1		
	$t_{crit} = \pm 2.201$	B1√		(on their v)
	Accept H _o	A1√		(on their t-values)
	Insufficient evidence to indicate a			
	change in the mean content of sherry in	F 1.∧	10	
	a vouic Total		10	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B				
Q	Solution	Marks	Total	Comments
1(a)	For a 1-year period			
	The number of A grades $\sim Po(3)$			
	For a 5-year period			
	Number of A grades ~ $Po(15)$	B1		
	P(Total A-grades > 18)			
	$=1-(Total \le 18)$	M1		
	=1-0.8195			
	= 0.1805			
	= 0.181	A1	3	AWFW 0.180 to 0.181
(b)(i)	$X + Y \sim \operatorname{Po}(10)$	B1		
	$P(X+Y \le 14) = 0.917$	M1A1	3	AWFW 0.916 to 0.917 incl
(ii)	X and Y are independent variables.	E1	1	
	Total		7	
2(a)	$\overline{x} = \frac{254}{50.8} = 50.8$	B1		
	5 s = 4.55	B1		
	5 – 4.55	DI		
	v = 5 - 1 = 4	B1		
	$t_{\rm crit} = 2.776$	B1		
	95% confidence interval			
	$=50.8 \pm 2.776 \times \frac{4.55}{\sqrt{5}}$	M1√		ft their values
	$= 50.8 \pm 5.648$			
	=(45.2,56.4)	A1	6	
(b)	0.05	B1	1	
	Total		7	

MS2B (cont)

-

Q	Solution	Marks	Total	Comments
3 (a)	$\mathbf{E}(R) = \sum r \mathbf{P}(R=r)$			
	all r			
	$= \left(1 \times \frac{7}{16}\right) + \left(2 \times \frac{3}{16}\right) + \left(3 \times \frac{3}{16}\right) + \left(4 \times \frac{1}{16}\right)$			
	$=\frac{30}{30}$			
	16			
	$=1\frac{7}{8}$	B1		(1.875)
	~			
	$=(-2)$ $\sum_{i=1}^{n} 2 = (-2)$			
	$E(R^{2}) = \sum_{\text{all } r} r^{2} P(R=r)$			
	$-\frac{70}{2}$ or 4^3	D.I.		
	$-\frac{16}{16}$ or $4\frac{1}{8}$	BI		(4.375)
	$(7)^2$			
	$\operatorname{Var}(R) = 4\frac{3}{8} - \left(1\frac{7}{8}\right)$	M1		
	220 55			
	$=\frac{1}{256}$ of $\frac{1}{64}$	A1	4	(0.859375)
(b)(i)	22 1 0			
	$32 \times \frac{-8}{4}$	B1	1	
(ii)				
	$= \left(32 \times \frac{7}{16} \times \frac{1}{5}\right) + \left(32 \times \frac{3}{16} \times \frac{1}{2}\right) + 8 \times \frac{9}{10}$	M1		
	=2.8+5+7.2			A0 if these numbers rounded before
	=15	A1	2	adding
			7	
	lotal		1	

MS2B (cont)				1	n	
Q		Solution		Marks	Total	Comments
4(a)(i)		-				
	Α	В	Total			
	22-34 21	32	53			
	35-39 72	36	108	B1		for A values
	40-59 27	12	39	B1	2	for B values
	Total 120	80	200			
(11)	H _o : no associati	on hetweer	ı area			
		en een een	i ui eu	D1		At least II
	and age pro	me		DI		At least H ₀
	H ₁ :association	between are	ea			
	and age pro	ofile				
			$(2 - 2)^2$	M1		Attempt at Row & Column totals
	O.	F.	$(O_i - E_i)$	M1		Attempt at E_i
	\mathcal{O}_{l}	\mathbf{L}_{l}	E _i			$(\mathbf{O} \mathbf{E})^2$
	24	31.8	3 6679	M1		Attempt at $\frac{(O_i - E_i)}{\Sigma}$
	24 72	64.8	0.8000			E_i
	24	23.4	0.5538			2
	32	23.4	5 5019	M1		Attempt at χ^2
	36	43.2	1,2000			
	12	15.6	0.8308			
	$\sum O = 200 \sum$	F = 200	2 12 55 4	A1		AWFW 12.5 to 12.6 provided correct
	$\sum O_i = 200$	$L_i = 200 \lambda$	g = 12.554			method used
		2		D1		
	v = (3-1)(2-1)	= 2		DI		
	2					
	$\chi_{1\%}^{2}(2) = 9.210$	< 12.554		B1√		ft on their ν and χ^2
	Reject H ₀					
	The evidence sug	ggests that	the area within			
	which a school is	s situated s	eems to have an		0	
	effect on the age	-profile of	the staff	EI√`	9	It on χ^{-} and calculated value
	employed.					depends on H_0 correct, if stated
ക	There seems to b	ne fewer sta	off employed in			
	22 - 34 age group	p than expe	ected in			
	school A	r man enp		E1		
	and more than ex	spected in s	school B	E1	2	
		·	Total		13	

MSTD (agent)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\mathrm{E}(X) = \frac{1}{2}b$	B1	1	
(ii)	$\mathbf{E}\left(X^2\right) = \int_{0}^{b} \frac{1}{b} x^2 \mathrm{d}x$	M1		
	$=\frac{1}{b}\left[\frac{x^3}{3}\right]_0^b$	A1		For correct integration
	$=\frac{1}{b}\left(\frac{b^3}{3}\right)$			
	$=\frac{1}{3}b^2$	A1		OE
	$\operatorname{Var}(X) = \frac{1}{3}b^2 - \left(\frac{b}{2}\right)^2$	m1		Depending on using integration to get $E(X^2)$
	$=\frac{1}{3}b^{2}-\frac{1}{4}b^{2}$		_	
	$=\frac{12}{12}o$	Al	5	AG
(b)	P(T > 0.02) = 1 - P(-0.02 < T < 0.02)	M1		
	$=1-0.04 \times 5$	M1		
	= 0.8	A1	3	
	Total		9	

MCOD	(
M22R	(cont)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$\begin{vmatrix} 5 \\ s = 6.058 \\ v = 4 & 1-tailed test \\ t_{crit} = -2.132 \\ H_0: \mu = 100 \\ H_1: \mu < 100 \\ t = \frac{94.2 - 100}{2} = .2.14 \end{vmatrix}$ B1	
$v = 4$ 1-tailed test B1 Or on diagram $t_{crit} = -2.132$ B1 B1 Or on diagram $H_0: \mu = 100$ B1 B1 B1 Image: the second se	
$t_{crit} = -2.132$ $H_0: \mu = 100$ $H_1: \mu < 100$ $t = \frac{94.2 - 100}{2} = -2.14$ B1 Or on diagram $H_0: \mu = 100$ B1	
$\begin{array}{c c} H_0: \mu = 100 \\ H_1: \mu < 100 \\ t = \frac{94.2 - 100}{2} = 2.14 \end{array}$ B1 $\begin{array}{c c} B1 \\ t = 100 \\ $	
$t = 94.2 - 100$ = 2.14 their $\bar{x} = 100$	
$l = \frac{1}{6.058 \times \sqrt{5}} = -2.14$ M1A1 M1A1 M1A1 M1A1	
Reject H_0 at 5% level of significanceA1 \checkmark On their t and critical	l value
Evidence at the 5% level of significance to support the members' belief that the batteries last less than 100 hours. $E1\sqrt{9}$	
(b) $\overline{x} = \frac{8080}{80} = 101$	
$s^2 = \frac{6399}{79} = 81$ (or $\frac{6399}{80} = 79.9875$)	
$s = 9$ (or $s = 8.944$) B1 For $s(\text{or } s^2)$ and \overline{x}	
$ \begin{array}{c} H_0: \mu = 100 \\ H_1: \mu \neq 100 \end{array} $ B1	
$\overline{X} \sim N\left(100, \frac{81 \text{ (or 79.9875)}}{80}\right)$ under H ₀ B1 Or 100, $\frac{9}{\sqrt{80}}$ used	
$z = \frac{101 - 100}{9/2} = 0.99$ M1 Allow use of t method	od
$\sqrt[7]{\sqrt{80}}$ A1 AWFW 0.99 to 1.00	(allow 1)
2-tailed test $p_1 = \frac{1}{2} $	
$z_{crit} = \pm 1.90$ B1 Or $z = 1.96$	
Accept H0 at 5% level of significance.A1 \checkmark On their z and critical Or t	ıl value
Sufficient evidence at the 5% level of significance to support the manufacturer's belief. $E1$ 8	
Total 17	

Q	Solution	Marks	Total	Comments
7(a) (b)(i)	for $0 \le x \le 1$	B2	2	B1 for line segment (0,0.2) to (1,0.6) B1 for correctly shaped curve (1,0.6) to (4,0)
	$F(x) = \int_{0}^{x} \frac{1}{5} (2x+1) dx$	M1		Ignore limits
	$= \left[\frac{1}{5}\left(x^2 + x\right)\right]_0^x$	A1		Ignore limits
	$=\frac{1}{5}x(x+1)$	A1	3	
(ii)	$P(X \le 1) = F(1)$ $= \frac{2}{5}$	B1	1	
(iii)	$P(X \ge x) = \frac{17}{20} \Rightarrow F(x) = \frac{3}{20}$	M1		
	$\frac{1}{5}x(x+1) = \frac{3}{20}$ $x(x+1) = \frac{3}{4}$	ml		
	$x^2 + x - \frac{3}{4} = 0$	A1		
	$\left(x-\frac{1}{2}\right)\left(x+\frac{3}{2}\right)=0$	ml		Any valid method attempted
(iv)	$x = \frac{1}{2}$ Since F(1) = 0.4 <i>a</i> lies in 0 < r < 1	A1	5	CAO
	F(q) = $\frac{1}{5}(q^2 + q) = 0.25$	M1		
	$\Rightarrow q^2 + q = 1.25$ $q^2 + q - 1.25 = 0$	A1		
	$\Rightarrow q = \frac{-1 \pm \sqrt{1 - 4 \times (-1.25)}}{2}$	m1		
	$q = \frac{1}{2} \left(\sqrt{6} - 1 \right) (q > 0)$	A1	4	AWFW (0.724 to 0.725)
	Total TOTAL		15	
	IUIAL		/5	

Mathematics 6360

MS2B Statistics 2

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
Е	mark is for explanation						
$\sqrt{100}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	С	candidate				
PI	possibly implied	Sf	significant figure(s)				
SCA	substantially correct approach	Dp	decimal place(s)				

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B

Q	Solution	Marks	Total	Comments
1	$\overline{x} = 39.5$ $s = 4.84$ $(s^2 = 23.4)$	B1B1		$\sigma = 4.53 (\sigma^2 = 20.5)$
	$t_{\rm crit} = 2.365$	B1		
	en			
	95% CI for μ			
	$=\overline{x}\pm t_{\rm crit}\times \frac{s}{\sqrt{n}}$			
	$=39.5 \pm 2.365 \times \frac{4.84}{\sqrt{8}}$	M1		$39.5 \pm 2.365 \times \frac{4.53}{\sqrt{7}}$
	$= 39.5 \pm 4.05$			
	=(35.5,43.5)	A1	5	
	Total		5	
2(a)(i)	$P(A=4) = \frac{e^{-3.5} \times (3.5)^4}{4!} = 0.189$	M1A1	2	
(ii)	$P(B \le 6) = 0.762$	B1	1	
(iii)	$T = A + B \sim \operatorname{Po}(8.5)$			
	P(T forwar than 10) - P(T < 10)	M1		$\operatorname{Lie}_{2} \operatorname{of} \mathbf{P}_{2}$ (8.5)
	P(T < 0)	M1		T < 9 attempted
	$= P(1 \le 9)$ = 0.653	A 1	2	
	- 0.055	AI	5	CAU
(b)	$X \sim B(5, 0.653)$	B1		$X \sim B(5, \text{their } p)$
	$P(X \ge 4) = {\binom{5}{4}} (0.653)^4 (0.347)$			
	$+(0.653)^{5}$	M1		
	= 0.31547 + 0.11873 $= 0.434$	A1√	3	On their p from (a)(iii)
(c)(i)	$\overline{x} = 9.2$	B1		
	$s^2 = 9.29$	B1	2	$\sigma^2 = 8.36$
(ii)	Mean and variance have similar values which suggests that Poisson distribution may be appropriate	B1√ B1√	2	
	Total		13	

MS2B	(cont)
IVISZD	(COHC)

Q	Solution	Marks	Total	Comments
3	$\overline{x} = 83.5$	B1		
	$s^2 = \frac{1}{99} (15321) = 154.76$			$\left(154 < s^2 \le 155\right)$
	<i>s</i> = 12.44	B1		$(12.4 \le s \le 12.45)$
	$H_0: \mu = 85.9$			
	$H_1: \mu \neq 85.9$	B1		
	Under H_0 , $\bar{X} \sim N\left(85.9, \frac{(12.44^2)}{100}\right)$			
	$z_{\rm crit} = \pm 1.96$	B1		z = 1.96 + 2 tail test used
	$z = \frac{83.5 - 85.9}{12.44/2} = -1.929$	M1		$\frac{(\text{their }\overline{x}) - 85.9}{(\text{their }s)/10}$
	, 10	A1		
				AWFW –1.94 to 1.92
	accept H_0 , reject the claim	Al√`		On their z
	Insufficient evidence to suggest that the mean has changed from 85.9 at the 5% level of significance.	E1√	8	
	Total		8	
4(a)	$\sum p = 1$			
	k = 1 - (0.01 + 0.05 + 0.14 + 0.30 + 0.12)			
	k = 0.38	B1	1	
(b)(i)	$\mathrm{E}(X) = \sum_{\mathrm{all}x} x \mathrm{P}(X = x) = 4.35$	B1	1	$\frac{87}{20}$
(ii)	$\operatorname{Var}(X) = \sum_{n} x^{2} \operatorname{P}(X = x) - \mu^{2}$	M1		$E(X^2)$ attempted
	=20.09-18.9225	M1		$\sum x^2 \mathbf{P}(X=x) - \mu^2$
	=1.1675	A1	3	$\frac{467}{400}$ (AWFW 1.16 – 1.17)
(c)(i)	E(Y) = 5E(X) + 2			
	$=5 \times 4.35 + 2$			
	= 23.75	M1	1	Their (b)(1) \times 5 + 2
(ii)	$\operatorname{Var}(Y) = 25\operatorname{Var}(X)$	M1		Their (b)(ii) $\times 25$
	= 29.1875			
	Standard deviation $= 5.40$	m1		
		A1	3	(5.40 - 5.41)
	Total		9	

MS2B (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$H_0: \mu = 30$			
	$H_1: \mu > 30$	B1		
	$\overline{x} = 33.5$ and $s = 4.25 (s^2 = 18.06)$	B1B1		$\sigma = 4.03 \ (\sigma^2 = 16.25)$
	Under $H_0 \overline{X} \sim N\left(30, \frac{(4.25^2)}{10}\right)$			\downarrow
	$t = \frac{33.5 - 30}{4.25/\sqrt{10}} = 2.60$	M1A1		$\frac{33.5-30}{4.03/\sqrt{9}} (2.6-2.61)$
	$t_{\rm crit} = 2.821$	B1		
	do not reject H_0			
	Insufficient evidence at the 1% level of			
	underestimating the time that it takes to			
	complete the homework assignments.	E1√	7	
(h)	Times are Normally distributed	D1	1	
(0)	Times are Normany distributed	DI	<u> </u>	
6(a)	0.6 T #X)	D 1		
	15	BI B1		for curve
	04	B1	3	for axes
	5.5			
	02 /			
	D1 /			
(h)	$P(T > 1) = \frac{1}{2} \times \frac{7}{2} \times 2 = \frac{7}{2}$	M1A1	2	OF
(0)	$1(1-1)^{-}2^{-}8^{-}2^{-}\overline{8}$	1 VI I A I	L	

MS2B (cont)			
Q	Solution	Marks	Total	Comments
6(c)(i)	For $1 \le t \le 3$			
	$\int_{-\frac{1}{2}}^{t} \frac{1}{t^{2}}(t+5) dt = \left[\frac{1}{t^{2}} + \frac{5}{t^{2}} + \frac{5}{t^{2}}\right]^{t}$	M141		
	$\begin{bmatrix} \mathbf{J} & \mathbf{I} \\ \mathbf{J} & \mathbf{I} \end{bmatrix}$	1011711		
	1			
	$F(1) = \frac{1}{8}$	B1		
	1 1 2 5 11			t .
	$\mathbf{F}(t) = \frac{1}{8} + \frac{1}{32}t^2 + \frac{1}{16}t - \frac{1}{32}$	M1		Use of: $F(t) = F(1) + \int \frac{1}{16} (t+5) dt$
	1			110
	$F(t) = \frac{1}{32} \left(t^2 + 10t - 7 \right)$	A1	5	AG
	Alternative:			
	$\int \frac{1}{16} (t+5) \mathrm{d}t$			
	1(1,2,5,)	(M1)		
	$=\frac{16}{16}\left(\frac{2}{2}t^{2}+5t+c^{2}\right)$	(A1)		
	$F(1) = \frac{1}{2}$	(B1)		
	$\Rightarrow c = -3.5$	(M1)		
	$F(t) = \frac{1}{t^2} (t^2 + 10t - 7)$	$(\Lambda 1)$		
	$1(t) = \frac{1}{32}(t + 10t - 7)$	(A1)		
(ii)	1	M1		
	$\frac{1}{32}(m^2+10m-7)=0.5$	1011		
	$m^2 + 10m - 23 = 0$	A1		
		1		
	$m = \frac{-10 \pm \sqrt{192}}{2} = -5 \pm \sqrt{48}$	mı		(or any valid method)
	2			
	$=-5\pm 4\sqrt{5}$			
	(m > 0)	Δ1	4	(1.9282)
	$m = 4\sqrt{3} - 5 = 1.93$		+	(1.7202)
	Total		14	

MS2B (cont)						
Q	Se	olution		Marks	Total	Comments
7(a)	H ₀ : No association performances	on between a s at KS3 and	the d GCE	B1		
	O_i E_i	$O_i - E_i$	X^2			
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3.55 10.36 -6.81	0.1983 2.4043 0.9907	M1		E_i
	55 51.25	3.75	0.2744	M1		$O_i - E_i$
	32 36.00 38 37.75	-4.00 0.25	0.4444 0.0017	M1		$\left(O_i - E_i\right)^2 / E_i$
	47 46.33 31 32.54 35 34.13	0.67 -1.54 0.87	0.0097 0.0733 0.0222	M1		Σ
	43 43.87 26 30.82 38 32.31	-0.87 -4.82 5.69	0.0173 0.7527 1.0005			
		$X^2 =$	6.1897	A1		AWFW 6.05 – 6.35
	$v = 3 \times 2 = 6 \implies$	$\chi^2_{90\%} = 10.0$	645	B1B1√		on their ν
	Do not reject H_0 No evidence to substween KS3 results 10% level of signi	ggest an ass lts and GCI ficance.	sociation E grades at	E1√	9	
(b)	More of the studer KS3 gain grade A expected.	nts achievin 's at GCE tl	g level 7 at han	E1	1	
			Total		10	

MS2B (cont)			
Q	Solution	Marks	Total	Comments
8(a)	$f(x) = \begin{cases} \frac{1}{9} & -4 \le x \le 5\\ 0 & \text{otherwise} \end{cases}$	M1 A1	2	
(b)	0.14 19-2 0.12 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	B1 B1	2	horizontal line from -4 to 5 for drawn at $\frac{1}{9}$
	0.94 0.92 -0			
(c)	$P(X > 2) = \frac{1}{9} \times 3$	M1		$F(5) - F(2)$ $= 1 - \frac{2}{3}$
(b)	$=\frac{1}{3}$	A1	2	$=\frac{1}{3}$
	Mean $=\frac{1}{2}$ Variance $=\frac{1}{12} \times 81$	B1	2	
	- 0.75	ום	2	
	Total		8	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2

Mark Scheme

2007 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	Sf	significant figure(s)			
SCA	substantially correct approach	Dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MS2B

Q	Solution	Marks	Total	Comments
1	H ₀ : condition independent of treatment H ₁ : condition dependent upon treatment	B1		
	Totals: 66, 84, 75, 75	B1		
	$O \qquad E \qquad O-E - 0.5 \frac{(O-E - 0.5)^2}{E}$	M1A1		for E_i attempted, correctly
	20 33 12.5 4.7348	M1		for use of Yates' correction
	55 42 3.7202 46 33 4.7348 29 42 3.7202	M1		final column
	$\chi^2 = 16.91$	A1		allow 16.9 If no Yates' correction: possible M1A1M0M1A0 If 0.5 incorrectly used: possible M1A1M1M1A0
	$\chi^2_{5\%}(1) = 3.841 < 16.91$	B1√		for χ^2 on their ν
	Reject H ₀			iff H_0 stated correctly dependent on third M1
	Evidence to suggest that the condition of the patients may be dependent upon the treatment that they received	E1√	10	
	Total		10	
2(a)(i)	$P(X=3) = \frac{e^{-3.5} \times (3.5)^3}{3!} = 0.216$	M1 A1	2	
(ii)	$P(Y \ge 5) = 1 - P(Y \le 4) = 1 - 0.2851$	M1		used
	= 0.715	A1	2	
(b)(i)	$T \sim \operatorname{Po}(9.5)$	B1	1	
(ii)	$P(7 \le T \le 10) = P(T \le 10) - P(T \le 6)$ = 0.6453 - 0.1649 = 0.480	M1 A1 A1	3	Accept 0.48
(iii)	$p = (0.4804)^3 = 0.111$	M1 A1√	2	
	Total		10	

Q	Solution	Marks	Total	Comments
3	$H_0: \mu = 36$			
	$H_1: \mu < 36$	B1		
	$\overline{x} = \frac{1730}{34.6}$	D1		
	$x = \frac{1}{50} = 54.0$	DI		
	$s^2 = \frac{784}{16} = 16$	B 1		
	49	DI		
	24.6 26			
	Test statistic: $z = \frac{34.6 - 36}{4/2} = -2.47$	M1		
	$\sqrt[]{\sqrt{50}}$	Al		(-2.48 to -2.47)
	$z_{\rm crit} = -2.3263$	B1		
	Reject H ₀	A1√		
	Sufficient evidence at the 1% level of			
	significance to support David's claim	E1√	8	
	Total		8	
4(a)	For a Rectangular Distribution			
	$f(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b \end{cases}$			
	0 otherwise			
	$(-0.05, 0.05) \Rightarrow$	B1		$(explain error \pm 0.05)$
	$\frac{1}{1} - \frac{1}{1} - \frac{1}{1} - \frac{1}{10}$	M1		
	b-a = 0.05 - (-0.05) = 0.1 = 10	A1	3	
	$(Area = 10 \times 0.1 = 1)$			
(b)	$P(-0.01 < X < 0.02) = 0.03 \times 10 = 0.3$	M1	2	
		AI	2	
(c)	Mean $= 0$	B1		CAO
(-)	-	-		1
	Standard deviation $= 0.0289$	B1	2	$\frac{1}{20\sqrt{3}}$ OE
	Total		7	

Q	Solution	Marks	Total	Comments
5(a)	Assumption that the speeds of the cars			
	passing through the village are normally	D 1		
	distributed $\overline{x} = 35.6$	BI D1		
	x = 35.0 $x^2 = 28.27$ ($x = 6.186$)			$(\pi^2 - 24.44, (\pi - 5.860))$
	s = 58.27 ($s = 0.180$)	DI		(0 = 54.44 (0 = 5.809))
	99% Confidence Interval for μ			
	$=35.6\pm3.250\times\frac{6.186}{\sqrt{10}}$	B1		or use of $\frac{\sqrt{34.44}}{2}$
	$=35.6\pm6.36$	M1		5
		A1√		on their mean and standard deviation
	=(29.2,42.0)	A1	7	CAO (29.24, 41.96)
(b)	Confidence interval includes 30 mph	B1√		
	80% of sample exceed 30 mph limit	B1		
	Speed limit not adhered to	B1	3	dependent on previous B1
	Total		10	
6(a)(i)	$E\left(\frac{1}{X}\right) = \int_{0}^{1} \frac{1}{x} 3x^{2} dx = \int_{0}^{1} 3x dx$	M1		
	$=\left[\frac{3x^2}{2}\right]_0^1 = 1.5$	A1 A1	3	САО
(ii)	$E\left(\frac{1}{X^2}\right) = \int_0^1 \frac{1}{x^2} 3x^2 dx = \int_0^1 3 dx$	M1		
	$=[3x]_0^1=3.0$	A1		
	$\operatorname{Var}\left(\frac{1}{Y}\right) = 3.0 - (1.5)^2$	m1		dependent on previous M1
	(X) = 0.75	A1√	4	[on their (i)] and $Var > 0$
	0.75	711 V		
(b)	$\mathbf{E}\left(\frac{5+2X}{X}\right) = \mathbf{E}\left(\frac{5}{X}+2\right)$	M1		
	$=5E\left(\frac{1}{X}\right)+2$	M1		
	$=5 \times 1.5 + 2$ = 9.5	A1		САО
	$\operatorname{Var}\left(\frac{5+2X}{X}\right) = \operatorname{Var}\left(\frac{5}{X}+2\right)$			
	$= 25 \times \operatorname{Var}\left(\frac{1}{X}\right)$	M1		
	$= 25 \times 0.75$ = 18.75	Δ 1	5	CAO
	Total		<u> </u>	

Q	Solution	Marks	Total	Comments
7(a)(i)	x 4 -1			
	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{4}{2}$	B1	1	
	$\mathbf{P}(\mathbf{X} = \mathbf{X}) \qquad 5 \qquad 5$	DI	1	
		M1		$($ 2Σ $($ $1)$
(ii)	$\mathbf{E}(X) = \left(4 \times \frac{1}{5}\right) + \left(-1 \times \frac{4}{5}\right) = 0$	A1	2	$(p > 0, \sum p = 1)$
(b)				
	$\frac{x}{1}$ $\frac{4}{1}$ $\frac{-1}{2}$			
	$P(X=x)$ $\frac{1}{2}$ $\frac{2}{2}$	B1		
	$\Gamma(X) = \begin{pmatrix} 4 & 1 \\ 1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix} = 2$	D 1		$(n > 0 \sum n = 1)$
	$E(X) = \left(\frac{4\times\frac{3}{3}}{}\right)^{+} \left(\frac{-1\times\frac{3}{3}}{}\right)^{=} \frac{-3}{3}$	BI		$(p > 0, \underline{\sum} p = 1)$
	$\mathrm{E}(24X) = 24 \times \mathrm{E}(X)$			
	$=24\times\frac{2}{2}$	M1		
	3	A 1	4	
	= 10 Total	AI	4	
8(a)	$\overline{x} = 225.25$	B1	,	
	$s = 5.06$ ($s^2 = 25.6$)	B1		$(\sigma = 4.74)$, $(\sigma^2 = 22.4)$
	$H_0: \mu = 230$			
	$H_1: \mu \neq 230$	B1		both
	v = 8 - 1 = 7	B1		
	$t_{\rm crit} = \pm 2.365$	BI		accept $t_{\rm crit} = -2.365$
	Test statistic:			
	$t = \frac{225.25 - 230}{225.25 - 230} = -2.65$			225.25 - 230 - 265
	$\frac{1}{5.064}$ = 2.05	M1		4.74/7
	/ \0	A 1		(-2.66 to -2.65)
	Reject H_0 at 5% level	A1√		
	No evidence to support the producer's		6	
	claim	EI√`	9	
(b)	We have rejected H_0 when in fact H_0			
	may be true.			
	This indicates that a Type I error may	B2	2	
	have been made.		11	
			75	
	IUIAL		13	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2008 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.
MS2B				
Q	Solution	Marks	Total	Comments
1	$H_0: \mu = 5.0$			
	$H_1: \mu > 5.0$	B1		Both H_0 and H_1 : correct
	1 /			
	5.5 - 5			
	$z = \frac{1}{\sqrt{1.31}}$	M1		
	$\sqrt{40}$			
	z = 2.76	A1		(AWFW 2.76 to 2.78)
				(AWI W 2.70 to 2.76)
		540		
	$z_{crit} = 2.3203$	Blft		on their $H_1: (t_{crit} = 2.426)$
	Paiast H	Δ1		
		AI		(dep M1)
	claim at 1% level	E1	6	
	Total		6	
2(a)(i)	$X \sim \text{Po}(9.0) \Rightarrow$			
	standard deviation $= 3$	B1	1	
(ii)	P(6 < X < 12)			
	$= P(X \le 11) - P(X \le 6)$	M1		
	-0.8030 - 0.2068	M1ft		
	= 0.5962	A1	2	CAO.
			3	CAU
(b)(i)	$T = D_{0}(11.5)$	D1	1	CAO
(0)(1)	$I \sim FO(11.3)$	DI	1	CAO
(ii)	$P(T \le 1) = P(T = 0) + P(T = 1)$	M1		Use of $T = 0$ and 1
	$=e^{-11.5}+115e^{-11.5}$	M1		Substitute correctly into formula
	= 0.000127	A1	2	AWFW 0.000126 and 0.00013
			3	
(c)	$\overline{r} = 12.0$ and $s^2 = 10.3(s = 4.40)$	B1		$\sigma^2 = 174(\sigma = 417)$
	x = 12.0 and $s = 17.3(s = 4.40)$	- •		0 = 17.7 (0 = 1.17)
	Mean and variance very different	E1		dep on s^2 (or σ^2)
	\Rightarrow Po(12.0) not a suitable model	=1 E1	2	(dep E1)
	, , , , , , , , , , , , , , , , , , ,		<u> </u>	
	I Utal		11	

MS2B (cont	S2B (cont)						
Q	Solution	Marks	Total	Comments			
3(a)(i)	$k = \frac{1}{a+b}$	B1	1				
(ii)	$E(T) = \int_{a}^{b} ktdt$	M1					
	$\sum (1^{2}) = \int_{-a}^{b} kta^{2}$	MI					
	$= \left\lfloor \frac{1}{2} \right\rfloor_{-a}$ $- \frac{1}{2} \times \frac{1}{2} \times \left\lfloor h^2 - a^2 \right\rfloor$	A1					
	$= \frac{1}{2} \times \frac{1}{(a+b)} \times (b-a)(a+b)$	M1		I			
	$2 (a+b) \qquad \qquad$	IVI 1		Factorise			
	$=\frac{1}{2}(b-a)$	A1	4	AG			
(b)(i)	E(T) = 1	B1	1	CAO			
(ii)	P(T < -3 or T > 3)			Alternative			
	= P(T < -3) + P(T > 3)	M 1		1 - P(-3 < T < 3)			
	= 0.1 + 0.3 = 0.4	A1	2	1 - (0.3 + 0.3) = 0.4			
	Total		8				
4(a)	$\overline{v} = \frac{1179}{10} = 117.9$	B1					
	$s^2 = \frac{1014.9}{9} = 112.8 \implies s = 10.6$	B1		$\sigma^2 = 101.5 \ (\sigma = 10.08)$			
	$t_{0.995} = 3.250$	B1					
	99% confidence interval:			or use of $\frac{\sqrt{101.5}}{3} = 3.359$			
	$117.9 \pm \frac{10.6}{\sqrt{10}} \times 3.250$	M1		(their $\overline{\nu}$) $\pm \frac{(\text{their } s)}{\sqrt{10}} \times t_9$			
	$= 117.9 \pm 10.9$	A1ft		$\left(\text{on } \overline{x}, s \text{ and } t_g = 3.25 \right)$			
	$= (106.98,128.82) \\= (107,129)$	A1		AWRT (107, 129)			
	Assumption: Speeds form a Normal Distribution	B1	7				
(b)	John's claim is unlikely since 130 mph lies outside the confidence interval.	E1	1				
	Total		8				

PMT

MS2B (Cont)						
Q	Solution	Marks	Total	Comments		
5 (a)	$P(X \ge 5) = P(X = 5) + P(X = 6)$	N/1				
	$=\frac{5}{20}+\frac{6}{24}$	MI				
	$=\frac{1}{20}$	A1	2			
	2		Z			
(b)(i)	$\mathbf{E}\left(\frac{1}{X}\right) = \sum \frac{1}{x} \times \mathbf{P}(X=x) =$	M1		Use of $\sum \frac{1}{2} \times n$		
	$\left(1 \times \frac{1}{20}\right) + \left(\frac{1}{2} \times \frac{2}{20}\right) + \left(\frac{1}{3} \times \frac{3}{20}\right) + \left(\frac{1}{4} \times \frac{4}{20}\right) + \left(\frac{1}{5} \times \frac{5}{20}\right)$					
	$+\left(\frac{1}{6}\times\frac{6}{24}\right)$					
	$=\frac{1}{4}+\frac{1}{24}$					
	$=\frac{7}{24}$	A1	2	AG		
(ii)	(1) 109	M1		Use of $\sum_{n=1}^{\infty} \frac{1}{2} \times p$		
	$E\left(\frac{1}{X^2}\right) = \frac{1}{900}$	A1		$x^2 = x^2$		
				01 0.21		
	$\operatorname{Var}\left(\frac{1}{X}\right) = \frac{109}{900} - \left(\frac{7}{24}\right)^2$	A1	3	AG		
	=0.036 (3dp)					
(c)	$A = \frac{1}{X}(X+3)$ $A = 1 + \frac{3}{X}$	B1		(either)		
	$\mathbf{E}(A) = 1 + 3\mathbf{E}(X^{-1})$	M1		(either)		
	$\mathbf{E}(A) = 1 + 3 \times \frac{7}{24} \int$			()		
	$=1\frac{7}{8}$	A1		(1.875)		
	$\operatorname{Var}(A) = \operatorname{Var}\left(1 + \frac{3}{X}\right) = 9\operatorname{Var}\left(X^{-1}\right)$	M1				
	$=9 \times \frac{173}{4800}$			allow 9×0.036		
	$= 0.324$ or $\frac{519}{1600}$	A1	5	0.324375		
	Total		12			

MS2B (cont)			
Q	Solution	Marks	Total	Comments
6(a)	H_0 : no association between education and salary	B1		
	$\begin{array}{ c c c c c c c }\hline O & E & \alpha = o - E - 0.5 & \alpha^2 / E \\ \hline 78 & 70.2 & 7.3 & 0.7591 \\ \hline 57 & 64.8 & 0.8224 \\ \hline 52 & 59.8 & 0.8911 \\ \hline 63 & 55.2 & 0.9654 \\ \hline & & 3.4380 \\ \hline \end{array}$	M1 A1 M1 M1 A1		E attempted, correctly Yates' correction attempted $\alpha^2/_E$ attempted (final col) AWRT 3.4
	$\chi^2(10\%) = 2.706$	B1		
	Reject H_o at 10% level Evidence to suggest an association between salary and having a university education	A1ft E1ft	9	
(b)	Rejecting H_o when H_o correct Stating that there is an association	E1		
	between salary and education when there is not.	E1	2	
	Total		11	
7(a)(i)				B1 for axes 0 to 4 & 0 to 1 B1 for straight line $0 - \left(1, \frac{1}{2}\right)$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B4	4	B1 for convex curve from $\left(1, \frac{1}{2}\right)$ to $(4, 1)$ B1 for at least the straight line for $x > 4$
(ii)	$\mathbf{F}(q_1) = 0.25 \implies \frac{1}{2}q_1 = 0.25$	M1		From sketch, or from $F(x)$, Median = 1.
	$\Rightarrow q_1 = \frac{1}{2}$	A1	2	$\frac{1}{2}x$ is linear on (0, 0) to $\left(1, \frac{1}{2}\right)$
				$\therefore q_1 = \frac{1}{2} \qquad AG$

Q	Solution	Marks	Total	Comments
7(iii)	F(1.6) = 0.744	M1		
	F(1.7) = 0.775	MII		
	$F(q_3) = 0.75$	M1		
	$\Rightarrow 1.6 < q_3 < 1.7$	A1	3	AG
(b)(i)	f(x) = F'(x)	M1		$f(1) = \alpha = 9\beta$ B1
	\Rightarrow f(x) = $\frac{1}{2}$ for $0 \le x \le 1$	A1		$\int_{-\infty}^{\infty} f(x) dx = 1 \implies$
	$\Rightarrow \alpha = \frac{1}{2}$			$\left[\alpha x\right]_{0}^{1} + \left[\frac{\beta (x-4)^{3}}{3}\right]_{1}^{4} = 1 \qquad M1$
	\Rightarrow for $1 \le x \le 4$			
	$f(x) = \frac{1}{54} (3x^2 - 24x + 48)$	A1		$\Rightarrow \alpha + 9\beta = 1 $ A1
	$=\frac{3}{54}(x^2-8x+16)$	M1		Solving: M1 $\alpha = \frac{1}{\alpha}$ and $\beta = \frac{1}{\alpha}$ A1
	$=\frac{1}{18}(x-4)^2$			2^{-18}
	$\Rightarrow \beta = \frac{1}{18}$	A1	5	
(ii)	$E(X) = \int_{0}^{1} \frac{1}{2} x dx + \int_{1}^{4} \frac{1}{18} (x^{3} - 8x^{2} + 16x) dx$	M1		Both seen
	$= \left[\frac{1}{4}x^{2}\right]_{0}^{1} + \frac{1}{18}\left[\frac{x^{4}}{4} - \frac{8x^{3}}{3} + 8x^{2}\right]_{0}^{4}$	A1A1		
	$=\frac{1}{2}+\frac{7}{2}$	m1	5	Dependent on M1
			5	
	$=1\frac{1}{8}$			
	Total		19	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2008 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

Μ	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is for method and accuracy						
E	mark is for explanation						
$\sqrt{10}$ or ft or F	follow through from previous						
	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

W152D				
Q	Solution	Marks	Total	Comments
1 (a)	$O_i = E_i = O_i - E_i - 0.5 = \frac{7.5^2}{-7.5^2}$	M1		E attempted
	E_i	M1		Yates' correction attempted
	52 44 7.5 1.2764 58 66 7.5 0.8523 28 36 7.5 1.5625	M1		χ^2 attempted
	62 54 7.5 1.0417 4.7349	A1		AWFW 4.73 to 4.74
	 H₀: No association between incidence of asthma and volume of traffic H₁: Association 	B1		at least H_0 stated correctly
	v = 1 $\chi^2_{\rm crit} = 3.841 < 4.7349$	B1		critical value
	Reject H_0 at 5% level	A1ft		
	Evidence to suggest an association between the incidence of asthma in children and the volume of traffic where they live	E1ft	8	
(b)	More than expected had asthma	E1	1	dep on statement of association
	Total		9	
2(a)	$P(X = 8) = P(X \le 8) - P(X \le 7)$ = 0.8472 - 0.7440	M1		$P(X=8) = \frac{e^{-6}(6^8)}{8!}$
	= 0.103	A1	2	
(b)(i)	$\lambda = 9$	B1	1	
(ii)	$P(Y > 9) = 1 - P(Y \le 9)$			
	=1-0.5874	M1		
	= 0.4126	A1ft	2	AWFW 0.412 to 0.413
(c)(i)	$T \sim \operatorname{Po}(15)$	B1ft	1	
(ii)	$P(T \le 20) = 0.917$	B1ft	1	
(iii)	P(T at least 21) = 0.083	B1ft		
	$p = 15 \times (0.083)^4 (0.917)^2$ = 0.000500	M1	2	B(6, (iii)) used
	- 0.000377 Total	AI	<u> </u>	CAO, AWFW 0.000398 10 0.0000

MS2B

Q	Solution	Marks	Total	Comments
3	$H_0: \mu = 34.5$	B1		
	$\Pi_1: \mu \neq 54.5$			
	$z_{\rm crit} = \pm 1.96$	B1		
	$z = \frac{35.1 - 34.5}{2.5/\sqrt{100}} = 1.70$	M1A1		(1.697)
	$\sqrt{50}$ Accept H ₀	A1		
	Insufficient evidence, at 5% level of	E1	6	on to confirm Alon's helief
	weight has changed			or to confirm Alan's belief
	Total		6	
4(a)	0.5 f(t) 0.4	B1		line segment on $0 - 3$
	0.3	B1		line segment on $3-5$
		B1	3	scales $(0 - 0.4 \text{ vertical}; 0 - 5 \text{ horizontal})$
(b)(i)	$P(T \le 2) = \frac{1}{2} \times 2 \times \frac{4}{15}$	M1		
	$=\frac{4}{15}$	A1	2	(0.267)
(ii)	P(2 < T < 4) = 1 - (P(T < 2) + P(T > 4))	M1		
	$=1-\left(\frac{4}{15}+\frac{1}{2}\times\frac{1}{5}\right)$	A1		for $P(T > 4) = \frac{1}{10}$
	$=1-\frac{4}{15}-\frac{1}{10}$			$\frac{1}{2}d\Big[\big(f_2+f_4\big)+2f_3\Big]$
				$f_2 = \frac{4}{15}; f_4 = \frac{1}{5}; f_3 = \frac{2}{5}; d = 1$
	$=\frac{19}{30}$	A1	3	(0.633)
(c)	$E(T) = \int_{0}^{3} \frac{2}{15}t^{2} dt + \int_{3}^{5} t \left(1 - \frac{1}{5}t\right) dt$	M1		both integrals seen
	$= \left[\frac{2}{45}t^{3}\right]_{0}^{3} + \left[\frac{1}{2}t^{2} - \frac{1}{15}t^{3}\right]_{3}^{5}$	B1B1		
	$=\frac{6}{5}+\frac{25}{6}-\frac{27}{10}$			
	$=2\frac{2}{3}$	A1	4	OE
	Total		12	

MS2B (cont)

Q	Solution	Marks	Total	Comments
5(a)(i)	$\overline{x} = 3.19$ and $s^2 = \frac{1.849}{9} = 0.2054$	B1		both $(s = 0.453)$
	$t_9 = 3.250$	B1		
	99% confidence interval:			
	$3.19 \pm 3.250 \times \frac{\sqrt{0.2054}}{\sqrt{10}}$	M1		$3.19 \pm (\text{their } t_9) \times \frac{\sqrt{0.2054}}{\sqrt{10}}$
	$= 3.19 \pm 0.4658$	A1ft		
	=(2.72, 3.66)	A1	5	(2.72 to 2.73, 3.65 to 3.66)
(ii)	Reasonable claim, with 3.5 within the 99% confidence interval	B1 E1	2	dep on correct CI in (a)(i)
(b)	$0.01 \times 200 = 2$	B1	1	
	Total		8	
6	$\overline{x} = 4.1$ $s = 0.392$ $(s^2 = 0.153)$	B1		both
	$H_0: \mu = 3.8$ $H_1: \mu > 3.8$	B1		both
	$t = \frac{4.1 - 3.8}{0.392 / \sqrt{7}} = 2.03$	M1A1		AWFW 2.02 to 2.03
	$t_{\rm crit} = 1.943$	B1ft		
	Reject H ₀	A1		
	Evidence at 5% level of significance to support the doctor's belief that the cholesterol level is higher than the management's claim of 3.8	E1		
	Cholesterol levels normally distributed	B1	8	
	Total		8	

MS2B	(cont)
11040	(COIIC)

Q	Solution	Marks	Total	Comments
7(a)(i)	$\mathbf{E}(Y) = \sum y \mathbf{P}(Y = y)$			
	$=5 \times 0.1 + 15 \times 0.2 + 25 \times 0.3 + 35 \times 0.4$			
	= 25	B1		
	$\operatorname{Var}(Y) = \operatorname{E}(Y^{2}) - \left[\operatorname{E}(Y)\right]^{2}$			
	$=725-25^{2}$	M1		
	= 100	A1		CAO
	Standard deviation = 10	A1ft	4	ft on $Var(Y) > 0$
	C = 10V + 5			
(11)	C = 10I + 5 E(C) = 10E(V) + 5			
	E(C) = 10E(Y) + 5			
	$=10 \times 25 + 5$	D.		
	= 255 pence	BI	1	OE
(b)	$\operatorname{Var}(X) = \operatorname{E}(X^{2}) - \left[\operatorname{E}(X)\right]^{2}$			
	$= 75.25 - 8.35^{2}$ $= 75.25 - 69.7225$	M1		
	= 5.5275	A1		AWFW 5.52 to 5.53
	T = 0.4X + 250			
	$\operatorname{Var}(T) = \operatorname{Var}(0.4X + 250)$			
	$= 0.4^2 \times \operatorname{Var}(X)$	M1		$\operatorname{Var}(X) > 0$
	$= 0.16 \times 5.5275$			
	= 0.8844	A1	4	AWFW 0.884 to 0.885
	Total		9	

MS2B	(cont)
	(COIIC)

Q	Solution	Marks	Total	Comments
8 (a)	$\mathbf{P}(X<0) = \mathbf{F}(0)$	M1		
	$=\frac{1}{k+1}$	A1	2	
(b)	$(q_1+1) \times \frac{1}{k+1} = \frac{1}{4}$	M1		alternative (from a sketch)
	$q_1 + 1 = \frac{1}{4}(k+1)$	A1		
	$q_1 = \frac{1}{4}(k+1) - 1$	A1	3	OE
(c)	$f(x) = \frac{d}{dx} (F(x))$	M1		use of
	$= \frac{1}{k+1} \times \frac{d}{dx}(x+1)$ $= \frac{1}{k+1} -1 \le x \le k$ $= 0 \qquad \text{otherwise}$	A1	2	AG; $\frac{1}{k+1}$ clearly deduced
(d)(i)	$k = 11 \implies f(x) = \begin{cases} \frac{1}{12} & -1 \le x \le 11 \\ 0 & \text{otherwise} \end{cases}$			
	Rectangular distribution:	B1 B1	2	horizontal line on $[-1, 11]$ at $f = \frac{1}{12}$
(ii)	$E(X) = \frac{1}{2}(-1+11) = 5$	B1		
	$\operatorname{Var}(X) = \frac{1}{12}(111)^2 = 12$	B1	2	
(iii)	$P(q_1 < X < E(X)) = P(2 < X < 5)$			
	$=(5-2)\times\frac{1}{2}$	M1		
	=0.25 12	A 1	2	AG
	Total		13	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to mark scheme and abbreviations used in marking

М	mark is for method						
m or dM	mark is dependent on one or more M marks and is for method						
А	mark is dependent on M or m marks and is for accuracy						
В	mark is independent of M or m marks and is	for method and	accuracy				
E	mark is for explanation						
$\sqrt{100}$ or ft or	follow through from previous						
F	incorrect result	MC	mis-copy				
CAO	correct answer only	MR	mis-read				
CSO	correct solution only	RA	required accuracy				
AWFW	anything which falls within	FW	further work				
AWRT	anything which rounds to	ISW	ignore subsequent work				
ACF	any correct form	FIW	from incorrect work				
AG	answer given	BOD	given benefit of doubt				
SC	special case	WR	work replaced by candidate				
OE	or equivalent	FB	formulae book				
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme				
–x EE	deduct <i>x</i> marks for each error	G	graph				
NMS	no method shown	c	candidate				
PI	possibly implied	sf	significant figure(s)				
SCA	substantially correct approach	dp	decimal place(s)				

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

0	Solution						Marks	Total	Comments
	 H₀: No association between choice of subject and gender H₁: Association between choice of subject and gender 		B1	100					
		Bul	Cl	Fin	Pol	Total			
	Male	7	31	25	40	103	B1		Totals
	Female	2	24	22	19	67			
	Total	9	55	47	59	170			
		$ \begin{array}{c} O_i \\ \hline 7 \\ 2 \\ 31 \\ 24 \\ 25 \\ 22 \\ 40 \\ 19 \\ 170 \\ \end{array} $		$ \begin{array}{r} E_i \\ 5. \\ 3. \\ 33. \\ 21. \\ 28. \\ 18. \\ 35. \\ 23. \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 17 \\ 1 1 \\ 1 1 \\ 1 1 1 1 1 $	45 55 32 68 48 52 75 25		M1A1		E's attempted (correctly)
	One of th	the E_i 's	< 5 .	: com	bine c	ells	M1A1		Attempt at combining (correctly)
	$ \begin{array}{c} O_i \\ 47 \\ 21 \\ 31 \\ 24 \\ 25 \\ 22 \\ \end{array} $	<i>E_i</i> 41.2 26.8 33.3 21.6 28.4 18.5	20 30 32 58 48 52	$ \begin{array}{r} x = (O_i - 1) \\ \overline{5.8} \\ -5.8 \\ -2.32 \\ 2.32 \\ -3.48 \\ 3.48 \end{array} $		$ \begin{array}{c c} \alpha^2 \\ E_i \\ 0.8165 \\ 1.2552 \\ 0.1615 \\ 0.2483 \\ 0.4252 \\ 0.6539 \\ \end{array} $	m1		Final column
	Test stati Critical v	stic: 2 alue:	$X^2 = 3$ $= 4$	3.56 4.605			A1 B1F		(AWFW 3.55 to 3.57) ft on their <i>v</i>
	Accept H	I ₀					A1F		
	Insufficie choice of gender.	ent evic subjec	dence ct is a	to sug ssociat	gest t ted wi	hat the ith	E1	11	
						Total		11	

MS2B (cont)	1			
Q	Solution	Marks	Total	Comments
2(a)	$H_0: \mu = 8.0$	B1		
	$H_1: \mu \neq 8.0$			
	- 84 0.22	D 1		
	$x = \frac{1}{9} = 9.33$ or $9\frac{1}{3}$	DI		
	$z_{crit} = \pm 1.96$	B1		
	$z = \frac{9.33 - 8.0}{2} = 1.60$			$(\text{their } \overline{x}) - 8$
	2.5	MI		$2 - \frac{2.5}{10}$
	/ \\3			$\sqrt{\sqrt{9}}$
	s <1.06 · accept H			AWFW 1.39 to 1.00
	$ z < 1.90$ accept H_0	АІГ		
	Insufficient evidence to suggest that the			
	mean completion time has changed from	E1F	7	
	eight weeks.			
(b)	Neither a Type I nor a Type II error	B1		dependent
	have occurred $U_{1} = 0$			
	Have accepted that $H_0: \mu = 8.0$,	B1	2	dependent on 'accept H.' in (a)
	when $\mu = 0.0$.	21	-	
3 (a)(i)	P(X < 2) = 0.515	R1	9	0.5152
5(a)(1)	$P(X \leq 5) = 0.515$	DI	1	0.5152
(ii)	$e^{-4.4} \times (4.4)^5$			
	$P(Y=5) = \frac{C - X(1,1)}{5!}$	M1		$P(Y \le 5) - P(Y \le 4) = 0.7199 - 0.5512$
	5.			correct values seen
	=0.169	A1	2	(0.1687)
(b)(i)	$T - P_{0}(8.0)$	B1		
	Y and Y are independent	R1	2	
	(Poisson random variables)	DI	2	
(ii)	$P(6 < T < 12) = P(T \le 11) - P(T \le 6)$	M1		
	=0.8881-0.3134	A1		
	=0.575	A1	3	(0.5747)
(iii)	$P(T > 14) = 1 - P(T \le 14)$	M1		
	=1-0.9827	A 1		
	=0.01/3	AI		
	$p = (0.0173)^{-1}$	M1		$\left[\text{their P}(T > 14) \right]^2$
	=0.0003(1sf)	A1F	4	ft if $0 < both p's < 1$
	$\mathbf{P}(T < L) > 0.00$			
(1V)	$P(I \leq K) > 0.99$	M1		$ P(I \le 15) = 0.9918$
	$\Rightarrow k \ge 15$			$(P(T \le 14) = 0.9827)$
	Joe should keep in stock = 15	A1	2	
	Total		14	

MS2B (cont)				
Q	Solution	Marks	Total	Comments
4(a)	$P\left(-\frac{3c}{4} < X < \frac{3c}{4}\right)$ $= \frac{3c}{4} + c}{4c} - \frac{-3c}{4} + c}{4c}$ $= \frac{6c}{16c}$	M1		or $=\frac{3c}{2} \times \frac{1}{4c}$
	$=\frac{5}{8}$ or 0.375	A1	2	CAO
(b)	For $-c \le x \le 3c$ $f(x) = \frac{d}{dx} \left(\frac{x+c}{4c} \right)$ $- \frac{1}{2}$	M1		use of $f(x) = F'(x)$
	$= \frac{-4c}{4c}$ For $x > 3c$ and $x < -c$ $f(x) = \frac{d}{dx}(F) = 0$	A1	2	for $\frac{1}{4c}$ and 0
(c)(i)	Rectangular distribution:			
	$\mathrm{E}(X) = \frac{1}{2}(-c+3c) = c$	B1	1	
(ii)	$Var(X) = \frac{1}{12}(3cc)^2 = \frac{4c^2}{3}$	B1	1	Allow $\frac{16c^2}{12}$
	Total		6	
5(a)(i)	$\overline{x} = \frac{1}{2} (70.65 + 80.35) = 75.5$	B1	1	AG
(ii)	Width of confidence interval =80.35-70.65			
	=9.7	B1	1	
(iii)	$t_{crit} = 2.602; v = 15$	B1		
	$w = 2t \times \frac{s}{\sqrt{n}} \implies \frac{s}{\sqrt{n}} = \frac{9.7}{2 \times 2.602}$	M1		
	Estimate of s.e $=\frac{s}{\sqrt{n}} = 1.86$	A1	3	(1.864)
(iv)	Unbiased estimate of $\sigma^2 = 1.86^2 \times 16$ = 55.6 (3sf)	M1 A1	2	AG (55.589)

MS2B (cont)			
Q	Solution	Marks	Total	Comments
5(b)	95% CI: 75.5±2.131× $\frac{s}{\sqrt{n}}$	M1		
	$=75.5\pm3.972$			
	=(71.5,79.5)	A1	2	(71.5 to 71.54, 79.4 to 79.5) CAO
(c)(i)	(73.0,78.0)	B1	1	
(ii)	$w = 2t \times \frac{s}{\sqrt{n}} \implies t = \frac{5}{2 \times 1.864} = 1.341$	M1		(AWFW 1.341 to 1.344)
	\Rightarrow for $\nu = 15$ P($X \le 1.341$)=0.90			
	⇒ $P(X \ge 1.341) = 0.10$ and $P(X \le -1.341) = 0.10$	M1		
	:. $P(X \le 1.341) = 0.80$			
	Percentage confidence interval = 80%	A1	3	
6 (a)	10tai		15	
0(u)	r 1 2 3 4			
	P (<i>R</i> = <i>r</i>) $\frac{2}{3}$ $\frac{2}{9}$ $\frac{2}{27}$ <i>k</i>			
	$k + \frac{2}{3} + \frac{2}{9} + \frac{2}{27} = 1 \implies k = \frac{1}{27}$	M1 A1	2	AG
(b)	$P(R \ge 3) = \frac{2}{27} + \frac{1}{27} = \frac{1}{9}$	B1	1	Allow $\frac{3}{27}$ or 0.111
(c)(i)	C = 27R + 5			
	$E(R) = \left(1 \times \frac{2}{3}\right) + \left(2 \times \frac{2}{9}\right) + \left(3 \times \frac{2}{27}\right) + \left(4 \times \frac{1}{27}\right)$			40
	$=1\frac{13}{27}$	B1		(1.48) or $\frac{40}{27}$
	:. $E(C) = 27 \times 1\frac{15}{27} + 5$	M1		
	=45	A1F	3	

MS2B (cont)			
Q	Solution	Marks	Total	Comments
<u>c</u> 6(c)(ii)	E(R ²)=(1× $\frac{2}{3}$)+(4× $\frac{2}{9}$)+(9× $\frac{2}{27}$)+(16× $\frac{1}{27}$) =2 $\frac{22}{27}$ or $\frac{76}{27}$ Var(R)=2 $\frac{22}{27}$ -(1 $\frac{13}{27}$) ² = $\frac{452}{729}$ ∴ St. dev ⁿ (C)=27× $\sqrt{\frac{452}{729}}$ =21.3	B1 M1 M1 A1	4	(2.81) (0.62) $27 \times \sqrt{Var(R)} [Var(R) > 0]$ CAO (21.26) SC: Var(C)=452 (CAO)
				(B1M1B1A0)
	Total		10	
	10tal		10	
	C 32 59 86 113 p $\frac{2}{3}$ $\frac{2}{9}$ $\frac{2}{27}$ $\frac{1}{27}$ C 32 59 86 113			
	$\overline{x} = 45$ and $\sigma = 21.260$ from calculator			$\left(\overline{x} = \frac{\sum Cn}{27}\right)$

MS2B (cont)	1		
Q	Solution	Marks	Total	Comments
7(a)	0.7 f(x) 0.6 0.5	B1		for concave curve from $(0, 0)$ to $(2, 0.5)$
		B1		for straight line from $(2, 0.5)$ to $(5, 0)$
		B1	3	for axes [2, 5; 0.5] seen
(b)	$P(X \ge 2) = \frac{1}{2} \times 3 \times 0.5 = 0.75$			Alternatives:
	\Rightarrow F(2)=0.25			$\int \frac{1}{6} (5-x) dx = \frac{1}{6} \times \frac{(5-x)^2 \times (-1)}{2}$
	$2 \le x \le 5$			$=-\frac{1}{12}(5-x)^{2}$
	$F(x) = F(2) + \int_{2}^{2} \frac{1}{6} (5-x) dx$			Or
	$=0.25 + \frac{1}{6} \left[5x - \frac{x^2}{2} \right]_2^x$	M1		$F(x)=1-\text{Area} \triangle (\text{base } x,5)$
	$=0.25 + \frac{1}{6} \left(5x - \frac{x^2}{2} \right) - \frac{1}{6} (10 - 2)$	A1		$=1 - \frac{1}{2}(5 - x)\frac{1}{6}(5 - x)$
	$=0.25 - \frac{8}{6} + \frac{5x}{6} - \frac{x^2}{12}$ $= -\frac{1}{12} (x^2 - 10x + 13)$	M1		$=1-\frac{1}{12}(5-x)^{2}$
	$=1-\frac{1}{12}(5-x)^{2}$	A1	4	
(c)	$P(X \le A) = F(A)$			Alternative
	$=1 - \frac{1}{12} (5 - 4)^2 = \frac{11}{12} (0.916 \text{ to } 0.917)$	B1		$P(X \ge 3 X \le 4)$ F(4) - F(3)
	$F(3) = 1 - \frac{1}{12}(2)^2 = \frac{2}{3} (0.667)$	B1		$=\frac{F(4)}{F(4)}$ (M1)
	$P(X \ge 3 \text{ and } X \le 4) = F(4) - F(3)$			$=1-\frac{F(3)}{F(4)}$
	$=\frac{11}{12} - \frac{2}{3} = \frac{1}{4} $ (0.25)	B1		$=1-\frac{\frac{2}{3}}{\frac{11}{12}}$
	$P(X \ge 3 X \le 4) = \frac{F(4) - F(3)}{F(4)}$	M1		$=1-\frac{8}{11} (B1)(0.72\dot{7}\dot{2})$
	$=\frac{\frac{1}{4}}{\frac{11}{12}}=\frac{3}{11}$	A1	5	$=\frac{3}{11}$ (AWFW 0.272 to 0.273)
	Total		12	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is fo	or accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{100}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MS2B				1
Q	Solution	Marks	Total	Comments
1	$H_0: \mu = 768$			
	H.: $\mu \neq 768$	B1		(Both)
	I. L .	21		
	764.8 - 768			
	Test statistic: $z = \frac{704.0}{8}$	M1		
	$\sqrt[9]{18}$			
	1 70	. 1		(1, 0, 7)
	=-1.70	AI		(-1.697)
	$z_{crit} = \pm 1.96$	B1		$(z_{\rm crit} = 1.96 \text{ or } z_{\rm crit} = -1.96)$
	\Rightarrow Accept H ₀	A1		
	No evidence at the 5% level of			
	significance, to deny Yvonne's claim.	E1	6	
	Total		6	
2(a)(i)	$X \sim \operatorname{Po}(5.0)$			
	$\Rightarrow P(X < 4) = P(X \le 3)$			(0.440 to 0.441) for B1
	=0.265	B2	2	CAO
	0.205	52	2	
(ii)	$Y \sim Po(1.5)$		2	
()	$e^{-1.5} \times (1.5)^4$		-	
	$\Rightarrow P(Y=4) = \frac{e^{-x(1.5)}}{1.5}$			
	4!	M1		
	= 0.0471	A1	2	(0.047 to 0.0471)
2(b)(i)	$T = X + Y \sim \text{Po}(6.5)$	B1		
	\rightarrow $\mathbf{P}(T > 5) - 1 - \mathbf{P}(T < 5)$	B1		$(1 \ 0.2237)$ or $(1 \ 0.5265)$
	$\Rightarrow 1(1 > 5) = 1 = 1(1 \ge 5)$	21		(1-0.2257) or $(1-0.5205)$
	=1-0.369	D 1	2	
	= 0.051	BI	3	
(ii)	$8 = (0, (21))^7 (0, 2(2))$			ft on their <i>n</i> from (b)(i)
(11)	$p = {}^{\circ}C_{7}(0.631)(0.369) +$	M1ft		
	$(0.631)^8$	WIIIt		Either part attempted
	(0.001)			r r r r r r r r r r r r r r r r r r r
	p = 0.11758 + 0.02513	A1ft		(both parts correct)
	= 0.143	A1	3	AWFW 1.142 to 0.143 (CAO)
			-	
(c)(i)	Mean = 8	B1		CAO
	Variance = $s^2 = 16.9$	B1	2	(AWRT)
				(
	(sample variance = 15.2)			
(ii)	Poisson not a good model for data	B1dep	_	
	Mean ≠ Variance	B1	2	
	Total		14	

MS2B (cont))		r	I	1
Q		Solution	Marks	Total	Comments
3	H_0 : no associat attitude to schoo H_1 : association to school reorga	B1			
	Age	Against	M1		E's attempted
	6	O_i E_i	A1		correctly (at least 6 E's)
	16 - 17	$\frac{1}{9}$ $6^{17}/_{65}$			
	18 - 21	17 15 ²⁴ / ₆₅			E
	22 - 49	115 116%			E_i
	50 - 65	$41 42 \frac{9}{13}$			0.202
	> 65	3 3 64/65			116.692
	Total	185 185			42.692
	Age	Not Against			5.905
		O_i E_i			F
	16 - 17	2 $4\frac{48}{65}$			L_i
	18 - 21	$10 11^{41}_{65}$			11.631
	22 - 49	90 88 4/13			88.308
	50 - 65	34 32 ⁴ / ₁₃			32.308
	> 65	4 $3\frac{1}{65}$			5.015
	Total	140 140			
	Row totals:	11,27 205, 75.7 (325)			
	Column totals: $F' \le 5$	185, 140 (325)	B1		Totals correct
	$\therefore \text{ combine cells} 50 - 65 \text{ and 'ov}$	16 – 17 and 18 –21 also er 65' to give:	M1 A1		Attempt at combining rows Correctly
	$O_i \qquad E_i$	$\alpha = O_i - E_i \qquad \alpha^2 / E_i$			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 4.369 & 0.8825 \\ \hline -1.692 & 0.0245 \\ \hline -2.677 & 0.1535 \\ \hline -4.369 & 1.1662 \\ \hline 1.692 & 0.0324 \\ \hline 2.677 & 0.2029 \\ \hline 2.462 \end{array}$	ml		Final column attempted (dep M1)
	$X^2 = 2.462$		A1		2.4 to 2.5
	v = 2		B1		
	$\chi^2_{\nu=2}(0.95) = 5.991$				On their <i>v</i>
	Accept H ₀		A1ft		
	No real evidence	e at 5% level of			
	between age and	l attitude to school			
	reorganisation.		E1ft	12	(context)
		Tota	1	12	

MS2B (cont)			
Q	Solution	Marks	Total	Comments
4(a)	Sketch:			1 for straight line $0 \le x \le 1$ from (0, 0.5) to (1, 0.5) 1 for straight line $1 \le x \le 3$ from (1, 0.5) to (3, 0) 1 for axes
		B3	3	[must have at least (0,0.5) (1,0) and (3,0) labelled]
(b)	$P(X \le n) = F(n) = 0.5$	M1		
(~)	$(\Rightarrow \eta = 1 \text{ (from graph)})$	A1	2	AG
(c)	$\mu = \mathrm{E}(X) = \int_{0}^{1} \left(\frac{x}{2}\right) \mathrm{d}x + \int_{1}^{3} x \left(\frac{3-x}{4}\right) \mathrm{d}x$	M1		Both integrals stated
	$= \left[\frac{x^2}{4}\right]_0^1 + \frac{1}{4} \left[\frac{3x^2}{2} - \frac{x^3}{3}\right]_1^3$	A1		Either
	$=\frac{1}{4} + \frac{1}{4} \left[\left(\frac{27}{2} - 9 \right) - \left(\frac{3}{2} - \frac{1}{3} \right) \right]$	ml		Correct limits used on both integrals +combined dep M1
	$= \frac{1}{4} + \frac{5}{6} \qquad (0.25 + 0.83\dot{3})$ $= 1\frac{1}{12}$	A1	4	(CAO)
(d)	Area of Δ			Alternative:
	$= P\left(X > 2\frac{1}{4}\right) = \frac{1}{2} \times \frac{3}{4} \times \frac{3 - 2\frac{1}{4}}{4}$	M1ft		For $1 \le x \le 3$ F(x) = $1 - \frac{1}{8} (3 - x)^2$ M1f
	$=\frac{3}{32}\times\frac{3}{4}=\frac{9}{128}$			\downarrow
	$\therefore \mathbf{P}\left(X < 2\frac{1}{4}\right) = 1 - \frac{9}{128}$	M1ft		$F\left(2\frac{1}{4}\right) = 1 - \frac{1}{8} \times \frac{9}{16} $ M1ft
	$=\frac{119}{128}(0.9296875)$	A1	3	$=\frac{119}{128}$
				CAO

MS2B (cont)	·			
Q	Solution	Marks	Total	Comments
4(d)	or			Alternative
	$\int_{2\frac{1}{4}}^{3} \frac{3-x}{4} \mathrm{d}x \left(=\frac{9}{128}\right) $ M1 ft			$f\left(2\frac{1}{4}\right) = \frac{3}{16} = 0.1875$
	$= 1 \int_{2\frac{1}{4}}^{3} \frac{3-x}{4} dx $ M1 ft			$P(X < 3\mu - \eta) = P\left(X < 2\frac{1}{4}\right)$
	$= 1 - \frac{1}{4} \left[3x - \frac{x^2}{2} \right]_{2\frac{1}{4}}^3$			$= \frac{1}{2} + \boxed{\frac{1}{2} \left(\frac{3}{16} + \frac{1}{2}\right) \times 1\frac{1}{4}}$ M1ft
	$= 1 - \frac{1}{4} \left[9 - \frac{9}{2} - \frac{27}{4} + \frac{81}{32} \right]$			$= \frac{1}{2} + \frac{55}{128} (0.4296875) $ M1ft
	$= 1 - \frac{1}{4} \times \frac{9}{32} = \frac{119}{128} $ A1			$=\frac{119}{128} (0.930) \qquad \qquad A1$
	$\frac{\mathbf{O}(1-0.0703125-0.3230875)}{\mathbf{Total}}$		12	
5(a)(i)	P(GG or YY or RR)	M1	12	
	$=\frac{2}{10}\times\frac{1}{9}+\frac{3}{10}\times\frac{2}{9}+\frac{4}{10}\times\frac{3}{9}$			
	$=\frac{2}{9}$	A1	2	(AG)
(ii)	$P(B\overline{B} \text{ or } \overline{B}B) = \frac{1}{10} \times \frac{9}{9} + \frac{9}{10} \times \frac{1}{9}$	M1		$\frac{1}{10} + \frac{9}{10} \times \frac{1}{9}$
	$=\frac{1}{5}$	A1	2	(AG)
(b)(i)				
	Same 1 Blue Neither			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D1		
	$ P(X-x) = \frac{2}{2} \frac{1}{2} = \frac{26}{2}$	BI		
	9 5 45	B1	2	
(ii)	$E(X) = 135 \times \frac{2}{9} + 145 \times \frac{1}{5} + (-45) \times \frac{26}{45}$	M1		Multiply two rows of their table from (b)(i)
	= 29 + 50 - 20 = 33 pence	A1	2	AG
(c)(i)	E(Y) = 104 - 3E(X) = 104 - 3×33	M1		
	=5 pence	A1		
	\therefore Joanne would expect to win £5	A1	3	OE (eg 500p)
L				

MS2B (cont)				
Q	Solution	Marks	Total	Comments
5(c)(ii)	$\mathrm{E}(X^2) = 9425$	B1		(4205 + 4050 + 1170)
	$\operatorname{Var}(X) = 9425 - 33^2 = 8336$			sd(X) = 91.30
	$\operatorname{Var}(Y) = 9 \times \operatorname{Var}(X)$	B1		
	=9×8336			$9 \times (\text{their Var}(X) > 0)$
	= 75024	M1		or $3 \times (\text{their sd}(X))$
	\Rightarrow standard deviation (<i>Y</i>) = 274 pence	A1	4	273.9p or £2.74
	Total		15	
6(a)(i)	$\overline{x} = 43.5$	B1		
	$s=2 \left(s^2=4\right)$	BI		
	Assumption: Weights of boxes are normally distributed	B1		
	$t_{0.975} = 2.365$	B1		
	2			
	$43.5 \pm 2.365 \times \frac{-}{\sqrt{8}}$	M1		
	43.5±1.6723			
	$\Rightarrow \qquad (41.8, 45.2)$	Al	6	(AWRT)
(ii)	CI contains mean (45) Bishen's belief probably justified or	B1 dep B1 dep		Must be clear use of 45 and not 43.5
	[Since 45 within CI] but close to upper			
	limit, there is some evidence that Bishen's Belief is untrue			
	[but the evidence is not significant at 5 %.]			
	(75% of sample less than 45grams)	(B1)	2	
6(b)(i)	$H_0: \mu = 45$			
	$H_0: \mu < 45$	B1		(both)
	Test statistic: $t = \frac{43.5 - 45}{2}$			
	$\frac{2}{\sqrt{8}}$	M1		
	=-2.12	A1		$P(t_7 < -2.12.) = 0.035791$
	$v = 7 \implies t_{crit} = -1.895$	B1		< 0.05
	\Rightarrow Reject H ₀	A1		
	Evidence at the 5% level of significance.	E 1	6	
	< 45 grams	EI	0	
(ii)	Type I error	B1		
	have/may have rejected H_0 when H_0 true	B1	2	Clear statement
	or			
	No error have/may have accented H when H true	(B1) (B1)		Clear statement
	Total	()	16	
	TOTAL		75	

Mathematics 6360

MS2B Statistics 2B

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Key to ma	rk scheme and abbreviations used in marking	
М	moule in fau mothed	

М	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is	for method and a	accuracy			
E	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

MS2B				
Q	Solution	Marks	Total	Comments
1	$H_0: \mu = 45$ $H_1: \mu > 45$	B1		
	$z = \frac{45.8 - 45}{\sqrt{4.8/30}} = \frac{0.8}{0.4} = 2.0$	M1A1		AWRT
	$z_{\rm crit} = 2.3263$	B1		$t_{29} = 2.462$
	Do not reject H_0 Insufficient evidence at 1% level of significance to support Roger's claim	E1	5	
	Total		5	
2(a)(i)	$E(T) = \frac{1}{2}(25 + -5) = 10$	B1	1	САО
(ii)	$\operatorname{Var}(T) = \frac{1}{12} (255)^2$ = 75	B1	1	CAO
(b)	$P(-2 < T < 2) = \frac{2}{15}$ (OE)	B1		Diagram (optional)
	$P(\text{magnitude at least 2 minutes})$ $= 1 - P(-2 < T < 2)$ $= 1 - \frac{4}{30}$	M1		+10. 10 20 30
	$=\frac{13}{15}$ (OE) $= 0.867$	A1	3	CAO (AWRT)
	or 3 23 760 0.03^{-1} 0.02^{-10} -10 -20210 20 $30x\frac{1}{30}(3+23) = \frac{26}{30} = \frac{13}{15}$			Alternative $P(T > 2) = \frac{23}{30} (0.76\dot{6})$ or $P(T < -2) = \frac{1}{10}$ B1
	or $\int_{-5}^{-2} \frac{1}{30} dt + \int_{2}^{25} \frac{1}{30} dt = \frac{1}{10} + \frac{23}{30} = \frac{13}{15}$			P(magnitude at least 2 minutes) = P(T < -2) + P(T > 2) = $\frac{13}{15}$ for M1A1
	or $1 - \int_{-2}^{2} \frac{1}{30} dt = 1 - \left[\frac{t}{30}\right]_{-2}^{2}$ $4 26 13$			
	$=1-\frac{1}{30}=\frac{1}{30}=\frac{1}{15}$		5	

MS2B (cont	S2B (cont)							
Q	Solution	Mark	Total	Comments				
3	Assume that lengths of shots are normally distributed	B1		$\begin{cases} s_n^2 = 124; s_n = 11.1 \\ \text{iff } \frac{s_n}{3} \text{ used} \end{cases}$				
	$\overline{x} = 184$ $s^{2} = \frac{1240}{9} = 137.\dot{7} (s = 11.7)$	B1		CAO $\begin{cases} AWFW 137.7 \text{ to } 138 \\ \text{both } \overline{x} \text{ and } s^2 \text{ (or } s) \end{cases}$				
	$H_0: \mu = 190$ $H_1: \mu \neq 190$	B1		Both				
	$t = \frac{184 - 190}{\sqrt{1240/9 \times 10}}$	M1		$t = \frac{\text{their } \overline{x} - 190}{\frac{\text{their } s_{n-1}}{\sqrt{10}}}$				
				or $\frac{\text{their } \overline{x} - 190}{\frac{\text{their } s_n}{\sqrt{9}}}$				
	t = -1.62	A1		AWRT				
	$v = 9 \implies t_{crit} = \pm 2.821$	B1		(accept 2.82)				
	-2.821 < -1.62 < 2.821 accept H ₀							
	Evidence to support Lorraine's belief at 2% level of significance	E1	7					
	Total		7					

B (cont))							
Q	Solution					Mark	Total	Comments
4(a)	 H₀: no association between age and first time performance in driving test H₁: association between age and first time performance in driving test 					B1		
	Age 0 17-18 2 19-30 3 31-39 1 40-60 7 Total 2	Pass O E 28 19.2 2 6.4 12 18.0 6 4.4 48 48	Fail O 28 14 9 33 27 5 6 72 7	E Total 3.8 48 9.6 16 7.0 45 5.6 11 72 120		M1 A1		E's attempted Correctly
	O 28 2 18 20 14 38	E 19 6 22 28.3 9 33.6	20 40 40 80 6 5 13	$\frac{(o-E)^2}{E}$ $\frac{4.0333}{3.0250}$ 0.8643 2.6889 2.0167 0.5762 3.20		M1 A1 m1 A1		Attempt at combining Correctly Final column attempted For X^2 correct
	$v=2 \implies \chi^2(2)=9.210$					B1ft		(on $v = 2$ or $v = 3$ only)
	Reject H_0 Evidence to support Julie's belief at 1% level of significance.					E1ft	9	
(b)	More stud group17-1	expected ir test first	in the age st time.		E1	1	Fewer than expected fail	
MS2B (cont								
------------	--	--------	-------	---				
Q	Solution	Mark	Total	Comments				
5(a)	X = no. with blood disorder			Alternative: $X \sim B(25, 0.7)$				
	for $X \sim B(25, 0.7)$			$P(X > 15) = 1 - P(X \le 15)$				
	$P(X > 15) = P(X \ge 16)$			= 1 - 0.18943 = 0.81057				
	Consider $X' \sim B(25, 0.3)$ then:							
	$P(X \ge 16) = P(X' \le 9)$	D0.01	2	B3 $0.81 \le p \le 0.811$				
	= 0.8106	B3,2,1	3	B2 for $0.902 \le p \le 0.9022$				
	0.0100			B1 for $0.5 \le p \le 0.95$				
5(b)(i)	$X \sim \mathrm{P}_{\mathrm{0}}\left(2.6\right)$							
	$P(X \le 5) = 0.951$	B1	1	AWRT				
(ii)	$Y \sim \mathbf{P}_0 \left(4.9 \right)$	B1		$\lambda = 4.9$ stated or used in poisson				
	$P(Y-10) = e^{-4.9} \times (4.9)^{10}$			expression				
	$r(r=10) = \frac{10!}{10!}$	M1						
	= 0.0164	A1	3	AWFW 0.016 to 0.0165				
(iii)	$T \sim \mathrm{P}_{\mathrm{0}}\left(7.5\right)$	B1ft		2.6 + (their mean in (ii))				
	$P(T > 16) = 1 - P(T \le 16)$	M1		(for 0.9980)				
	=1-0.9980							
	= 0.002	A1	3	CAO (0.00196)				
	Total		10					

MS2B (cont				
Q	Solution	Mark	Total	Comments
6(a)(i)	$a = \frac{25}{63}$ (OE)	B1	1	$\left(\frac{100}{252} \text{ or } \frac{50}{126} \text{ or } 0.397\right)$
(ii)	E(X) = 2.5 (symmetry)	B 1	1	
(iii)	$E\left(X^{2}\right) = \left(1 \times \frac{25}{252}\right) + \left(4 \times \frac{25}{63}\right) + \left(9 \times \frac{25}{63}\right) + \left(16 \times \frac{25}{252}\right) + \left(25 \times \frac{1}{252}\right)$	M1		$\sum x^2 \times p$ attempted
	$\mathrm{E}\left(X^{2}\right) = \frac{125}{18}$	A1		$\left(6\frac{17}{18} \text{ or } 6.94\right)$
	$\operatorname{Var}(X) = \frac{125}{18} - \frac{25}{4}$	m1		$\begin{cases} \left[\text{their } \mathbf{E}(X^2) - (\text{their } \mathbf{E}(X))^2 \right] \\ \text{dep } \sum x^2 \times p \text{ used} \end{cases}$
	$=\frac{25}{36}$	A1		0.694 [Var > 0]
	$\operatorname{sd}(X) = \frac{5}{6}$	Alft	5	0.833 $\left(\sqrt{\text{their Var}(X)}\right)$ (dep m1)
(b)(i)	$E(Pay) = \frac{4}{9} \times 90 \text{ pence}$ = 40 pence \Rightarrow Joanne expected to make a loss (loss of 10p per game)	M1 A1		Alternative: $\frac{5}{9} > \frac{2}{9} + \frac{2}{9} \implies \text{loss (for B1)}$ then M1A1
(ii)	$E(Loss) = 100 \times 10$ pence = $\pounds 10$	B1ft	3	100×(their loss/game)
	Total		10	

Q Solution Mark Total Comments 7(a)(i) $d^2 = \frac{93}{12}$ M1 $d = \sqrt{\frac{93}{12}} = \sqrt{7.75}$ = 7.75 A1 2 $\Rightarrow d^2 = 7.75$ (ii) 80% CI: $= 64.8 \pm 1.363 \times \sqrt{7.75}$ B1 $t_{11} = 1.363$ or 1.36 $= 64.8 \pm 3.79$ M1 $64.8 \pm t_{11} \sqrt{7.75}$ $64.8 \pm t_{11} \sqrt{7.75}$ $= (61.0, 68.6)$ A1 3 AWRT (b)(i) $(64.8 - 5, 64.8 + 5)$ $= (59.8, 69.8)$ B1 1 (ii) $w = 2\sqrt{7.75} \times t = 10$ M1 $AWRT$ $t = 1.796$ $w = t = 1.796$ A1 $t = 1.79$ to 1.80 $t = 1.79$ to 1.80					MS2B (cont)
7(a)(i) $d^2 = \frac{93}{12}$ M1 $d = \sqrt{\frac{93}{12}} = \sqrt{7.75}$ (ii) 80% CI: $= 64.8 \pm 1.363 \times \sqrt{7.75}$ B1 $t_{11} = 1.363 \text{ or } 1.36$ (iii) $= 64.8 \pm 1.363 \times \sqrt{7.75}$ B1 $t_{11} = 1.363 \text{ or } 1.36$ $= 64.8 \pm 3.79$ M1 $64.8 \pm t_{11} \sqrt{7.75}$ $= (61.0, 68.6)$ A1 3 (b)(i) $(64.8 - 5, 64.8 + 5)$ $= (59.8, 69.8)$ $= (59.8, 69.8)$ B1 1 (iii) $w = 2\sqrt{7.75} \times t = 10$ M1 $\Rightarrow t = 1.796$ M1 $t = 1.79 \text{ to } 1.80$	Comments	Total	Mark	Solution	Q
(ii) 80% CI: = $64.8 \pm 1.363 \times \sqrt{7.75}$ B1 $t_{11} = 1.363 \text{ or } 1.36$ = 64.8 ± 3.79 B1 $t_{11} = 1.363 \text{ or } 1.36$ $64.8 \pm t_{11}\sqrt{7.75}$ iff $t_{11} = 1.363 \text{ or } 1.796$ = $(61.0, 68.6)$ A1 3 AWRT (b)(i) $(64.8 - 5, 64.8 + 5)$ = $(59.8, 69.8)$ B1 1 AWRT (ii) $w = 2\sqrt{7.75} \times t = 10$ $\Rightarrow t = 1.796$ B1 A1 $t = 1.79 \text{ to } 1.80$	$d = \sqrt{\frac{93}{12}} = \sqrt{7.75}$ $\implies d^2 = 7.75$	2	M1 A1	$d^{2} = \frac{93}{12} = 7.75$	7(a)(i)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$t_{11} = 1.363$ or 1.36		B1	80% CI: = $64.8 \pm 1.363 \times \sqrt{7.75}$	(ii)
$ \begin{array}{ c c c c c c c c } & = (61.0, 68.6) & A1 & 3 & AWRT \\ (b)(i) & (64.8 - 5, 64.8 + 5) \\ = (59.8, 69.8) & B1 & 1 & AWRT \\ (ii) & w = 2\sqrt{7.75} \times t = 10 & M1 \\ \Rightarrow & t = 1.796 & M1 & t = 1.79 \text{ to } 1.80 \\ P(X > 1.796) = 0.05 & DC & DC \\ \end{array} $	$64.8 \pm t_{11}\sqrt{7.75}$ iff $t_{11} = 1.363$ or 1.796		M1	$= 64.8 \pm 3.79$	
(b)(i) $(64.8 - 5, 64.8 + 5)$ = $(59.8, 69.8)$ (ii) $w = 2\sqrt{7.75} \times t = 10$ $\Rightarrow t = 1.796$ P(X > 1.796) = 0.05 P(X > 1.796) = 0.05	AWRT	3	A1	=(61.0,68.6)	
(ii) $= (59.8, 69.8)$ $w = 2\sqrt{7.75} \times t = 10$ $\Rightarrow t = 1.796$ $P(X \ge 1.796) = 0.05$ B1 1 AWRT t = 1.79 to 1.80				(64.8 - 5, 64.8 + 5)	(b)(i)
(ii) $w = 2\sqrt{7.75} \times t = 10$ $\Rightarrow t = 1.796$ $P(X \ge 1.796) = 0.05$ M1 A1 t = 1.79 to 1.80	AWRT	1	B1	=(59.8,69.8)	
$P(X \ge 1.796) = 0.05$	t = 1.79 to 1.80		M1 A1	$w = 2\sqrt{7.75} \times t = 10$ $\implies t = 1.796$	(ii)
$P(X \le -1.796) = 0.05$ M1 iff $t = 1.796$ correct	iff $t = 1.796$ correct		M1	$P(X \ge 1.796) = 0.05$ $P(X \le -1.796) = 0.05$	
$\begin{array}{ c c c c c c } \Rightarrow & P(X \le 1.796) = 0.90 \\ \hline & 90\% \text{ Confidence Level} & A1 & 4 \\ \hline & & Total & 10 \\ \hline \end{array}$		4	A1	$\Rightarrow P(X \le 1.796) = 0.90$ 90% Confidence Level Total	

MS2B (cont)	I			
Q	Solution	Mark	Total	Comments
8(a) (b)	$P(X \le 1) = \int_{1}^{1} \frac{1}{2} (x^{2} + 1) dx$	B3 M1	3	B1 for axes B1 for curve from (0, 0.5) to (1, 1) B1 for curve from (1, 1) to (2, 0)
	$= \left[\frac{x^{3}}{6} + \frac{x}{2}\right]_{0}^{1}$ $= \left[\frac{1}{6} + \frac{1}{2}\right] = \frac{2}{3}$	A1 A1	3	0.667
(c)	$E(X^{2}) = \int_{0}^{1} x^{2} \times \frac{1}{2} (x^{2} + 1) dx + \int_{1}^{2} x^{2} (x - 2)^{2} dx$	M1		both integrals seen
	$= \left[\frac{x^5}{10} + \frac{x^3}{6}\right]_{x=0}^{x=1} + \left[\frac{x^5}{5} - x^4 + \frac{4x^3}{3}\right]_{x=1}^{x=2}$ $= \left(\frac{1}{10} + \frac{1}{6}\right) + \left(\left[\frac{32}{5} - 16 + \frac{32}{3}\right] - \left[\frac{1}{5} - 1 + \frac{4}{3}\right]\right)$ $= \frac{4}{5}$	A1A1 m1 A1	5	dep(M1) AG
(d)(i)	$E(X) = \frac{19}{24} \text{ and } k \text{Var}(X) = 499$ $Var(X) = E(X^{2}) - E^{2}(X)$ $= \frac{4}{5} - \left(\frac{19}{24}\right)^{2}$ 499 (0.172)	M1		
	$= \frac{1}{2880} (0.173)$ $\implies k = 2880$	A1	3	САО

MS2B	(cont)
------	--------

Q	Solution	Mark	Total	Comments
8(d)(ii)	$\mathrm{E}\left(5X^{2}+24X-3\right)$			
	$=5\mathrm{E}\left(X^{2}\right)+24\mathrm{E}\left(X\right)-3$	M1		
	$= 5 \times \frac{4}{5} + 24 \times \frac{19}{24} - 3$			
	= 20	A1	2	САО
(iii)	$\operatorname{Var}(12X - 5) = 144 \operatorname{Var}(X)$	M1		
	$=144 \times \frac{499}{2880}$			
	$=\frac{499}{20}$ or (24.95)	A1	2	CAO (AWFW 24.9 to 25)
	Total		18	
	TOTAL		75	

General Certificate of Education June 2010

Mathematics

MS2B

Statistics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
Е	mark is for explanation					
$\sqrt{10}$ or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B				
Q	Solution	Marks	Total	Comments
1	$\overline{x} = 82$; $s^2 = 31.1$ ($s = 5.58$)	B1B1		
	Assumption: The number of customers served daily at the post office counter forms a Normal distribution.	B1		
	$H_0: \mu = 79$ $H_1: \mu > 79$	B1		
	$t = \frac{82 - 79}{5.58}$	M1		$\frac{\text{their } \overline{x} - 79}{\text{their } s / \sqrt{12}}$
	<i>t</i> =1.86	A1		(AWRT)
	$v = 11 \implies t_{\rm crit} = 1.796$	B1		
	Reject H ₀	A1		
	Sufficient evidence at 5% level of significance to support Judith's belief.	E1	9	Iff $t_{calc} > t_{crit}$
	Total		9	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 M1 M1 A1 B1 B1		<i>E</i> attempted Yates' correction attempted χ^2 attempted AWFW 3.36 to 3.37 (at least H ₀ stated correctly) CAO
	Accept H ₀ No evidence at the 5% level of significance to support the claim that the drug is effective against sickness.	A1ft E1ft	8	
	Total		8	

MS2B				
Q	Solution	Marks	Total	Comments
3(a)(i)		B2,1	2	Horizontal line $f(x) = k$ From $-3k$ to k If $\frac{1}{2}$ then max. B1
(ii)	Area = $4k \times k = 1$ $k^2 = \frac{1}{4}$	M1		SC If use $k = \frac{1}{2}$ to show that the Area = 1
(h)	$k = \frac{1}{2} (k > 0)$	A1	2	AG
(D)	$E(X) = \frac{1}{2}(-3k+k)$ $= -k$ $= -\frac{1}{2}$	B1		САО
	$\operatorname{Var}(X) = \frac{1}{12}(k3k)^{2} = \frac{16k^{2}}{12} = \frac{4k^{2}}{3}$ $= \frac{1}{3}$	M1		CAO
(c)(i)	st. dev(X) = $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$ or $\sqrt{\frac{1}{3}}$	A1	3	OE (exact)
	$P\left(X \ge -\frac{1}{4}\right) = \frac{1}{2} \times \frac{3}{4}$	M1		
	$=\frac{3}{8}$ (0.375)	A1	2	
(11)	$P\left(X \neq -\frac{1}{4}\right) = 1$	B1	1	
	Total		10	

MS2B (cont))			
Q	Solution	Marks	Total	Comments
4	$\overline{x} = \frac{0.35}{10} = 0.035$ $s^{2} = \frac{0.12705}{9} = 0.0141 \text{ or } (s = 0.1188)$ $t_{\text{crit}} = 3.250$ $99\% \text{ CL for } u$	B1 B1		both
	$\begin{array}{c} 99\% \text{ CI for } \mu: \\ 0.035 \pm 3.25 \times \frac{\sqrt{0.0141}}{\sqrt{10}} \\ 0.035 \pm 0.1221 \end{array} \right\} \\ (-0.087, 0.157) \end{array}$	M1 A1 A1	5	$0.035 \pm 3.25 \times \frac{\sqrt{0.012705}}{\sqrt{9}}$ Iff \overline{x} , s and $t_9 = 3.25$ all correct in expression CAO (3dp only)
	Total		5	

MS2B (cont		I		1
Q	Solution	Marks	Total	Comments
5(a)(i)	$X \sim \text{Po}(7)$ P(X \le 5) = 0.301	B1	1	AWFW 0.300 and 0.301
(ii)	$P(X = 7) = \frac{e^{-7} \times 7^{7}}{7!} = 0.149$	M1 A1	2	$P(X \le 7) - P(X \le 6)$ = 0.5987 - 0.4497 (M1) = 0.149 (A1)
(iii)	$0.65 \le p \le 0.66$	В3	2	$P(X \le 9) - P(X \le 4)$
	$0.72 \le p \le 0.73$ or $0.52 \le p \le 0.53$	(B2)		$\begin{cases} P(X \le 10) - P(X \le 4) \\ P(X \le 9) - P(X \le 5) \end{cases}$
	0.60	(B1)	3	$\mathbf{P}(X \le 10) - \mathbf{P}(X \le 5)$
(b)	No. telephone calls received per hour = $Y \sim P_0(0.875)$	B1	1	
(c)(i)	Maximum number = 4	B1	1	
(ii)	P(Y < 4) = P(Y = 0, 1, 2, 3) = $e^{-0.875} \left(1 + \frac{7}{8} + \frac{49}{128} + \frac{343}{3072} \right)$ = 0.4169(1+0.875+0.3828+0.1117) = 0.987740443	B2		Any correct expression (B2) or AWFW 0.987 to 0.988
	$P(Y \ge 4) = 1 - 0.9877 = 0.0123$	M1 A1	4	1 - (their P(Y < 4)) AWFW 0.0122 and 0.0123
				SC $P(Y \le 4) = 0.997 \text{ to } 0.998$ or any correct expression B P(Y > 4) = 0.002 to 0.003 M1A0
(d)	λ probably not constant The number of calls in any time interval of 1 hour is likely to vary throughout the day.	E1	1	'System Down' ⇒ not independent
	Total		13	
L		1	-	l

MS2B	(cont)
------	--------

Q	Solution	Marks	Total	Comments
6(a)(i)	$P(R \ge 5) = 0.3 + 0.25 + 0.1 + 0.05$	D 1	1	
	= 0.70	BI	1	CAO
(ii)	$\mathbf{E}(R) = \sum rp$	M1		
	$= 3 \times 0.1 + 4 \times 0.2 + 5 \times 0.3 +$	MI		
	$6 \times 0.25 + 7 \times 0.1 + 8 \times 0.05$			
(••••)	=5.2	A1	2	
(111)	$\mathbf{E}\left(R^2\right) = 9 \times 0.1 + 16 \times 0.2$			
	$+25 \times 0.3 + 36 \times 0.25$	M1A1		(Correct expression or 28.7)
	$+49 \times 0.1 + 64 \times 0.05$			
	(= 28.7)			
	$Var(R) = 28.7 - 5.2^2$	M1		
	=1.66	A1	4	AG
(b)(i)	$P(R+S=6) = 0.1 \times 0.15 = 0.015$	B1		$P(R=3 \text{ and } S \le 5) = 0.1 \times 0.85 = 0.085$
	$P(R+S=7) = 0.1 \times 0.4 + 0.2 \times 0.15$			
	= 0.04 + 0.03	B1		$P(R=4 \text{ and } S \le 4) = 0.2 \times 0.55 = 0.110$
	= 0.07			
	$P(R+S=8) = 0.2 \times 0.4 + 0.1 \times 0.3$			
	$+0.3 \times 0.15$			
	= 0.08 + 0.03 + 0.045	BI		$P(R=5 \text{ and } S \le 3) = 0.3 \times 0.15 = 0.045$
	= 0.155			
	$P(R+S \le 8) = 0.015 + 0.07 + 0.155$	M1		$P(R+S \le 8) = 0.085 + 0.110 + 0.045$
	= 0.24	A1	5	=0.24 (AG)
(ii)	$p = {}^{5}C_{4} (0.24)^{4} (0.76)$	M1		First torms compat
	$+(0.24)^{5}$	M1 M1		+ correct second term
	= 0.0126 + 0.000796			or correct numerical values
	J			(must use $p = 0.24$)
	= 0.0154	A1	3	(0.013 to 0.0135)
(111)	$\mathbf{D}(\mathbf{p}-4 \mathbf{p}+\mathbf{S}<9)$			Alternative: (using (b)(1)) P(R - 4 and S < 4)
	$P(R = 4 R+3 \le 8)$			$=\frac{P(R=4 \text{ and } S \leq 4)}{P(R+S \leq 8)}$
	$=\frac{P(R=4 \text{ and } R+S \le 8)}{P(R=4 \text{ or } R+S \le 8)}$			$P(X+S \ge 6)$
	$P(R+S\leq 8)$			$=\frac{0.11}{0.24}=\frac{11}{24}$
				0.24 24
	0.02 + 0.02	D 1		
	$=\frac{0.03\pm0.08}{0.24}$	BI M1		(numerator) or 0.11 seen ($\div 24$ iff numerator < 0.24)
	11 (0.458)			
	$=\frac{1}{24}(0.458)$	A1	3	САО
	Total		18	

MS2B (cont)

Q	Solution	Marks	Total	Comments
7(a)	Median =1	B1		
	Lower quartile = $\frac{1}{2}$	B1	2	
(b)	$F(1) = \frac{1}{2}$			
	For $1 \le x \le 4$			
	$\int \frac{1}{18} (x-4)^2 \mathrm{d}x$	M1		ignore limits
	$= \left[\frac{1}{54}(x-4)^{3}\right]_{1}^{x}$ $= \left[\frac{1}{54}(x-4)^{3} + \frac{1}{2}\right]$	A1		Correct integration + correct limits seen or used
	$F(x) = \left[\frac{1}{54}(x-4)^3 + \frac{1}{2}\right] + \frac{1}{2}$	m1		adding $\frac{1}{2}$ or F(1)
	$=1+\frac{1}{54}(x-4)^{3}$	A1	4	CAO (AG)
	Alternative			Alternative
	$\int 1 (x_1 - 4)^2 dx_1 = \frac{1}{2} (x_1 - 4)^3 + z_2$	(M1)		$\int \frac{1}{(1+t)^2} 1 = O(t)$
	$\int \frac{1}{18} (x-4) dx = \frac{1}{54} (x-4) + c$	(1011)		$\int \frac{1}{18} \int \frac{1}{18} (x-4) dx$ (M1)
	$F(1) = \frac{1}{2} \implies c = 1$	(m1) (A1)		$= \int_{1}^{1} \frac{1}{18} \left(x^2 - 8x + 16 \right) dx$
	$F(x) = 1 + \frac{1}{54}(x-4)^3$	(A1)		$= \frac{1}{18} \left[\frac{x^3}{3} - 4x^2 + 16x \right]_1 $ (A1)
	57			$F(x) = \frac{1}{2} + \frac{1}{54} \left[x^3 - 12x^2 + 48x \right]_1^x (m1)$
				$= \frac{1}{2} + \frac{1}{54} \left(x^3 - 12x^2 + 48x - 37 \right)$
				$=1+\frac{1}{54}\left(x^3-12x^2+48x-64\right)$
				$=1+\frac{1}{54}(x-4)^3$ (A1)
(c)	$P(2 \le X \le 3) = \frac{53}{54} - \frac{46}{54}$	M1		F(3) - F(2)
	$=\frac{7}{54}$ (0.130)	A1	2	0.1296
(d)(i)	$F(q) = \frac{3}{4}$	M1		use of $F(q) = \frac{3}{4}$
	$1 + \frac{1}{54}(q-4)^{3} = \frac{3}{4}$ $\frac{1}{54}(q-4)^{3} = -\frac{1}{4}$	M1		(either)
	$(\times 54) \implies (q-4)^3 = -13.5$	A1	3	AG
(ii)	$q-4 = \sqrt[3]{-13.5} = -2.3811 \ q = 1.619 \ (3dp)$	B1	1	CAO
	Total		12	
	ТОТАL		75	

General Certificate of Education (A-level) 2011

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
с	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B		•	-		
Question	Solution	Marks	Total	Comments	
1(a)	$Y \sim N(\mu_{Y}, 4)$ $n = 16, \overline{y} = 450$ (known variance) \implies use z				
	For 95% CI $z_{crit} = 1.96$	B1			
	$450 \pm 1.96 \times \frac{2}{\sqrt{16}} \\ 450 \pm 0.98 \end{bmatrix}$	M1			
	(449,451)	A1	3	awrt	
(b)(i)	$X \sim \mathrm{N}(\mu_X, \sigma^2)$				
	(unknown variance) \Rightarrow use t_{n-1}				
	$n = 9 \& \overline{x} = \frac{4950}{9} = 550$ $s_{n-1}^2 = \frac{334}{8} = 41.75 (s_{n-1} = 6.461)$	B1		both	
	For 90% CI $t_{crit} = 1.860$	B1			
	$550 \pm 1.860 \times \frac{\sqrt{41.75}}{\sqrt{9}}$	M1		$\begin{cases} \text{their } \overline{x} \pm t_8 \times \frac{\text{their } s_{n-1}}{\sqrt{9}} \\ (\text{must have a } t_8 \text{-value}) \end{cases}$	
	550 ± 4.0	A1ft			
	(546,554)	A1	5	awrt	
(ii)	 545 not in 90% CI ∴ Reject claim Evidence to suggest that mean content of a bottle of tomato sauce is not 545 grams and hence to reject Holly's 	B1ft (dep on (b)(i))		Alternative $H_0: \mu_x = 545$ $H_1: \mu_x \neq 545$ $t = \frac{550 - 545}{\sqrt{41.75/9}} = 2.32$	
	claim at 10% level of significance .	Elft (dep on		$\begin{bmatrix} \iota_{\text{crit}} = 1.00 < 2.52 \\ \text{Reject H} \end{bmatrix} $ B	81
		(b)(i))		Comment in context E	E1
		B1	3	10% significance level B	81
	Alternatives (such as):			$t_{\rm crit} = 3.355 > 2.32$	
	Claim justified at 1% level of			Accept H ₀	
	significance			1% significance level	
	Total		11		

|--|

MS2B(cont)							-	-	
Question			Solı	ition			Marks	Total	Comments
2(a)	M F Tot	C 156 216 372	L 144 135 279	LD 120 108 228	OP 60 81 141	Tot 480 540 1020	B1 B1	2	For each correct row
(b)	H ₀ : H ₁ :	No ass and the Associ and the	ociatio e way s iation b e way s	n betwo students betweer students	een gen s vote n gende s vote	ıder r	B1		For at least H ₀ correct
	$\begin{array}{c c} O_i \\ \hline 156 \\ 216 \\ 144 \\ 135 \\ 120 \\ 108 \\ 60 \\ 81 \end{array}$	E 175 196 131 147 107 120 66 74	i (06 94 29 71 29 71 35 .65	$ \begin{array}{r} O_i - E \\ \hline 2.0 \\ 1.8 \\ 1.2 \\ 1.0 \\ 1.5 \\ 1.5 \\ 0.6 \\ 0.5 \\ \end{array} $	$(i)^2 / E_i$ $(i)^2 / E_i$ $(i)^{75}$		M1 M1 M1		Attempt at E_i Attempt at $(O_i - E_i)^2 / E_i$ Attempt at $\sum \left(\frac{(O_i - E_i)^2}{E_i}\right)$
	v = 3	$\Rightarrow \chi_{c}$	$\frac{2}{2}$	$\frac{X^2 = 10}{.345}$	0.233		A1 B1 B1ft		awfw 10.2 to 10.3 (A1 dependent on all 3 method marks) ft on their <i>v</i> value
	$X^2 < \chi^2$	χ^2_{crit} :	accep	t H ₀			A1		
	Eviden vote is	ce to si indepe	uggest endent o	that the	e way s ler.	tudents	E1	9	
						Total		11	

|--|

MS2B(cont)				
Question	Solution	Marks	Total	Comments
3(a)(i)	$X \sim P_o(0.6)$ P(X \le 1) = 0.8781	B1	1	Awrt 0.878
(ii)	For matches: The number of run outs: $Y \sim P_0(0.15)$ $P(Y \ge 1) = 1 - P(Y = 0)$			
	$= 1 - e^{-0.15}$ = 1 - 0.8607	M1		must use $P_0(0.15)$
	= 0.1393	A1		awrt 0.139
	P(X ≤1 and Y ≥1) = 0.8781×0.1393 = 0.122	M1 A1	4	their (a)(i)×their $P(Y \ge 1)$ awrt
(b)	<i>X</i> and <i>Y</i> are independent. Number of catches and runouts independent	B1	1	
(c)(i)	For Season: $S \sim P_o(9.6)$ $P(S=10) = \frac{e^{-9.6} \times 9.6^{10}}{10!}$	M1		Use of $\lambda = 9.6$ in correct Poisson expression
	= 0.124	A1	2	
(ii)	$T \sim P_{o}(9.6 + 2.4) = P_{o}(12)$	B1		$P_{o}(12)$ used or seen
	$P(T \ge 15) = 1 - P(T \le 14)$ = 1 - 0.7720 = 0.228	B2,1	3	(1-0.8444 = 0.155 to 0.156) B1
	Total		11	

MS2B(cont)		\ \	,	
Question	Solution	Marks	Total	Comments
4(a)(i)	$E(X) = \sum x \times P(X = x) = 2.8$	B1		
	$\mathbf{E}(X^2) = \sum_{x}^{x} x^2 \times \mathbf{P}(X = x) = 9$			
	$Var(X) = 9 - 2.8^2$	M1		$(\text{their E}(X^2) - \text{their E}^2(X))$
	=1.16	A1	3	cao
(ii)	$\mathrm{E}(S) = 3 \times \mathrm{E}(X) = 8.4$	B1ft		on their $E(X)$
	$\operatorname{Var}(S) = 3 \times \operatorname{Var}(X) = 3.48$	B1ft	2	$3 \times \text{their Var}(X) \text{ from (i)} > 0$
				NB There was a problem with part 4(a)(ii) which affected the marking of this part. Please see the Report on the Examination for datails
				Examination for details.
(b)	E(Y) = 3.5	B1		for $E(Y)$
	$\mathbf{E}(Y^2) = 13$			(-)
	$\operatorname{Var}(Y) = 13 - 3.5^2 = 0.75$	M1		on their $E(Y)$ and $E(Y^2)$
		Alft		$\operatorname{Var}(Y) > 0$
	$\mathrm{E}(T) = 3 \times \mathrm{E}(Y) = 10.5$	B1		cao
	$\operatorname{Var}(T) = 3^2 \times \operatorname{Var}(Y)$			
	=9×0.75	M1		$9 \times \text{their } \text{Var}(Y) > 0$
	= 6.75	A1		cao
	Alternative:			
	T 3 6 9 12			
	T² 9 36 81 144			
	$\begin{array}{ c c c c c c c c } P & \frac{1}{2_{0}} & \frac{1}{2_{0}} & \frac{1}{2_{0}} & \frac{1}{2_{0}} \\ \hline E(T) & \frac{3}{2_{0}} & \frac{12}{2_{0}} & \frac{27}{2_{0}} & \frac{168}{2_{0}} & 10.5 \end{array}$	(M1A1)		
	$\mathbf{E}(T^{2}) \boxed{\frac{9}{20}} \frac{72}{20} \frac{243}{20} \frac{2016}{20} \frac{117}{117}$	(M1A1)		
	$\operatorname{Var}(T) - \operatorname{E}(T^2) - [\operatorname{E}(T)]^2$			
	v = (1) - E(1)	(M1)		(used)
	=117 - 10.5 = 6.75	(41)	6	
		(AI)		

Mark Scheme – General Certificate of Education (A-I	level) Mathematics – Statistics 2B – 2011
---	---

MS2B(cont)				
Question	Solution	Marks	Total	Comments
4(c)(i)	P(X > 1) = 0.8	B1	1	A 14
(ii)	$P(T=3) = \frac{1}{20} \text{ and } P(T=3 \text{ or } 6) = \frac{3}{20}$ $P(X+T \le 9 \text{ and } X > 1)$ $= P([2,3 \text{ or } 6], [3,3 \text{ or } 6], [4,3])$ $= 0.1 \times \frac{3}{20} + 0.4 \times \frac{3}{20} + 0.3 \times \frac{1}{20}$ $= 0.015 + 0.06 + 0.015$ $= 0.09$	B4	4	P(T = 3) = $\frac{1}{20}$ and P(T = 6) = $\frac{2}{20}$ P(X + T ≤ 9 and X > 1) = P([(2,3,4),3],[(2,3),6]) = $0.8 \times \frac{1}{20} + 0.5 \times \frac{2}{20}$ = $0.04 + 0.05 = 0.09$ SC [any 4 correct p's from table B2] [0.12 B3] [0.096 or 0.072 B2] $\begin{cases} P(T = 3) = \frac{1}{20} \text{ and } P(T = 3 \text{ or } 6) = \frac{3}{20} \\ P(T = 3) = \frac{1}{20} \text{ and } P(T = 6) = \frac{2}{20} \end{cases}$
				B1
(iii)	$P(X+T \le 9 X > 1) = \frac{0.09}{0.80}$	M1		$\frac{\text{their (c)(ii)}}{0.80} (0$
	$=\frac{2}{80}(0.1125)$	A1	2	cao
	Total		18	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2	2011
--	------

MS2B(cont)	~				~
Question	Solutio	on	Marks	Total	Comments
5(a)(i)	$H_0: \mu = 165$ $H_1: \mu > 165$		B1	1	
(ii)	David (5%)	[ames(1%)]			
	$z = \frac{167.1 - 1}{2}$	165	M1		
	$\sqrt{101.2}$ = 2.09	10	A1		awfw 2.08 to 2.09
	$z_{crit} = 1.6449$ ($t_{crit} = 1.660$)	$z_{crit} = 2.3263$ ($t_{crit} = 2.364$)	B1		(both)
	Reject H ₀	Accept H ₀	A1		(both) dependent on M1
	Evidence to suggest that the mean height of students in final year has increased at 5% level	No evidence to suggest an increase in the mean height of final year students at 1%	E1 E1		
(iii)	Population not stated / not known. Heights of all students Normal/ Known	level as being Normal may not be	B1	0	Large sample size of 100 indicates that the distribution of the sample mean is very likely to be Normal even though the parent population not given as being Normal . Hence $\overline{X} \sim N\left(\mu, \frac{s^2}{n}\right)$
(b)(i)	David: $\mu = 165$ \therefore rejected H ₀ when H \Rightarrow Type I error	H ₀ correct	M1 A1		
(ii)	James: $\mu = 165$				
	\therefore accepted H ₀ when \Rightarrow No error	H ₀ correct	M1	Δ	
		Total			

Mark Scheme – General Certificate of Education (A-level) Mathematics – Statistics 2B – 2011

MS2B(cont)				
Question	Solution	Marks	Total	Comments
6(a)		В3	3	B1 for concave curve from (0, 1) to $\left(\frac{1}{2}, \frac{3}{32}\right)$ B1 for horizontal straight line $f = \frac{3}{32}$ from $\left(\frac{1}{2}, \frac{3}{32}\right)$ to $\left(\frac{1}{2}, \frac{3}{32}\right)$ B1 for correct axes
(b)(i)	$P\left(X \ge 8\frac{1}{3}\right) = \left[\frac{3}{32} \times \left(11 - 8\frac{1}{3}\right)\right]$ $= \frac{3}{32} \times \frac{8}{3}$ $= \frac{1}{32}$	M1		Any correct method attempted in either part
(ii)	4 $P(X \ge 3) = \frac{3}{32} \times (11 - 3)$ $= \frac{3}{4}$	AI A1	3	AG Any correct method attempted AG
(c)(i)	Interquartile Range = $5\frac{1}{3}$	B1		cao
(ii)	Median = $5\frac{2}{3}$ Alternative : $\frac{1}{64} + \frac{3}{32}\left(m - \frac{1}{2}\right) = \frac{1}{2}$ $\Rightarrow 3\left(m - \frac{1}{2}\right) = 15.5 \Rightarrow m = 5\frac{2}{3}$	B2	3	cao sc if B0 then: M1 for correct method seen $\frac{1}{2}\left(8\frac{1}{3}+3\right)$ or $\frac{1}{2}\times11\frac{1}{3}$ or $\frac{3}{32}(11-m)=\frac{1}{2} \Rightarrow 11-5\frac{1}{3}$
(d)	$P[(X < m) \cap (X \ge 3)] = \frac{1}{4}$ $P(X < m X \ge 3) = \frac{\frac{1}{4}}{\frac{3}{4}} = \frac{1}{3}$	B1 M1		$\left(\frac{3}{4} - \frac{1}{2}\right)$ attempted (their <i>p</i>)/ _{3/4} for 0
		A1	3	cao Alternative: (Ratio of relevant two areas) $P(X < m X \ge 3) = \frac{2\frac{2}{3}}{8} = \frac{1}{3}$ cao
	Total		12	
	TOTAL		75	

General Certificate of Education (A-level) June 2011

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	$X \sim Po(13)$	B1	1	Both Poisson and $\lambda = 13$
(ii)	$P(X = 20) = P(X \le 20) - P(X \le 19)$ = 0.975(0) - 0.957(3)	M1		Must use $\lambda = 13$ otherwise M0A0
	[allow 0.975 - 0.957] = 0.0177 (3sf)	A1	2	AWFW 0.0176 to 0.018 or $P(X = 20) = \frac{e^{-13} \times 13^{20}}{20!}$ M1 = 0.0177 A1
(iii)	$P(6 \le X \le 18) = P(X \le 18) - P(X \le 5)$ = 0.930(2) - (0.0107 or 0.0259)	M1 M1		
	= 0.920 (3sf)	A1	3	AWFW 0.919 to 0.92
(b)	Cars not random Cars not independent Mean and Variance of cars different / not equal	B1		Allow (number of) cars not random / not independent B1 for any one of these 3 statements Must indicate a reference to <i>cars</i>
	Mean / Average / λ / 2.6 greater / less / smaller / different / variable			Correct comment about value of $\lambda \neq 2.6$ Any combination (one from each group):
	/ not constant / too small / too large Any contextual reason that suggests a change in traffic flow, eg due to: rush hour / congestion / traffic jams / accidents / work traffic / school traffic / peak time	B1	2	eg mean greater <i>due to</i> rush hour, or λ smaller <i>due to</i> congestion, or 2.6 too small <i>due to</i> school traffic
(c)	$Y \sim Bin(20,0.2)$ P($Y \ge 5$) = 1 - P($Y \le 4$)			or: $1 - \begin{pmatrix} 0.01153 + 0.05765 + 0.13691 \\ +0.20536 + 0.21820 \end{pmatrix}$
	= 1 - 0.6296	M1		1 - 0.6296 (Allow $1 - 0.8042$ seen for M1)
	=0.37(0) (3sf)	A1	2	AWFW 0.37 to 0.3704
(d)	X and Y independent	B1		Any statement which indicates two / both events are independent
	$p = 0.0177 \times 0.3704$	M1		[their (c)] ×[their (a)(ii)]
	= 0.00656 (3sf)	A1	3	AWFW 0.0065 and 0.0067
			13	

Q	Solution	Marks	Total	Comments
2(a)(i)	$\operatorname{Area}/\operatorname{F}(x) = 10u \times 0.01\pi (\operatorname{OE})$	B1		Shown by any correct method
	$=1 \implies u = \frac{10}{\pi}$	Bdep1	2	Alternatives:
	or $u = \frac{10}{\pi} \implies F(x) = 1$	(Bdep1)		$f = \frac{10u}{10u}$ B1 Show $u = \frac{10}{\pi}$ or show $\frac{1}{10u} = 0.01\pi$ Bdep1
(ii)	$E(X) = \frac{1}{2}(11u + u) = 6u = 6 \times \frac{10}{\pi} = \frac{60}{\pi}$	B1	1	Must be in terms of π (eg $60\pi^{-1}$)
(iii)	$Var(X) = \frac{1}{12}(b-a)^{2}$ $Var(X) = \frac{1}{12}(11u-u)^{2}$ $= \frac{1}{12} \times 100 \times \frac{100}{\pi^{2}} = \frac{100^{2}}{12\pi^{2}}$ $C = \pi \left(X + \frac{10}{\pi}\right)$	B1	1	Alternatives: $\frac{10000}{12\pi^2} = \frac{5000}{6\pi^2} = \frac{2500}{3\pi^2} = \left(\frac{50}{\pi\sqrt{3}}\right)^2 = \frac{(\text{AWRT 833})}{\pi^2}$ Must be in terms of π
	$E(C) = \frac{\pi \times [\text{their } E(X)] + 10}{\pi \times \frac{60}{\pi} + 10}$	M1		Their numerical value of $E(X)$ used correctly Must have a multiplier of π or 2π
	= 70	A1		CAO
	$\operatorname{Var}(C) = \pi^2 \times \frac{100^2}{12\pi^2} = \frac{100^2}{12}$	M1		$\pi^2 \times [\text{their Var}(X) > 0]$ Must have a multiplier of π^2 or $4\pi^2$
	$=833\frac{1}{3}(833.\dot{3})$	A1	4	Alternatives: $\frac{10000}{12} = \frac{5000}{6} = \frac{2500}{3}$ Must be exact: 833.3 gets A0
(b)	$n = 100$ and $\overline{a} = 40.5$			
	95% CI for $\mu = \begin{cases} 40.5 \pm z \times \frac{\sqrt{25}}{\sqrt{100}} \\ 40.5 \pm 1.0 \end{cases}$	B1 M1		For $z = 1.96$ z = 1.96 or 1.64 to 1.65 only
	=(39.5, 41.5)	A1	3	AWRT
	Tatal		11	
	I Otal	l	11	

MS2B (con	IS2B (cont)						
Q	Solution	Marks	Total	Comments			
3(a)	H ₀ : no association (between type of school and performance of 16 year olds in their GCSEs)	B1	1	H ₀ : type of school and performance of 16 year olds in their GCSEs independent			
(b)	$\frac{(O-E)^2}{E}$ 0.195819311 0.482160711 0.003569447 1.080536181 0.062507172 1.269422099 0.785491128 0.183802623	M1		Attempt at $\frac{(O-E)^2}{E}$ (\geq 4 correct values seen to 2dp)			
	0.541856652 0.044011976 3.274102564 4.096492891 $X^{2} = \sum \frac{(O-E)^{2}}{E}$	m1		Attempt to add ≥ 8 terms			
	= 12.01977275 =12.0 (1dp)	A1	3	Allow $11.9 \le X^2 \le 12.1 \Rightarrow M1m1$ CAO			
(c)	$\nu = 6 \implies \chi^2_{1\%} = 16.8(12)$	B1,B1		$v = 6$ can be implied by $\chi^2_{1\%} = 16.8(12)$			
	No (significant evidence to suggest an) association between (type of) school and (GCSE) performance (of 16 year olds)	Adep1	3	Insufficient/no evidence to support Emily's belief. School and performance are independent. Correct conclusion in context Dep on B1M1m1B1B1 given in (a), (b), (c) and $11.9 \le X^2 \le 12.1$			
(d)	More than expected gained at least / more than 5 GCSEs Fewer than expected gained at least / more than 1 GCSE but less than 5 GCSEs Fewer than expected gained no GCSEs			Since conclusion of <i>no association</i> between school and GCSE performance, it may be misleading to look at individual differences in any great detail			
	I 6	B1	1	Any one of these 4 comments seen			
(e)	$\chi^2_{10\%} = 10.6(45)$	B1		Correct value of χ^2 only			
	Reject H_0 at 10% level of significance. (Evidence to suggest) an association between (type of) school and (GCSE) performance	Bdep1	2	Evidence to support Emily's (Joanne's) belief. (Type of) school + (GCSE) performance dependent. Dep on B1M1m1 and $11.9 \le X^2 \le 12.1$ and B1 in (e)			
	Total		10				

MS2B (con	t)			
Q	Solution	Marks	Total	Comments
4(a)	$E(X) = \sum xp$ = $\frac{3}{40} + \left(2 \times \frac{6}{40}\right) + \left(3 \times \frac{9}{40}\right) + \left(4 \times \frac{12}{40}\right) + \left(5 \times \frac{5}{20}\right) = 3.5$	B2,1	2	
(b)(i)	$E\left(\frac{1}{X}\right) = \sum_{x} \frac{1}{x} \times p$ = $\left(1 \times \frac{3}{40}\right) + \left(\frac{1}{2} \times \frac{6}{40}\right) + \left(\frac{1}{3} \times \frac{9}{40}\right) + \left(\frac{1}{4} \times \frac{12}{40}\right) + \left(\frac{1}{5} \times \frac{5}{20}\right)$ = $\frac{7}{20}$	M1 A1	2	At least 4 of these terms added (accept decimal equivalents) AG (allow 0.35 seen)
(ii)	$E\left(\frac{1}{X^{2}}\right) = \sum \frac{1}{x^{2}} \times p$ = $(1 \times 3) + (1 \times 6) + (1 \times 9) + (1 \times 12) + (1 \times 5)$	M1		At least 4 of these terms added
	$ = (1^{-} \overline{40})^{+} (\overline{4}^{-} \overline{40})^{+} (\overline{9}^{-} \overline{40})^{+} (\overline{16}^{-} \overline{40})^{+} (\overline{25}^{+} \overline{20}) $ $ = 133 $			(accept decimal equivalents) (can be
	$=\frac{155}{800}$ (0.16625)	A1		implied by $\frac{1}{800}$ seen with no other working shown)
	$\operatorname{Var}\left(\frac{1}{X}\right) = \frac{133}{800} - \frac{49}{400}$	m1		$\left[\text{their } \mathbf{E}\left(\frac{1}{X^2}\right) \right] - \left(\frac{7}{20}\right)^2$
	$=\frac{7}{160}$	Adep1	4	AG (allow 0.04375 seen)
(c)(i)	x 1 2 3 4 5 y 40 20 $13\frac{1}{3}$ 10 8 p $\frac{3}{40}$ $\frac{6}{40}$ $\frac{9}{40}$ $\frac{12}{40}$ $\frac{10}{40}$			Altamativa
	Identifying $X = (2), 3, 4, 5$ or $Y = (20), 13\frac{1}{3}, 10, 8$	M1		$Y < 20 \Rightarrow \frac{40}{X} < 20 \Rightarrow 40 < 20X \Rightarrow X > 2$
	$P(X > 2) = \frac{9}{2} + \frac{12}{12} + \frac{5}{2}$	Δ1		M1 (allow < or \leq and > or \geq in above) P(Y < 20) = P(X > 2)
				$=1 - \left(\frac{3}{40} + \frac{6}{40}\right) A1$
	$=\frac{31}{40}$ (0.775)	A1	3	$=\frac{31}{40} (0.775) \qquad A1$
(ii)	$\frac{9}{40}$ seen irrespective of labelling	B1		As numerator or final answer (0.225)
	$P(X < 4 Y < 20) = \frac{\frac{9}{40}}{\frac{31}{40}} = \frac{0.225}{0.775}$	M1		$=\frac{\frac{1}{40}}{(\text{their (c)(i)})} \text{ (or correct use of table)}$
	$=\frac{9}{31}(0.290)$	A1	3	AWFW 0.29 to 0.2904
	Total		14	

MS2B	(cont)
------	--------

Q	Solution	Marks	Total	Comments
5 (a)	$Y \sim N(\mu_v, 640^2)$			
	$n = 25$ and $\bar{y} = 19700$			
	$H_0: \mu_y = 20000$			
	$H_1: \mu_y \neq 20000$ (both)	B1		Alternative
				$P(\overline{Y} < 19700) = P(Z < -2.34375)$
	$\overline{Y} \sim N\left(20000 \frac{640^2}{2}\right)$			= 1 - 0.99036
	25			$= 0.00964 \ge 0.005$ Accept H ₀
	$z = \frac{19700 - 20000}{10000000000000000000000000000000$	M1		(235 to 234)
	$640/\sqrt{25}$	IVI I		(-2.33 t0 - 2.34)
	= -2.34375	A1		$(\pm 2.57 \text{ to } \pm 2.58)$
	$z_{\rm crit} = \pm 2.5758$	B1		Use of $t \implies \max B1M1A1$
	Accept H ₀	Adep1		dep on B1M1B1
	Insufficient / no evidence (to suggest) that the mean (lifetime) has changed (from 20000 hours)	Edep1	6	dep on Adep1
	Mean (lifetime) has not changed at 1%			If in a new of here the set them DO
	level (of significance)			$\Rightarrow \max M1A1B1$
				ie final Adep1Edep1 not available
		D 1	1	
(D)(I)	$\mu < 10000$	BI	1	
(ii)	$n = 16$ and $s = 500$; $t_{crit} = 1.753$	B1		For t_{crit} (ignore signs)
	$\operatorname{sd}(\overline{X}) = \frac{500}{\sqrt{16}} (125)$	B1		Ignore notation
	$\sqrt{10}$			
	$10000 \pm 1.752 \times 500$ (considered)	M1		M0 if only considered upper value
	$10000 \pm 1.733 \times \frac{16}{\sqrt{16}}$ (considered)			No ft on incorrect <i>t</i> value
	Choose 9780 (3sf)	A1		AWFW 9780 to 9781 (ignore inequality)
	$(\Rightarrow \text{critical region: } \overline{x} < 9780)$			If z used then max B0B1M0A0A0
	\therefore Range of values for \overline{x} which leads			
	Christine not to reject $H_0: \mu = 10000$ is:			
	$\overline{x} > 9780$	A1	5	Allow $\overline{x} \ge 9780$ to 9781
(;;;)	No error	R1	1	Janore any subsequent statements
(111)	Total		13	Ignore any subsequent statements

MS2B (cont)

Q	Solution	Marks	Total	Comments
6(a)	$F(x) = \int \frac{3}{8} (x^2 + 1) dx$	M1		Ignore limits
	$=\frac{3}{8}\left[\frac{x^{3}}{3}+x\right] \text{ or } =\frac{1}{8}x^{3}+\frac{3}{8}x$	A1		Either
	$=\frac{1}{2}x(x^2+3)$	A1	3	(including use of correct limits 0 and x
	8			or $+c$ used and evaluated) (AG)
(b)	$\mathbf{F}(m) = \frac{1}{2}$	B1		
	$F(1) = \frac{1}{8} \times 1 \times 4 = \frac{1}{2}$	B1	2	AG
(c)	Upper quartile lies in range $1 < x < 2$			
	such that $F(q) = \frac{3}{4}$			$\frac{1}{2} + \int_{1}^{q} \frac{1}{4} (5 - 2x) \mathrm{d}x = \frac{3}{4}$
	$\int_{1}^{q} \frac{1}{4} (5 - 2x) \mathrm{d}x = \frac{1}{4}$	M1		Alternative: $\int_{a}^{2} \frac{1}{4} (5-2x) dx = \frac{1}{4}$
	$\left[5x - x^2\right]_1^q = 1$			$\left[5x-x^2\right]^2=1$
	$5q - q^2 - 4 = 1$			$(10-4)-(5q-q^2)=1$
				$6-5q+q^2=1$
	$q^2 - 5q + 5 = 0$	A1		$q^2 - 5q + 5 = 0$
	$q = \frac{5 \pm \sqrt{25 - 20}}{2}$ or $\frac{1}{2} (5 \pm \sqrt{5})$	M1		Correct use of formula (OE) to give the two surd answers to given quadratic equation
	but $1 < q < 2$ [or $(q < 2)$]	m1		
	$\therefore q = \frac{1}{2} \left(5 - \sqrt{5} \right)$	A1	5	Must qualify with a numerical comparison, not just quote the given answer; dep on M1; AG
(d)	$P(X > 1.5) = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{4} \right] \times \frac{1}{2}$	M1		$P(X < 1.5) = 0.5 + \frac{1}{2} \left[\frac{3}{4} + \frac{1}{2} \right] \times \frac{1}{2}$ (M1)
	$=\frac{3}{16}(0.1875)$	A1		$=\frac{1}{2}+\frac{1}{2}\times\frac{5}{4}\times\frac{1}{2}$
	10			$= \frac{1}{2} + \frac{5}{16} = \frac{13}{16} $ (A1)
	$P(X > q) = \frac{1}{4} (0.25)$	B1		$P(X < q) = \frac{3}{4} (0.75) \tag{B1}$
	$P(q < X < 1.5) = \frac{1}{4} - \frac{3}{16}$			$P(q < X < 1.5) = \frac{13}{16} - \frac{3}{4} = \frac{1}{16} $ (A1)
	$=\frac{1}{16}$ (0.0625)	A1	4	(0.0625)

MS2B (con	nt)			
Q	Solution	Marks	Total	Comments
6(d) cont	OR $\int_{\frac{1}{2}}^{2} \frac{1}{4} (5 - 2x) dx = \frac{3}{16} \text{ etc } (M1A1)$			OR $\int_{q}^{1.5} \frac{1}{4} (5-2x) dx = \frac{1}{4} [5x-x^{2}]_{q}^{1.5} (M1)$ (correct integration and limits) Allow use of $q = 1.38$ to $q = 1.382$ in limits for M1 Whatever follows must be exact $= \frac{1}{4} [(7.5-2.25)-(5q-q^{2})] (A1)$ for use of $5q-q^{2} = 5$ or showing $5q-q^{2} = 5$ by substituting $q = \frac{1}{2} (5-\sqrt{5})$ (A1) $= \frac{1}{4} [5.25-5] = \frac{1}{16} \qquad (A1)$
	NB statement $F(1.5) - \frac{3}{4} = \frac{1}{16}$ (OE) scores 4 marks			4 16
	Alternative:			Alternative using F (<i>x</i>):
	$\int_{q}^{1.5} \frac{1}{4} (5 - 2x) dx = \left[-\frac{1}{16} (5 - 2x)^2 \right]_{\frac{5 - \sqrt{5}}{2}}^{1.5}$ (M1) $= -\frac{1}{16} (4) - \left[-\frac{1}{16} (\sqrt{5})^2 \right] \text{ (sub) (A1)}$ $= -\frac{4}{16} + \frac{5}{16} \text{ (A1)}$ $= \frac{1}{16} \text{ (A1)}$		14	for $1 \le x \le 2$ $F(x) = \frac{1}{2} + \int_{1}^{x} \frac{1}{4} (5 - 2x) dx$ $= \frac{1}{2} + \frac{1}{4} [5x - x^{2}]_{1}^{x}$ $= \frac{1}{2} + \frac{1}{4} [(5x - x^{2}) - (5 - 1)]$ $= \frac{1}{4} (2 + 5x - x^{2} - 4)$ $= \frac{1}{4} (5x - x^{2} - 2) \text{ (seen or used) (M1)}$ $F(1.5) = \frac{1}{4} (7.5 - 2.25 - 2) = \frac{3.25}{4}$ $= 0.8125 = \frac{13}{16} \text{ (A1)}$ $F(q) = \frac{1}{16} (50 - 10\sqrt{5} - (25 - 10\sqrt{5} + 5) - 8)$ $= \frac{12}{16} \text{ OE} \text{ (B1)}$ $P(q < X < 1.5) = \frac{13}{16} - \frac{12}{16} = \frac{1}{16} \text{ (A1)}$
	Total		14	
	TOTAL		75	

General Certificate of Education (A-level) January 2012

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.
Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B

Question	Solution	Marks	Total	Comments
1 (a)	21.05 and 21.15	B1	1	both (allow 21.049 and 21.149)
(b)	E(X) = 0 (symmetry)	B1		For $R[-a,a]$: $E(X) = 0$ iff $a = 0.05, 0.1, 0.5$ then:
	$\operatorname{Var}(X) = \frac{1}{12}(0.050.05)^2 = \frac{1}{12} \times \frac{1}{100}$	M1		$\operatorname{Var}(X) = \frac{1}{12}(aa)^2 \text{or}$
	(\cdots) $\overline{1 1} 1$			their $a = 0.049$ to 0.05 used for M1
	$\Rightarrow sd(X) = \sqrt{\frac{1}{12} \times \frac{1}{100}} = \frac{1}{20\sqrt{3}}$	A1	3	or $\frac{\sqrt{3}}{60}$ or $\sqrt{\frac{1}{1200}}$ 0.0289 (3sf) A0
(c)	$P(-0.01 \le X \le 0.03) = 0.04 \times 10$ = 0.4	B1	1	cao from correct value used $\int_{-0.01}^{0.03} 10 dx = [10x]_{-0.01}^{0.03} = 0.4$ oe
	Total		5	

MS2B (cont)

Question	Solution	Marks	Total	Comments
2(a)(i)	$H_0: \mu = 61.4$	R 1		(both)
	$\mathrm{H_1}{:}\mu \neq 61.4$	DI		
	$z_{\text{rank}} = \frac{65.0 - 61.4}{7.5}$	M1		Alternative:
	$\sqrt{16}$			$\mathbf{P}\left(\overline{X} > 65.0\right) = \mathbf{P}\left(Z > 1.92\right)$
	=1.92	A1		=1-0.97257
				= 0.02743
	$z_{crit} = \pm 1.96$	D 1		≥ 0.025 Accept H_0 Use of $t \rightarrow max(B1M1A1)$
	or (shown in / implied by diagram)	ы		Use of $t \rightarrow \max(\text{DTWTAT})$
	Accept H ₀	Adep1		dep(B1M1) but not A1B1
	To an CC at and () Ye and damage			
	(at 5% level) to suggest /show mean (age			If incorrect or no hypothesis then B0
	has) changed (from 61.4 years.)			$\Rightarrow \max(M1A1B1)$
	Moon (ago) has not alranged at 10/ level			1.e. final Adep1Edep1 not available
	(of significance)	Edep1	6	dep(Adep1)
(ii)				$z = \frac{25 - 61.4}{2} = -4.85$
	$61.4 - 3 \times 7.5 = 38.9 > 25$ \Rightarrow none under the age of 25 years			7.5
	\rightarrow hole under the age of 25 years. Very unlikely any members < 25 yrs.	B1	1	$\Rightarrow P(Z < -4.85) \approx 0$
				\Rightarrow none aged under 25 included
(b)(i)	$\sum y = 702$			
	$\overline{y} = \frac{2}{n} = \frac{752}{12} = 58.5$	B1		(s = 2.83)
	$\sum (y - \overline{y})^2 = 88.25$			$\sigma^2 = 7.35 \text{ or } \sigma = 2.71$
	$s^2 = \frac{1}{n-1} = \frac{1}{11} = 8.02$	B1		$\left(\inf_{\substack{\sigma \neq 1}} \sigma \right)$ used below
	1.70			
	$t_{crit} = \pm 1.796$	B1		Ignore signs for t_{crit}
	90% CI for μ :			If z used then max(B1B1B0M0A0)
	59.5 ± 1.70 s			
	$38.3\pm1.796\times\frac{1}{\sqrt{12}}$			$(\text{their } \overline{v}) + t \times (\text{their } s)$
	58.5 ± 1.4685	M1		$(\operatorname{then} y) \pm i_{11} \times \frac{1}{\sqrt{12}}$ OK
	= 57.03,59.97			$(\text{their }\overline{v}) + t \propto \frac{(\text{their }\sigma)}{1 + t}$
	J			$(\operatorname{uner} y) = t_{11} \wedge \sqrt{11}$
	-(57.0, 60.0)	A1	5	
	-(37.0, 00.0)		-	
(ii)	upper limit < 61.4	D14	1	Must refer to 61.4
	\rightarrow recruitment drive lowered the average age of the club membership	DIII	1	
	Total		13	

$\begin{array}{ c c c c c } \hline \textbf{Solution} & \textbf{Marks} & \textbf{Total} & \textbf{Comments} \\ \hline \textbf{3(a)(i)} & E_i; \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mp}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N} \\ & H_i \frac{mq}{N}; \frac{mq}{N} \\ & H_i \frac{mq}{N} \\ & H$	MS2B (cont				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Question	Solution	Marks	Total	Comments
(ii) $\sum_{\gamma} E_{i} = \frac{mp + mq + np + nq}{N}$ $= \frac{m(p+q)}{N} + \frac{n(p+q)}{N}$ (oe) \int $= \frac{mN}{N} + \frac{nN}{N}$ $= \frac{m(p+q) + nN}{N} + \frac{nN}{N}$ (or use of unsimplified forms) $= \frac{(p+q)(m+n)}{N} = \frac{N \times N}{N} = N$ (since $p + q = m + n = N$) (since $p + q = m + n = N$) (b) H_{0} : No association between Andy's results and wind conditions $= \frac{10}{27} - \frac{15.18}{23} = \frac{33}{50}$ $\Rightarrow 0, -E_{i} - 0.5 = 2.32$ (AG) $\frac{17.82}{27} = \frac{15.18}{23} = \frac{33}{50}$ (AG) $\frac{17.82}{27} = \frac{15.18}{23} = \frac{33}{50}$ (AG) $\frac{17.82}{27} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ (AI) $\frac{17.82}{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ (AI) (B) $\frac{17.82}{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ (AI) (B) $\frac{17.82}{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ (AI) (C) $\frac{17.82}{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ (C) $\frac{11}{2} = 0.3020 + 0.35$	3(a)(i)	$E_i: \frac{mp}{N}; \frac{mq}{N}; \frac{np}{N}; \frac{nq}{N}$	B2,1	2	B1 any one correct B2 all correct (simplified)
$ \begin{vmatrix} \frac{mN}{N} + \frac{nN}{N} \\ = m+n \\ = N \\ (since p + q = m + n = N) \\ (since p + q = m + n = N) \\ (b) H_0: No association between Andy's results and wind conditions B1 \\ E_{i}: \\ \hline 17.82 15.18 33 \\ 0.18 7.82 17 \\ 27 23 50 \\ \hline 19.18 7.82 17 \\ 27 23 50 \\ \hline 19.18 7.82 17 \\ 27 23 50 \\ \hline 19.18 7.82 17 \\ 27 23 50 \\ \hline 19.18 7.82 17 \\ 27 23 50 \\ \hline 10.18 7.82 17 \\ 27 23 50 \\ \hline 11 \\ \Rightarrow 0_{i} - E_{i} - 0.5 = 2.32 \\ M1 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ A1 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.5863 + 0.5863 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.5863 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.$	(ii)	$\sum_{i} E_{i} = \frac{mp + mq + np + nq}{N}$ $= \frac{m(p+q)}{N} + \frac{n(p+q)}{N} (oe)$	M1		$\sum_{i} E_{i} = \frac{mp + mq + np + nq}{N}$ $= \frac{m(p+q) + n(p+q)}{N}$ (or use of unsimplified forms)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		$= \frac{mN}{N} + \frac{nN}{N}$ $= m + n$	Mdep1		$=\frac{(p+q)(m+n)}{N}=\frac{N\times N}{N}=N$
(b) H_0 :No association between Andy's results and wind conditions E_i : $\frac{17.82 15.18 33}{9.18 7.82 17} \\ 27 23 50$ $\Rightarrow 0_i - E_i - 0.5 = 2.32$ M1 Attempt E's $\frac{\chi^2 = 0.3020 + 0.3546 + 0.5863 + 0.6883}{1.1} \\ \chi^2 = 0.3020 + 0.3546 + 0.5863 + 0.6883$ A1 Final column attempted awrt $\chi^2 = 0.3020 + 0.3546 + 0.5863 + 0.6883$ A1 Given the equation of the equatio		= N (since $p + q = m + n = N$)	Adep1	3	(AG)
E_i:M1Attempt E's $\frac{17.82}{9.18}$ $\frac{15.18}{7.82}$ $\frac{33}{17}$ 27 23 50 $\Rightarrow 0_i - E_i - 0.5 = 2.32$ M1Yates' correction attempted $X^2 = 0.3020 + 0.3546 + 0.5863 + 0.6883$ M1Final column attempted $x^2_{1095}(1) = 2.706$ B1correct value of χ^2 only (allow 2.71) \Rightarrow Accept H ₀ Adep1dep (B1 for H ₀) \Rightarrow Accept H ₀ Edep18(a)(ii)An example of unsimplified values derived from $a = \frac{mp}{N}$; $\Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; $d = n - \frac{mp}{N}$ (oe)13	(b)	H ₀ : No association between Andy's results and wind conditions	B1		
$ \begin{vmatrix} \Rightarrow & 0_{t} - E_{i} - 0.5 = 2.32 \\ M1 \\ X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883 \\ = 1.93 \\ \chi^{2}_{10\%}(1) = 2.706 \\ B1 \\ Adep1 \\ Adep1 \\ Adep1 \\ dep (B1 \text{ for } H_{0}) \\ No association \\ (between Andy's results and wind conditions) \\ \hline \mathbf{Total} \\ \mathbf{I3} \\ \hline \mathbf{I3} \\ (a)(ii) \\ An example of unsimplified values \\ derived from a = \frac{mp}{N}; a = p - \frac{mp}{N}; d = n - \frac{mp}{N}; c = p - \frac{mp}{N}; d = n - \frac{mp}{N} (coe) \\ \end{vmatrix}$		E_i :17.8215.18339.187.8217272350	M1		Attempt E's
$\begin{array}{ c c c c c } X^2 = 0.3020 + 0.3546 + 0.5863 + 0.6883 & M1 \\ = 1.93 & & & \\ \chi^2_{10\%}(1) = 2.706 & & & \\ B1 & & & & \\ correct value of \chi^2 only (allow 2.71) \\ \Rightarrow & & & \\ Accept H_0 & & & \\ Adep1 & & & \\ dep (B1 \text{ for } H_0) & & \\ \hline & & & \\ No \text{ association} \\ (between Andy's results and wind conditions) & & \\ \hline & & & \\ (a)(ii) & & \\ An example of unsimplified values \\ derived from a = \frac{mp}{N}; \\ & & \\ \Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; \\ & & \\ d = n - \frac{mp}{N} (ce)		$\Rightarrow 0_i - E_i - 0.5 = 2.32$	M1		Yates' correction attempted
$\chi^2_{10\%}(1) = 2.706$ B1correct value of χ^2 only (allow 2.71) \Rightarrow Accept H ₀ Adep1dep (B1 for H ₀)No association (between Andy's results and wind conditions)Edep18Appropriate conclusion dep(B1 for H ₀ ; M1 final column; $\chi^2_{10\%} = 2.706$)(a)(ii)An example of unsimplified values derived from $a = \frac{mp}{N}$; $\Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; $d = n - \frac{mp}{N}$ (ce)		$X^{2} = 0.3020 + 0.3546 + 0.5863 + 0.6883$ $= 1.93$	M1 A1		Final column attempted awrt
$\begin{array}{ c c c c c c } \Rightarrow & \operatorname{Accept} \operatorname{H}_{0} & \operatorname{Adep1} & \operatorname{dep} (\operatorname{B1} \operatorname{for} \operatorname{H}_{0}) \\ \hline & \operatorname{No association} \\ (between Andy's results and wind conditions) & \operatorname{Edep1} & 8 & \operatorname{Appropriate conclusion} \\ \hline & \operatorname{Total} & \operatorname{I3} & \\ \hline & & & &$		$\chi^2_{10\%}(1) = 2.706$	B1		correct value of χ^2 only (allow 2.71)
No association (between Andy's results and wind conditions)Edep18Appropriate conclusion dep(B1 for H_0; M1 final column; $\chi^2_{10\%} = 2.706$)Total13(a)(ii)An example of unsimplified values 		\Rightarrow Accept H_0	Adep1		dep (B1 for H_0)
Total13(a)(ii)An example of unsimplified values derived from $a = \frac{mp}{N}$: $\Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; $d = n - \frac{mp}{N}$ (oe)		No association (between Andy's results and wind conditions)	Edep1	8	Appropriate conclusion dep(B1 for H ₀ ; M1 final column; $\chi^2_{10\%} = 2.706$)
(a)(ii) An example of unsimplified values derived from $a = \frac{mp}{N}$: $\Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; $d = n - \frac{mp}{N}$ (oe)		Total		13	
	(a)(ii)	An example of unsimplified values derived from $a = \frac{mp}{N}$: $\Rightarrow b = m - \frac{mp}{N}$; $c = p - \frac{mp}{N}$; $d = n - \frac{mp}{N}$ (oe)			

MS2B (cont				
Question	Solution	Marks	Total	Comments
4(a)(i)	Poisson	B1	1	
(ii)	$E(3X-1) = 3\lambda - 1$	B1		
()	$Var(3X - 1) - 9\lambda$			
	$\operatorname{Var}(3A - 1) = 3h$	B1	2	oe (allow $3^2 \lambda$)
(iii)	$P(X = x+1) = \frac{e^{-\lambda} \times \lambda^{x+1}}{(x+1)!}$	B1		
	$P(X = x+1) = \frac{e^{-\lambda} \times \lambda^{x+1}}{(x+1)!}$			
	$= \frac{e^{-\lambda} \times \lambda^{x} \times \lambda}{(x+1)x!}$ $= \frac{\lambda}{x+1} \times \frac{e^{-\lambda} \times \lambda^{x}}{x!}$	Mdep1		dep(B1)
	$=\frac{\lambda}{x+1}\mathbf{P}(X=x)$	Adep1	3	AG
(b)(i)	$\lambda_{\rm car} = 500 / \rm hour$			
	$\lambda_{\rm coach} = 10 / \rm hour$			
	$\Rightarrow \lambda_{\text{vehicle}} = 510 / \text{hour} = 8.5 / \text{min}$	B1		for 8.5 stated / used
	$P(V \ge 10) = 1 - 0.6530$	M1		$\lambda = 10 \Rightarrow B1M0A0$
	0.6.1-	A 1	2	$B1 \Rightarrow 1 - 0.458$ or 0.542
	= 0.347	AI	3	
(ii)	$ \mu_{\rm car} = 836 / \text{hour} $ $ \mu_{\rm coach} = 22 / \text{hour} $			
	$\Rightarrow \mu_{\text{vehicle}} = 858 / \text{hour} = 14.3 / \text{min}$	B1		for 14.3 stated /used
	$P(V \le 3) = P(V = 0, 1, 2, 3)$			
	$\left[e^{-14.3}\left[1+\frac{14.3}{1}+\frac{14.3^2}{2}+\frac{14.3^3}{6}\right]\right]$	M		
	$= e^{-14.3} \times 604.91283$	MI		All 4 terms required for any $\lambda > 0$
	0.0003726 to 0.000373			M0 for use of normal approximation
	= 0.00037 (2sf)	Adep1	3	dep M1
	Total		12	

MS2B (cont)

Question	Solution	Marks	Total	Comments
5(a)				
	<i>n</i> Outcome $P(N=n)$			
	1 H 0.5 $(\frac{1}{2})$			B1 for one correct entry for $n = 1, 2, 4$
	2 TH 0.25 $(\frac{1}{4})$	B2,1		B2 for all 3 correct
	3 TTH $0.125 (\frac{1}{8})$			
	4 TTTH 0.0625 $(\frac{1}{16})$			Can be implied by correct $E(N)$
	5 TTTTA 0.0625 $(\frac{1}{16})$			
	$\mathbf{E}(N) = \begin{pmatrix} 1 \times - \\ 1 \times - \\ \end{pmatrix} + \begin{pmatrix} 2 \times - \\ 2 \times - \\ \end{pmatrix} + \begin{pmatrix} 3 \times - \\ 3 \times - \\ \end{pmatrix} +$			n=5 $-$ (11)
		MI		$\sum_{n=1}^{N} n \times P(N=n)$
	$\left(4\times\frac{1}{2}\right)+\left(5\times\frac{1}{2}\right)$			(all 5 terms attempted /seen/ implied)
	$=\frac{1}{2}+\frac{2}{4}+\frac{3}{2}+\frac{4}{12}+\frac{5}{12}=\frac{31}{12}$			
	2 4 8 16 16 16			
	$=1\frac{15}{16}$ (1.9375)	A1	4	(awfw 1.93 to 1.94)
(b)	10			
	m Outcome $P(M = m)$			
	1 H ¹ / ₄			(given)
	2 TH $\frac{3}{4} \times \frac{1}{4} = \frac{3}{16}$			(given)
	3 TTH $(\frac{3}{4})^2 \times \frac{1}{4} = \frac{9}{4}$			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\left(\frac{3}{4}\right) \times \frac{1}{4} = \frac{27}{256}$			(B1 any one correct)
	5 TITITA $\left(\frac{3}{4}\right)^4 \times 1 = \frac{81}{256}$	B3.2.1	3	(B3 all 3 correct)
		20,2,1	C	
(c)(i)	P(J,R):			
	$P(1,1) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{2}$ (co)			e g () 125
	$1(1,1) - \frac{1}{2} - \frac{1}{4} - \frac{1}{8}$ (60)	M1		attempt at any $P(n,n)$
	$P(2,2) = \frac{1}{2} \times \frac{3}{2} = \frac{3}{2}$ (oe)			
	4 16 64			
	$P(3,3) = \frac{1}{2} \times \frac{9}{64} = \frac{9}{512}$ (oe)			
	8 04 512 1 27 27			any 1 correct to 3sf
	$P(4,4) = \frac{1}{16} \times \frac{27}{256} = \frac{27}{4096}$ (oe)	A1		
	$P(5,5) = \begin{bmatrix} 1 & 81 & 81 \\ 1 & 81 & 81 \end{bmatrix}$	Δ1		all 5 correct to 3sf
	$P(5,5) = \frac{1}{16} \times \frac{256}{256} = \frac{1}{4096} $ (oe)	111		
				<u>n=5</u>
	$p = \sum_{n=5}^{n=5} P(n,n)$	1		$\sum P(n,n)$ with all 5 values attempted
		mı		<i>n</i> =1
	$\Rightarrow p = \frac{221}{1024} (0.2158)$	A1	5	(awfw 0.215 to 0.217)
(ii)	1024			(either term with their <i>n</i> used)
(11)	$= 3 \times \left(\frac{221}{1024}\right) \times \left(\frac{803}{1024}\right)$	M1		$(0$
	(1024) (1024)			
	$+ \left(\frac{221}{2} \right)^{3}$	M1		(second term with their <i>p</i> used)
	(1024)			$(0$
	$\mathbf{D}(\mathbf{V} \times 2) = \mathbf{D}(\mathbf{V} \times 2) + \mathbf{D}(\mathbf{V} \times 2)$	Mdep1		den (M1M1)
	$P(X \ge 2) = P(X = 2) + P(X = 3)$			
	= 0.120 (3dp)	A1	4	(allow 0.119; 0.12; 0.121)
	Total		16	

PMT

MS2B (cont)			
Question	Solution	Marks	Total	Comments
6(a)	- 41 7 50			
		B2,1	2	B2 for st. line from (1,0.2) to (5,0.3) B1 st. line (m > 0) from $x = 1$ to $x = 5$.
(b)	$E(X) = \frac{1}{40} \int_{1}^{5} x(x+7) dx$	M1		Ignore limits
	$= \frac{1}{40} \left(\frac{x^3}{3} + \frac{7x^2}{2} \right)_1^5$ $= \frac{1}{40} \left(\frac{125}{2} + \frac{175}{2} - \frac{1}{2} - \frac{7}{2} \right)$	A1		Ignore limits
	$= 3\frac{2}{15}$	A1	3	cao (accept 3.133 or $\frac{47}{15}$ oe <i>exact</i>)
(c)	$F(x) = \int_{1}^{x} \frac{1}{40} (x+7) dx$	M1		$\mathbf{F}(x) = \int \left(\frac{x}{40} + \frac{7}{40}\right) dx$
	$=\frac{1}{40}\left[\frac{x^2}{2}+7x\right]_{1}^{x}$	A1		$= \frac{x^2}{80} + \frac{7x}{40} + c \implies (M1A1)$
	$=\frac{1}{80}\left(x^{2}+14x-1-14\right)$			F(1) = 0 \Rightarrow c = $-\frac{1}{80} - \frac{1}{40} = -\frac{15}{80}$ or [use of F(5) = 1]
	$=\frac{1}{80}(x^2+14x-15)$	Adep1		$\Rightarrow \mathbf{F}(x) = \frac{1}{80} \left(x^2 + 14x - 15 \right)$
	$=\frac{1}{80}(x+15)(x-1)$	Adep1	4	$F(x) = \frac{1}{80}(x+15)(x-1) $ (AG)
(d)(i)	$P(2.5 \le X \le 4.5) = F(4.5) - F(2.5)$ $= \frac{1}{80} (19.5 \times 3.5 - 17.5 \times 1.5)$	M1		Trapezium Rule $\frac{1}{2} \left(\frac{23}{80} + \frac{19}{80} \right) \times 2$
	$=\frac{42}{80}=\frac{21}{40} (0.525)$	A1	2	$=\frac{42}{80}=\frac{21}{40}$
(ii)	$\mathbf{F}(m) = \frac{1}{2}$	B1		$\int_{1}^{m} \frac{1}{40} (x+7) dx = 0.5 (B1)$
	$\Rightarrow \frac{1}{80} \left(m^2 + 14m - 15 \right) = \frac{1}{2}$	M1		Correct equation formed
	$(\times 80) \implies m^2 + 14m - 15 = 40$ $m^2 + 14m - 55 = 0$	Adep1	3	AG
(e)	$m = \frac{-14 \pm \sqrt{196 + 220}}{2} = \frac{-14 \pm 20.396}{2}$	M1		Correct attempt at solving quadratic (by formula, oe).
	$m = \frac{-14 + 20.396}{2} \text{ (since m > 1)}$ m = 3.198 (3dp)	A1	2	сао
	Total		16	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MS2B				
Q	Solution	Marks	Total	Comments
1(a)	$\overline{x} = \frac{\sum x}{n} = \frac{546}{15} = \frac{182}{5} = 36.4$	B1		oe
	$s^{2} = \frac{\sum (x - \overline{x})^{2}}{n - 1} = \frac{1407.6}{14} = 100.54$ (or $s = 10.03$)	B1		$\sigma^2 = 93.84$ or $\sigma = 9.687$ iff $\sigma/\sqrt{14}$ used below
	$t_{crit} = \pm 2.624$	B1		ignore signs for t_{crit} (allow $t = 2.62$) (if z used then max (B1B1B0 M0A0A0)
	98% CI for μ : 36.4 ± 2.624 × $\frac{s}{\sqrt{15}}$ (29.6, 43.2) 36.4 ± 6.8	M1 A1ft		their $\overline{x} \pm t_{14} \times \frac{\text{their } s}{\sqrt{15}}$ or their $\overline{x} \pm t_{14} \times \frac{\text{their } \sigma}{\sqrt{14}}$ (allow any of the following for t_{14} :
	20 (12 2	. 1	<i>.</i>	1.345; 1.761; 2.145; 2.624; 2.977)
(b)	$= 29.6, 43.2$ $40.0 \in C.I.$ $\Rightarrow no change$	Al E1ft E1ft	6 2	cao Must refer to 40 (dep M1) Dep on previous mark
			8	
2(a)	$H_0: \mu = 4.0$			
	$H_1: \mu > 4.0$	B1		(both)
	$z_{calc} = \frac{4.2 - 4}{1.1 / \sqrt{40}}$	M1		Alternative: $P(\bar{X} > 4.2) = P(Z > 1.15)$ M1A1
	=1.15	A1		awrt
	<i>z_{crit}</i> =1.6449	B1		=1-0.87493 = 0.125 B1
				$0.125 > 0.05 \Rightarrow \text{ accept H}_0 \text{ Adep1}$
	Accept H_0 [or Reject H_1]	A1		Dep on B1M1B1
	Insufficient evidence at 5% level to support Julian's claim	E1	6	Dep on previous mark
(b)	Type II error. Accepted H_0 when H_0 was false (oe)	B1ft E1	2	Follow through on conclusion in (a) Dep on previous mark
				If Reject H_0 in (a) then: No error (B1ft) Rejected H_0 when H_0 was false (oe) (E1)
	Total		8	

MS2B				
Q	Solution	Marks	Total	Comments
3 (a)	for $-5 \le x \le 15$			
	$f(x) = \frac{d}{dx}F(x) = \frac{d}{dx}\left(\frac{x+5}{20}\right) = \frac{1}{20}$	B1	1	AG
(b)(i)	$P(X \ge 7) = 1 - F(7)$			Alternative:
	$=1-\frac{12}{20}$			Use of $f(x) = \frac{1}{20}$ or graph \Rightarrow
	$=\frac{2}{5} \text{ or } \left[\frac{8}{20}; \frac{4}{10}; 0.4\right]$	B1	1	$P(X \ge 7) = \frac{1}{20} \times (15 - 7) = \frac{2}{5}$ (oe)
(ii)	$P(X \neq 7) = 1$	B1	1	cao
(iii)	$E(X) = \frac{1}{2}(-5+15) = 5$	B1	1	Alternative:
				$E(X) = \int_{-5}^{15} \frac{x}{20} dx = \left[\frac{x^2}{40}\right]_{-5}^{15}$
				$=\frac{1}{40}(225-25)$
				$=\frac{1}{40}\times 200$
				= 5 B1 (cao)
(iv)	$E(3X^{2}) = \int_{-5}^{15} \frac{3x^{2}}{20} dx \left\{ \text{ (ignore limits)} \right\}$	M1		
	$\left[\frac{x^3}{20}\right]_{-5}^{15}$			
	$\frac{1}{20}(3375+125)$	A1		correct limits seen / used
	$168\frac{-}{4}+6\frac{-}{4}$			
	175	Δ 1	2	(aaa) (allow 174 $\dot{9}$)
	Alternative:		5	
	$\operatorname{Var}(X) = \frac{1}{12} (15 - 5)^2 = \frac{400}{12} (0e)$	(B1)		$\mathrm{E}(3X^2) = 3\mathrm{E}(X^2)$
	$\operatorname{E}(3X^{2}) = 3 \times \left[\frac{400}{12} + 5^{2}\right]$	(M1)		$= 3 \times \left[\left\{ \text{their Var}(X) > 0 \right\} + \left\{ \text{their E}(X) \right\}^2 \right] used$
				$(\Rightarrow M1)$
	=175	(A1)		
	Total		7	

MS2B				
Q	Solution	Marks	Total	Comments
4(a)	r 1 2 3 4 5 p .5 .24 .144 .0864 0.0296 $0.4 \times 0.6 = 0.24$			
	$0.24 \times 0.6 = 0.144$ $0.144 \times 0.6 = 0.0864$	B2,1	2	B1 for any 1 correct (unsimplified) (B1) B2 all correct and simplified
(b)	P(fewer than 3 bedrooms are rented)			Alternative:
	$= P(R = 1, 2) \Rightarrow$ P(fewer than 3 bedrooms not rented) = 1 - P(R = 1, 2) 1. P(1 or 2 records one rented)	M1		P(fewer than 3 not rented) = P(0, 1 or 2 not rented) = P(5, 4 or 3 are rented) = P(R = 3, 4, 5) M1 $p = 0.4 \times 0.6^2 + 0.4 \times 0.6^3 + 0.0296$
	= 1 - P(1 or 2 rooms are rented) = 1 - (0.5 + 0.24) [their 0 < p(2) ≤ 0.4704 value from table used] = 1 - 0.74	m1		= 0.144 + 0.0864 + 0.0296 m1 [or their $p(3) + p(4) \le 0.4704$ value from table used]
	= 0.26	A1	3	= 0.26 (cao) A1
(c)(i)	$E(R) = 0.5 \times 1 + 0.4 \times 0.6 \times 2$ + 0.4 \times 0.6 ² \times 3 + 0.4 \times 0.6 ³ \times 4 + 0.0296 \times 5 = 0.5 \times 1 + 0.24 \times 2 + 0.144 \times 3 + 0.0864 \times 4 + 0.0296 \times 5	M1		$\sum_{i=1}^{5} r_i \times P(R = r_i) \text{ from their table}$
	$= 0.5 + 0.48 + 0.432 + 0.3456 + 0.148$ $\left[= \frac{1}{2} + \frac{12}{25} + \frac{54}{125} + \frac{216}{625} + \frac{37}{250} \right]$	Δ1	2	(0.5+1.2576+0.148) [awfw 1.9 to 1.91] $\left[1\frac{566}{2}\right]$
(ii)	$\therefore E(R) = 1.9056$ $E(R^{2}) = 0.5 \times 1^{2} + 0.4 \times 0.6 \times 2^{2}$ $+ 0.4 \times 0.6^{2} \times 3^{2} + 0.4 \times 0.6^{3} \times 4^{2}$ $+ 0.0206 \times 5^{2}$		~	$\begin{bmatrix} 625 \end{bmatrix}$ $\begin{bmatrix} 0.5 + 0.96 + 1.296 + 1.3824 + 0.74 \end{bmatrix}$
	$+0.0296 \times 5^{-2}$ E(R^{2}) = 4.8784	B1		AG
	$\operatorname{Var}(R) = 4.8784 - 1.9056^{2}$ (= 1.24708864)	M1		4.8784 – their $E^{2}(R)$
	=1.25 (3sf)	A1	3	(awfw 1.23 to 1.25)

1V102D				
Q	Solution	Marks	Total	Comments
(d)	E(M) = 1250E(R) - 282 = 1250 \times 1.9056 - 282 = 2100	B1		cao
	$\operatorname{Var}(M) = 1250^2 \times \left[4.8784 - 1.9056^2\right]$	M1		$1250^2 \times \text{their Var}(R) > 0 \text{ in (c)(ii)}$ (1 948 473 to 1 953 125)
	$sd(M) = 1250 \times \sqrt{1.24708864}$			$sd(M) = \sqrt{1948437} = 1395.9$ $(\sqrt{1953125} = 1397.5)$
	=1395.91	A1	3	(awfw 1395 to 1400)
	Total		13	

MS2B

MS2B

	Solution	Marks	Total	Comments
5(a)(i)	$\mathbf{P}(X \ge 9) = 1 - \mathbf{P}(X \le 8)$			1 - 0.6530 = 0.347 (B1)
	=1-0.5231			
	= 0.4769	B2,1	2	awtw 0.476 and 0.477
(ii)	$P(5 < X < 10) = P(X \le 9) - P(X \le 5)$			
	= 0.653 - 0.1496			
	= 0.5034	B3,2,1	3	awfw 0.503 to 0.504
				0.7634 - 0.1496 = 0.613 to 0.614 (B2)
				0.6530 - 0.2562 = 0.397 to 0.398 (B2)
				$\alpha - 0.1496 \text{ or } 0.653 - \alpha \text{ (B1) iff } 0$
(b)	$P(Y < 2) = P(Y \le 1) = P(Y = 0 \text{ or } Y = 1)$			0.8 to 0.81 (B1)
	$= e^{-1.5} + e^{-1.5} \times 1.5$	M1		(both)
	[0.2231 + 0.3347]			
	= 0.55/8254	. 1	2	owfw 0.557 to 0.56
	= 0.558	AI	2	awiw 0.557 to 0.56
(c)(i)	$\lambda = 8.5 + 1.5 = 10$	B1	1	Allow $P(10)$ or $Po(10)$
(ii)	$P(T > 16) = 1 - P(T \le 16)$			
	=1-0.9730	M1		
	= 0.027	A1	2	
(iii)	$p = {}^{3}C_{2}0.027^{2} \times 0.973$	M1		for either term correct
	$+0.027^{3}$	M1		for addition of the two correct terms
	= 0.002128 + 0.00001968 = 0.0021[4 dp]			
	_ 0.0021 [4 up]	A1	3	0.0021 or 0.0022 [iff M1M1 (+ 4dp)]
	$p = 1 - P(X \le 1)$			
	P(X=0) + P(X=1)			
	$= 0.973^3 + 3 \times 0.973^2 \times 0.027$	(M1)		for either term correct
	= 0.921167 + 0.076685			
	p = 1 - 0.99785	(M1)		for 1 – [sum of two correct terms]
	= 0.0021	(A1)		0.0021 or 0.0022 [iff M1M1 (+ 4dp)]
	Total		13	

MS2B				
Q	Solution	Marks	Total	Comments
6(a)	H ₀ : No association between A level grade			
	and class of degree	D 1		At least H correct
	H ₁ : Association between A level grade	DI		At least Π_0 context
	and class of degree			
	O_i E_i			
	$\frac{1}{20}$ 11.6			
	9 17.4			
	36 36.4			
	55 54.6	M1		For E_i 's attempted
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$\frac{40}{2}$ 4			
	8 6			
	200 200			
	Combine Class 2(ii) and 3	M1		For combining attempted
	20 11.6 8.4 6.0827			
	9 17.4 -8.4 4.0552			
	36 36.4 -0.4 0.0044	M1		For final column attempted
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	56 48 8 1.3333			
	200 200 0 13.47	A1		(awrt 13.5)
	<i>v</i> = 2	B1		$[v = 3 \text{ with } \chi^2 = 11.345 \text{ (B0B1ft)}]$
	$\chi^2_{1\%}(2) = 9.210$	B1		
	Reject H ₀	A1		Dep on B1 M1M1M1 B1B1, not A1
	Fiona's belief justified	E1	9	Dep on B1 M1M1M1 B1B1, not A1
(b)	Fewer than expected gained a Class 1 degree having gained grade B in A-level Mathematics.	E1		
	More than expected gained a Class 2(ii) degree having gained grade B in A-level Mathematics.	E1	2	correct comments (see below)
	1 2(i) 2(ii) 3 comb			A: fewer than expected
	9 55 48 8 56			B: as expected
	17.6 54.6 42 6 48			C: more than expected
	A B C D E			D: more or similar than expected E: more than expected
				*
	Total		11	

MS2B		1		r
Q	Solution	Marks	Total	Comments
7(a)		B2,1	2	Straight line from $(1, 0.5)$ to $(3, \frac{1}{6})$. Horizontal straight line from $(3, \frac{1}{6})$ to $(5, \frac{1}{6})$.
(b)	$E(X) = \frac{1}{6} \int_{1}^{3} x(4-x) dx + \frac{1}{6} \int_{3}^{5} x dx$	M1		ignore limits (both parts attempted)
	$= \frac{1}{6} \left[2x^2 - \frac{x^3}{3} \right]_1^3 + \frac{1}{6} \left[\frac{x^2}{2} \right]_3^5$ $= \frac{1}{6} \left[(18 - 9) - (2 - \frac{1}{2}) \right] + \frac{1}{6} \left[\frac{25}{2} - \frac{9}{2} \right]$	A1		ignore limits (both correct)
	$= \frac{1}{6} \begin{bmatrix} 7\frac{1}{3} + 8 \end{bmatrix}$	m1		use of correct limits. dep on M1A1
	$=2\frac{5}{9}$	A1	4	(AG)
(c)(i)	$P(X > 2.5) = \frac{1}{3} + \frac{1}{2} \times \left(0.25 + \frac{1}{6}\right) \times \frac{1}{2}$	M1		Or $1 - \int_{1}^{2.5} \frac{1}{6} (4 - x) dx = 1 - \left[\frac{1}{6} \left(4x - \frac{x^2}{2} \right) \right]_{1}^{2.5}$
/ ••	$=\frac{7}{16}$	A1	2	cao (0.4375)
(ii)	$P(1.5 < X < 4.5) = \frac{1}{2} \times \left(\frac{5}{12} + \frac{1}{6}\right) \times 1.5$ $+ (4.5 - 3) \times \frac{1}{6}$	M1		Or $\int_{1.5}^{3} \frac{1}{6} (4-x) dx + \int_{3}^{4.5} \frac{1}{6} dx$
	$=\frac{7}{16}+\frac{1}{4}$	A1		
(***)	$=\frac{11}{16}$	A1	3	cao (= $\frac{11}{16}$ or 0.6875)
	P(X > 2.5 and 1.5 < X < 4.5) = P(2.5 < X < 4.5)			$\int_{2.5}^{3} \frac{1}{6} (4-x) dx = \left[\frac{1}{6} \left(4x - \frac{x^2}{2} \right) \right]_{2.5}^{5} = \frac{5}{48}$
	$= \frac{1}{2} \times \left(0.25 + \frac{1}{6}\right) \times 0.5 + \frac{1}{4}$ $= \frac{5}{6} + \frac{1}{4}$	M1		
	$48 \cdot 4$ = $\frac{17}{48}$	A1	2	cao (0.3541Ġ)
(iv)	$P(X > 2.5 1.5 < X < 4.5) = \frac{\frac{17}{48}}{\frac{11}{16}}$	M1		their $\frac{(iii)}{(ii)}$ iff $0 < p's < 1$
	$=\frac{17}{33}$	A1	2	cao (allow 0.51)

MS2B				
Q	Solution	Marks	Total	Comments
7(c)	Alternative Solution			
(i)	$F(x) = \begin{cases} 0 & x < 1 \\ \frac{1}{12}(x-1)(7-x) & 1 \le x < 3 \\ \frac{1}{6}(x+1) & 3 \le x < 5 \\ 1 & x \ge 5 \end{cases}$ $P(X > 2.5) = 1 - F(2.5)$ $= 1 - \frac{1}{12}(2.5-1)(7-2.5)$ $= 1 - \frac{1}{12} \times 1.5 \times 4.5$	(M1)		
	=1-0.5625			
	$= 0.4375$ or $\frac{7}{16}$	(A1)		cao
(ii)	P(1.5 < X < 4.5) = F(4.5) - F(1.5)			
	$=\frac{1}{6}(4.5+1)-\frac{1}{12}(1.5-1)(7-1.5)$	(M1)		
	$=\frac{11}{12}-\frac{11}{48}$	(A1)		
	$=\frac{11}{16}$ or 0.6875	(A1)		cao
(iii)	P(X > 2.5 and 1.5 < X < 4.5)			
	= P(2.5 < X < 4.5) = F(4.5) - F(2.5)			
	$=\frac{11}{12}-\frac{9}{16}$	(M1)		
	$=\frac{17}{48}$	(A1)		cao
(iv)	P(X > 2.5 1.5 < X < 4.5)			
	$= \frac{F(4.5) - F(2.5)}{F(4.5) - F(1.5)} \text{ or } \frac{\text{their (iii)}}{\text{their (ii)}}$ $= \frac{\frac{17}{48}}{\frac{11}{16}}$	(M1)		
	$=\frac{17}{33}$ or (allow 0.51)	(A1)		cao
	Total		15	
	TOTAL		75	
L		1		I

Version

General Certificate of Education (A-level) January 2013

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Μ	MS2B									
Q	Solution	Marks	Total	Comments						
1 (a)	Sample mean $= 53.06, s = 1.140$	B1		Both. For <i>s</i> AWRT 1.14						
	$t_5 = 2.571$	B1		AWRT 2.57						
	Sample mean $\pm t \times s/\sqrt{6}$	M1		For √6						
		m1		Rest of formula. Allow $t_5 = 2.01$ to						
				2.02, or $t_6 = 2.45$						
	$(53.06 \pm 1.20) = (51.86, 54.26)$	A1		Either form ± 0.01 in total.						
			5							
(b)	Sample mean is lower than last year's mean so claim may be true. 53.41 lies within c.i. so not certain that mean time is better. Performance in competition does not depend on mean time. Times seem to be improving.	E2	2	E1 each for sensible comments either supporting or against statement up to a maximum of 2. Comment must be uncertain.						
		Total	7							

Q	Solution	Marks	Total	Comments
2 (a)	Expected values F T S D <3 8.736 34.944 24.192 16.128 >3 4.264 17.056 11.808 7.872	M1 A1		Any two correct to 2 d.p. All correct, here or below, to 2 d.p.
	One expected value for Flat < 5 So combine first two columns to give Expected values	E1		Must be expected value, applied to this case, not just general statement.
	F+T S D <3 43.68 24.192 16.128 >3 21.32 11.808 7.872	B1		For combining first two E columns, at least 1 correct.
	H_0 . No association between property type and time to sell. H_1 : Association between property type and time to sell.	B1		If "independent" used then must be correct way round
	$\begin{array}{ c c c c c c c }\hline O_i & E_i & (O_i - E_i)^2 / E_i \\\hline 38 & 43.68 & 0.7386 \\\hline 27 & 21.32 & 1.5132 \\\hline 28 & 24.192 & 0.5994 \\\hline 0 & 0 & 1.2201 \\\hline \end{array}$	M1		For attempt at $(O_i - E_i)^2 / E_i$
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 B1		$4.7 < X^2 < 4.8$
	C.V. of χ^2 for 2 d.f. = 4.605	B1		10.597 seen AWFW 4.60 to 4.61
	4.74 > 4.605 so reject H ₀ significant evidence of an association between property type and time to sell.	A1	10	Context conclusion. Dep. on B1 for H_0 , A1 for χ^2 and B1 for c.v.
(b)(i)	More in total than any other type so likely to have biggest effect	E1	10	Or similar referring to large number
(ii)	Far away from expected values	E1	2	Or opposite pattern to other three
		Total	12	

If Flats and Detached combined:					
Expected values					
	F+D	Т	S		
<3	24.864	34.944	24.192	B1	For combined F and D
>3	12.136	17.056	11.808	DI	Tor comonica F and D
6	$D_i = E_i$	$(O_i - I_i)$	$(E_i)^2/E_i$	M1	For attempt at $(O_i - E_i)^2 / E_i$
2	2 24.86	54 0.3	.3299		
3	4 34.94	14 0.0	255		
2	8 24.19	0.5	994	40	
1	5 12.13	36 0.6	759	AU	
1	8 17.05	56 0.0	522		
8	3 11.80	08 1.2	281		
	X^2	2.9	110		
Acce	Accept H ₀		A0	Max of 8 marks	

[Q	Solution	Marks	Total	Comments
	3 (a)(i)	$e^{-1.5} \times 1.5^3/3!$	M1		
		= 0.126	A1		0.125 to 0.126
				2	
	(ii)	Using Po(1), $P(X > 1) = 1 - P(X \le 1)$	M1		
		= 1 - 0.7358 = 0.264	A1		SC Award M1 only if obtain 0.0902
				•	using Po(0.5)
	(:::)	Washdaya $\mathbf{P}_{\alpha}(7.5)$ washand $\mathbf{P}_{\alpha}(1)$	M1	2	Weekdeve $= 7.5$
	(111)	Total $Po(8.5)$ weekend $Po(1)$			weekdays – 7.5
		P(Total < 10) = P(Total < 9)	ml		Applied (0.7764_0.7166_0.6530
			1111		are evidence)
		= 0.653	A1		
				4	
	(b)	Using Total Po from (a)(iii)			M1 using their total providing
		P(>15) = 0.0138, P(>16) = 0.0066	M1		supporting probabilities seen
					OE use of $P(Total \le 15 \& 16)$
		So needs 16 tubes	A1	-	CAO Answer alone scores B2
				2	
	(c)	Average rate of failure unlikely to be			One most for any consider
		Very little use of lights over this	E1		comment
		period			
		Perrodi		1	
				-	
			Total	11	

Q	Solution	Marks	Total	Comments
4(a)	0 3 4	B1 B1 B1		Curve + rectangle Some indication of <i>x</i> values 9 <i>k</i> or 0.5 indicated for vertical height
(b)	Attempt to integrate kx^2 between 0 & 3	M1	3	Show $\underline{kx^3}$
	Obtain 9k Area under rectangle = 9k $9k + 9k = 1$ so $k = \frac{1}{18}$	A1 B1 B1		3 For $9k + 9k = 1$. AG
(c)(i)	3	B1	4	
(ii)	Attempt to integrate kx^2 between 0 &	M1		
	$Q_1 \text{ put} = 0.25$ $(Q_1)^3 = 0.25$	A1		
	$Q_1 = 2.38$	A1		AWRT or any equivalent exact form $\sqrt[3]{13} 5 = \sqrt[3]{(3)/2} = \sqrt[3]{(3)/4}$
			4	10111 (15.5 - 7(12) - 72(14))
		Total	11	

MS2B	(cont)				
	Q	Solution	Marks	Total	Comments
	5 (a)	Mean = $0 \times 0.1 + 1 \times 0.35$	M1		AG
		= 1.85			
		$E(X^2) = 0^2 \times 0.1 + 1^2 \times 0.35 \dots$	M1		Full method including -1.85^2
		$= 4.75$ Var(X) $= 4.75 - 1.85^2$	A1		For $E(X^2) = 4.75$
		= 1.3275	A1		For final answer AWRT 1.33
				4	
	(b)(i)	T = c + nX	B1		
				1	
	(ii)	$\mathbf{E}(c+nX) = c + n\mathbf{E}(X)$	M1		Getting at least as far as $c + E(nX)$
		= c + 1.85n	A1		CAO
		$\operatorname{Var}(c + nX) = \operatorname{Var}(c) + \operatorname{Var}(nX)$	M1		Getting at least as far as
		2 ((0+) Var (nx)
		$= 0 + n^2 \operatorname{var}(X) = 1.3275n^2$	A1F	_	FT their $Var(X)$ if $0 < Var(X) < 4$
				4	
			Total	9	

Q	Solution	Marks	Total	Comments
6(a)	Putting $t^3 = 0.9$	M1		
	216			
	t = 5.793	A1		5.79 to 5.80
	41 days.	A1		Accept 40 days in this context
			3	2
(b)	Attempt to differentiate $F(t)$	M1		ct^2 seen
	$\mathbf{f}(t) = \underline{1}t^2 \qquad 0 \le t \le 6$	A1		Condone domain missing here
	72			
	= 0 otherwise	Al	•	For complete function
		N (1	3	
(c)	Attempt to integrate $tf(t)$ from 0 to 6	MI		Using their $f(t)$ from (b) ct seen
	E(1) = 4.5	AI M1		$\mathbf{U} = \left\{ \mathbf{u} : \mathbf{u} \in \mathcal{U} \right\} = \left\{ \mathbf{u} : \mathbf{u} \in \mathcal{U} \right\}$
	Attempt to integrate $\Gamma(t)$ from 0 to 6			Using their $I(t)$ from (b) ct^2 seen
	E(T) = 21.0 $V_{ex}(T) = E(T^2) = E(T)^2$	AI m1		Applied in this case Denondent on
	$\operatorname{Var}(I) = \operatorname{E}(I) - \operatorname{E}(I)$	mı		Applied in this case. Dependent on both M1
	-21.6 $4.5^2 - 1.25$	Δ 1		
	-21.0-4.5 - 1.55	AI	6	
(d)	$S d = \sqrt{1.35} = 1.162$	M1	U	For λ (their Ver) $0 < Ver(T) < 0$
(u)	Use of $F(5.662)$	m1		For V (then V at $) = V$ at $(T) > 9$ For E (their r $d + their E(T))$
	030 011 (5.002)	1111		For $\Gamma(\text{men S.u.} + \text{men E}(T))$
	$1-5.662^{3}$	m1		
	216			
	= 0.160	A1		AWFW 0.159 to 0.161
			4	
		Total	16	

MS2B - AQA GCE Mark Scheme 2013 January Series

MS2B_(cont)

2B (cont)				
Q	Solution	Marks	Total	Comments
7(a)	$H_0: \mu_y = 20$ $\mu_x = 3020$ $H_1: \mu_y \neq 20$ $\mu_x \neq 3020$	B1		Both
	$\overline{9} = 18.47$ $\overline{x} = 3018.47$ $\mathbf{s} = 8.00$	B1 B1		<i>x</i> or <i>y</i> .
	$z = (18.47 - 20)/(\underline{8})$ o.e. for x $\sqrt{100}$	M1 m1		$\sqrt{100}$ rest of formula for z (either way round in numerator)
	= -1.9125	A1		AWFW –1.93 to –1.91.
	c.v. = ± 1.96 (or ± 1.98 from t_{99})	B1		Sign consistent with z value.
	So test statistic not in critical region. Accept H_0 , no significant evidence that mean has changed.	A1		Comparison not just with opposite C.V. Mention of water not necessary. Dep on B1 for $H_0 \& H_1$, A1 and B1 for c.v.
			8	
(b)	No error if (a) is "Accept H_0 " Type I if (a) is "Reject H_0 "	B1F	1	MUST FOLLOW THROUGH
	Alternatives:			
	$(3018.47 - 3020)/(\underline{8})$ $\sqrt{100}$ for z			
	p value is 0.0558 and must be compared with 0.05			
	Critical values for 9 are 18.43 or 18.44 and 21.56 or 21.57			
		Total	9	
	TOTAL		75	

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MS2B

(Specification 6360)

Statistics 2B

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

0	Solution	Marks	Total	Comments
1(a)	$\overline{x} = 948$ and $s^2 = 4817.25$	B1		Both; AWRT 4820 ($s = 69.406$)
	$t_8 = 2.896$	B1		AWRT 2.90
	C.I. = $948 \pm 2.896 \times \sqrt{\frac{4817.25}{1000000000000000000000000000000000000$	M1		For division by $\sqrt{9}$
	γ 9	ml		For rest of expression, must be t_8 or $t_9 (= 2.821)$
	= 948 ± 67.0 = (881, 1015)	A1	5	Either form AWRT \pm 67 Accept 1010 or 1020 as upper limit
(b)(i)	$(927 + 1063) \div 2 = 995$	B1	1	CAO
(ii)	Dependent on partial overlap			
	Because of the overlap by the confidence intervals	E1		
	no definite conclusion is possible	Edep1	2	Accept "No evidence"
SC	Reference to evidence provided by the mean or the limits being lower 'suggesting' or 'providing evidence' or 'supporting' weight reduction scores 1	(E1)		The statement must be not definite. Anything definite, eg. 'proves that' or 'shows that' scores 0
	Total		8	

Q	Solution	Marks	Total	Comments
2 (a)	$\left[\begin{array}{c} 0 \\ \end{array} \right] = \left[\left(\left[0 \\ \end{array} \right] + \left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \right] \left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \left[\left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \right] \left[\left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \right] \left[\left[\left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \right] \right] \left[\left[\left[\left[\left[\left[\left[\left[0 \\ \end{array} \right] \right] \right] \right] \right] \left[$	M1		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	IVI I		<i>E</i> attempted (at least two correct to 1 d.p.)
	14 8.8 2.5102	M1		Yates' correction attempted; at least one
	130 124.8 0.1770			correct value in final column
	26 31.2 0.7080	M1		γ^2 attempted
	χ 4.0228			×
		A1		AWFW 4.02 to 4.03
	H_0 : No association between method of			
	receiving information and outcome			At least one correct
	H · Association between method of	B1		If "independent" used it must be the
	receiving information and outcome			right way round
	$CV = 6^{-2}$ for 1.16 - 2.94/(1)	D1		
	$\nabla v \text{ of } \chi \text{ for } 1 \text{ dI} = 3.84(1)$	BI		
	4.02 > 3.841 so reject H ₀			
	There is significant evidence of an	Δ 1		Dep on A1 and B1 for CV
	information and outcome	AI		Dep on AT and DT for CV
				D
	Applications higher than expected for telephone calls, so council's belief	Adep1	8	Dep on previous A1
	seems to be true		0	Context conclusion about council's belief,
				referring to higher than expected for
				telephone
	Alternative if Yates' not used			
	O_i E_i $(O_i - E_i)^2 / E_i$			Loses M1 for Yates' and A1 for final γ^2
	30 35.2 0.7682			value but can score all the other 6 marks
	<u>14 8.8 3.0727</u>			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			Final 2 A1 marks dep on 4.92 to 4.93
	χ^2 4.9243			and B1 for CV
(b)	Type I error was made because	E1		
	H_0 has been rejected (when it was true)	Edep		Dep on previous E1
SC	If ' H_0 accepted' when			
	their χ^2 less than their CV			
	No error was made because	(E1)	n	Den on provious (E1)
	Total	(Eucp1)	<u> </u>	Dep on previous (E1)

0	Solution	Marks	Total	Comments
3(a)(i)	Just catches a tram	E1		Must refer to the 0 in some way to score
		54		the E1
	= 2 (+ 0) + 20 + 5 = 27	B1		but can score B1 for $2 + 20 + 5 = 27$
				2 + 20 + 3 = 27
(ii)	b = 37	B1	3	
			-	
(b)	$\mathrm{E}(T)=32$	B1		
	V_{1} (T) $10^{2}/12$			
	$Var(I) = 10^{-7}/12$ - 100/12 - 25/3 - 8 ¹ / 8.33	B 1	2	Any form
	-100/12 - 25/5 - 8/3 - 8.55	DI	2	Any form
(c)	(35 - 27) = 8	M1		Or by integration from 27 to 35
	$\times 0.1 = 0.8$	A1	2	
	Total		7	
4(a)(i)	$e^{-3.5} \times 3.5^4$	M1		
	4!	A 1	2	AWRT 0.190 A server culturante D2
	= 0.189	AI	2	AWR1 0.189 Answer only gets B2
(ii)	Using or stating Po(0.5)	B1		An answer of 0 0144, 0 3935, 0 6065
(11)		D 1		0.9098 or 0.9856 implies award of B1
				but no further marks
	$P(\geq 2) = 1 - P(\leq 1)$	M1		
	or $= 1 - 0.9098$			
	= 0.0902	A1	3	Accept 0.09
	0.03.02		5	
(iii)	Using Po(14)	B1		Sight of 0.1094, 0.1757, 0.9235, 0.9521
	P(z, 10) = P(z, 10) = 0.00025 = 0.1757	2.01		A11 0.0750 0.1105
	$P(\le 19) - P(\le 10) = 0.9235 - 0.1/57$	MI		Allow $0.8/52 - 0.1185$ or $0.9573 - 0.2517$ for M1
				0.3373 - 0.2317 101 WH
	= 0.7478	A1	3	AWFW 0.747 to 0.748
(b)	GRBs/explosions/events/etc will be			
	random and/or independent	E1	1	For any valid point
	GRBs/etc short in comparison to		1	
	observation period (non-overlapping)			
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)(i)	$1 - (\frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6})$	M1		OE
	$= \frac{1}{20} = 0.05$	A1	2	AG
(ii)	$E(X) = 1 \times \frac{1}{3} + 2 \times \frac{1}{4} + 3 \times \frac{1}{5} + 4 \times \frac{1}{6} + 5 \times \frac{1}{20} = 2.35$	M1 A1	2	At least 2 terms OE: give B2 for only 2.35 seen
(iii)	$E(X^{2}) = \frac{1 \times \frac{1}{3} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} + 16 \times \frac{1}{6} + 25 \times \frac{1}{20}}{(= 7.05)}$	M1		All 5 terms $E(X^2) = 7.05$ with no working scores M0 Correct working but labelled Var(X) and then no more done also scores M0
	$Var(X) = E(X^2) - E(X)^2$	m1		Applied to this problem
	= 1.5275	A1	3	AG
(iv)	$ \begin{array}{l} 1 - \binom{1}{3} + \frac{1}{4} \text{or} \binom{1}{5} + \frac{1}{6} + \frac{1}{20} \\ = \frac{5}{12} \text{or} 0.417 \end{array} $	M1 A1	2	AWRT Accept answer only for B2
(b)	'2.35' × 100 − 50 = 185	M1 A1F		Their value of mean FT from (a)(ii) Give B2 for only 185 seen
	$100^2 \times 1.5275$ or $100 \times \sqrt{1.5275}$	M1		
	$SD = \sqrt{15275} = 5\sqrt{611} = 124$	A1	4	AWFW 123.5 to 124 or $5\sqrt{611}$ Give B2 for only 123.5 to 124 or $5\sqrt{611}$ seen
	Total		13	

Q	Solution	Marks	Total	Comments
6(a)	H ₀ : $\mu = 175$			Both; accept H ₀ : $\mu \ge 175$
	H ₁ : $\mu < 175$	B1		Do not accept mean or \overline{x}
				but accept population mean
	$\bar{\mathbf{r}} = 168.1$	R1		
	x 100.1	DI		
	$z = \frac{168.1' - 175}{0.4}$	M1		For use of $9.4/\sqrt{6}$
	9.4	m1		For rest of formula (ignore sign)
	= -1.798	A 1		Must be negative AWRT -1.80
	CV = -1.6449	B1		AWFW -1.64 to -1.65
		21		
	-1.6449 > -1.798 so test statistic in			Comparison of correct test statistic with
	critical region	A1	7	correct CV must be seen (diagram or
	Reject H_0 , significant evidence that batch			words)
	mean is less than 175 grams			OE; suspicion supported
				Must be in context AG
(b)	H ₀ : $\mu = 175$			Award B1 for both correct if not scored
()	$H_1: \mu < 175$			in (a)
	169.4 - 175	M1		For use of $11.2/\sqrt{20}$
	$l = \frac{11.2}{11.2}$			
	/ \sqrt{20}	ml		For rest of formula (ignore sign)
	=-2.236	Al D1		Must be negative AWRT -2.24
	$CV(t_{19}) = -2.539$	BI		AWR1 –2.34
	-2.236 > -2.539 so test statistic not in			
	critical region			Comparison of correct test statistic with
				correct CV (need not be seen)
	Accept H_0 , no significant evidence that	Δ1	5	OF: suspicion not supported
	batch mean/weight is less than 175grams	AI	5	on, suspicion not supported
(c)	Because the significance level is 1%	E1	1	UE; eg SL is different Deference to complexize \rightarrow E0
	11151Cau 01 370		12	Kelerence to sample size \Rightarrow EU
	lotal		13	
Q	Solution	Marks	Total	Comments
--------	--	----------	-------	--
7(a)	1 $\frac{1}{3}$	B1 B1		Curve concave upwards between $(0, 0)$ and $(1, y_1)$ Negative gradient line between $(1, y_1)$ and $(2, y_2)$ with $y_2 > 0$ (and not beyond 2)
		B1	3	$y_1 = 1$ and $y_2 = \frac{1}{3}$ shown
(b)(i)	Attempt to integrate t^2 between 0 and x	M1		Accept integral of x^2
	$\mathbf{F}(x) = \frac{1}{3}x^3$	A1	2	
(ii)	Their $F(x) = 0.25$	M1		
	<i>x</i> = 0.909	A1	2	AWRT; accept $^{3}\sqrt{0.75}$ OE
(c)(i)	$F(1) = \frac{1}{3}$	B1		
	$\int_{1}^{x} \frac{1}{3} (5-2t) dt = \left[\frac{1}{3} (5t-t^{2}) \right]_{1}^{x}$	M1		For integral attempted with correct limits
	$=\frac{1}{3}(5x-x^2)-\frac{4}{3}$	A1		For limits substituted in correct expression
	$F(x) = \frac{1}{3} (5x - x^2) - \frac{4}{3} + \frac{1}{3}$	A1	4	F(1) added to give complete $F(x)$
	$=\frac{1}{3}(5x-x^2-3)$			AG
(ii)	$\frac{1}{3}(5q-q^2-3) = 0.75$ or	M1		Setting up equation
	integral of f(x) from q to $2 = 0.25$ $4q^2 - 20q + 21 = 0$ or $q^2 - 5q + 5.25 = 0$	A1		Reaching correct simplified quadratic
	(2q-3)(2q-7) = 0 or $q = 2.5 \pm 1$	ml		Factorising for two solutions or using formula or calculator
	<i>q</i> = 1.5	A1	4	Selecting only this one
	Total		15	
	TOTAL		75	

A-LEVEL Mathematics

Statistics 2B – MS2B Mark scheme

6360 June 2014

Version/Stage: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

A-level	Mathematics	June 2014	MS2B
---------	--------------------	-----------	------

Q1	Solution	Marks	Total	Comments
(a)	Sample mean = $1904 \div 5 = 380.8$	B1		CAO
	$s = 4.38$ or $s^2 = 19.2$	B1		AWRT
	$t_4 = 2.132$	B1		AWRT 2.13
	C.I. = $380.8 \pm 2.132 \times (4.38)^{\circ}$ or $\sqrt{(19.2)^{\circ}}$	M1		Use of their $4.38/\sqrt{5}$ or $\sqrt{(^{(19.2)}/_5)}$
	$\sqrt{5}$	m1		Rest of formula (using t_4 or t_5 (2.015))
	= (377, 385)	A1		AWRT
			6	
(b)	3	B1		CAO
			1	
			7	

PMT

Q2				Soluti	on			Marks	Total	Comments
(a)		Е	S	W	NI	Total				
	Male	57 30	44	27	17	145		B2,1		B2 all correct, B1 one slip.
	Total	96	43 87	46	4 21	250		, ,		1
	Totul	00	01	10		200	4		2	
(b)	Expected	E	2	S	W		NI			Expected attempted at least 2 correct
	Male	55.6	8	50.46	26.68	3 12	.18	M1		to 2 s f
	Female	40.3	2	36.54	19.32	2 8	.82	11/1 1		io 5 s.i.
	0.0312	9 (0.8270	2 0.	00383	1.90	742			$(O - E)^2/E$ attempted, at least 1
	0.0432	1 [·]	1.1420	7 0.	00530	2.63	405	M1		correct to 3 s.f.
	Sum = 6	.59						A1		AWFW 6.58 – 6.60
	v = (4 -	1)(2 -	- 1) =	= 3				B1		CAO
	Critical	value	= 6.2	251				B1		AWRT 6.25 B2 for just 6.25 seen
	H _o :No a	ssocia	ation	betwee	en cou	untrv 8	z gender			At least 1 correct – must be in
	H ₁ :Asso	ciatio	n bet	ween o	countr	v & g	ender	B1		context.
	Test stat	istic i	in cri	tical re	gion	reject	H	A1		Comparison of 6 59 with 6 251
	1050 5000	.15010			B ¹⁰¹¹ ,	10,000				Den on 6.59 A1 and 6.251 B1
										and on hypotheses B1
	Thorada	aiani	ficon	t avida	10.00.0	fagga	intion			Conclusion in context
		sigm	fican			i assoc	ation	F1		Conclusion in context
	between	coun	try a	na gen	aer.			EI	0	Dep on previous A1 and B1
						~			8	
(c)	More fer	males	than	expec	ted fr	om Sc	otland			
	Fewer fe	emale	s that	n expe	cted fi	rom N	I.	B1		For any one of these
	About th	ne rigl	ht nu	mber o	f fem	ales fr	om			
	England	and/o	or W	ales						
	_								1	
									11	

If they combine Wales and Northern Ireland

Q2			Solutio	n		Marks	Total	Comments
(b)	Expected Male Female	E 55.68 40.32	S 50.46 36.54	W + NI 38.86 28.14		M1		Expected attempted, at least 2 correct to 3 s.f.
	0.0312 0.0432 $Sum = 3$ $v = (3 - 1)$ $Critical v$ $H_0:No as$ $H_1:Assoce$ $Test stati$	29 0.82 21 1.14 .66 1)(2 - 1) value = 4 esociation ciation be istic not i	= 2 $.605$ h between coin critical	n country puntry & region, a	v & gender gender accept H _o	M1 A0 B1F B1F B1 A0		$(O - E)^2/E$ attempted, at least 1 correct to 3 s.f. AWFW 4.60 to 4.61 B2F for just 4.60 or 4.61 seen At least 1 correct – must be in context
	There is between	no signif country	icant evi and gend	dence of er.	association	E0		A maximum of 5 out of 8

Q3	Solution	Marks	Total	Comments
(a)	$P(X \le 4) = 0.3$	M1		
	So P(Both ≤ 4) = 0.3 ² = 0.09	A1		CAO
			2	
(b)(i)	0.1 + 0.2 + a + 0.3 + b = 1 so $a + b = 0.4$	B1		
	$3 \times 0.1 + 4 \times 0.2 + 5a + 6 \times 0.3 + 7b = 5.1$	M1		Correct treatment of simultaneous
	5a + 7b = 2.2 and $5a + 5b = 2.0$			confect treatment of simulateous
	or substitution of $b = 0.4 - a$ or $a = 0.4 - b$			equations, starting with correctly $\frac{1}{2}$
	leading to	m1		simplified $5a + 7b = 2.2$
	a = 0.3, b = 0.1	A1		CAU
			4	
(ii)	$E(X^{2}) = 0.1 \times 3^{2} + 0.2 \times 4^{2} + 0.3 \times 5^{2} + 0.3 \times 6^{2} + 0.1 \times 7^{2}$	M1		Not simply $E(X^2) = 27.3$
	(=27.3)			
	$Var(X) = E(X^2) - E(X)^2 = 27.3 - 5.1^2 = 1.29$	A1		AG
			2	
(iii)	Using $N = 2X - 5$	M1		Or by use of 1, 3, 5, 7, 9
	E(N) = 2E(X) - 5 = 5.2	A1		
	$Var(N) = 2^{2}Var(X) = 5.16 \text{ so } \sigma_{N} = 2.27$	A1		AWRT Or $2 \times \sqrt{1.29}$
			3	
			11	

Q4	Solution	Marks	Total	Comments
(a)(i)	Area of rectangle = 1 (or total probability)	M1		
	$= \frac{1}{k} \times (b-a) \rightarrow (b-a) = k$	A1		AG
			2	
(ii)	$E(X) = \frac{1}{2}(a+b)$ (or $a + \frac{1}{2}k$)	B1		
			1	
(iii)	$\mathbf{E}(X^2) = \int_{\mathbf{b}}^{\mathbf{b}} \underline{x^2} dx$	M1		k or (b-a)
	$\int_{a} k$			For integration. Ignore limits
	$= [^{1}/_{3k} x^{3}]_{a}^{b}$	m1		
	$= (b^3 - a^3) = \frac{1}{3}(b^2 + ab + a^2)$	A1		Use of correct limits AG
	3(b-a)			
			3	
(iv)	$Var(X) = E(X^2) - [E(X)]^2$	M1		Applied to this case (their mean)
	$= \frac{4}{12}(b^2 + ab + a^2) - \frac{3}{12}(a + b)^2$			
	$= \frac{1}{12}(b^2 - 2ab + a^2) = \frac{1}{12}(b - a)^2.$	A1		Either form or continued to $\frac{1}{12}k^2$
			2	
(b)	$\frac{1}{12}(b-a)^2 = 3 \rightarrow (b-a) = 6$	M1		
	b = 10	A1		
	$E(X) = \frac{1}{2}(a+b) = 7$	A1		
			3	
			11	

Q5	Solution	Marks	Total	Comments
(a)	$\mu = 128 \div 40 = 3.2$ as required for λ	B1		
	$s^2 = 3.2410$ (Condone $\sigma^2 = 3.16$)	B1		AWRT 3.24 or 3.16
	which is close to λ , as required for Poisson	E1		Clearly stated (for either s^2 or σ^2)
			3	
(b)(i)	$1 - P(X \le 5) = 1 - 0.8946$	M1		For attempt to subtract $P(X \le 5)$
	= 0.105(4)	A1		AWRT
			2	
(ii)	$P(X \le 7) - P(X \le 2)$	M1		Attempt to use these two
	0.9832 - 0.3799	B1		For either.
	= 0.603(3)	A1		AWFW 0.603 to 0.604
			3	
(iii)	$P(X=0) = 0.0408 \text{ or } e^{-3.2}$			
	or $P(X \ge 0) = 0.9592$	B1		For any of these seen to 3 d.p.
	$1 - 0.9592^2$ (or $0.0408^2 + 2 \times 0.0408 \times 0.9592$)	M1		
	= 0.0799	A1		AWFW 0.079 to 0.081
			3	
(c)	Using Po(8.2)	M1		Stated or use in formula or either of
				figures below seen
	$e^{-8.2} \times 8.2^9 \div 9! + e^{-8.2} \times 8.2^{10} \div 10!$	m1		Or Calc $P(\le 10) - P(\le 8)$
				= 0.79555 - 0.56465
	= 0.231	A1		AWRT
			3	
			14	

Q6	Solution	Marks	Total	Comments
(a)	$H_0: \mu = 20, H_1: \mu \neq 20$	B1		Both
	$\bar{x} = 22.625$	B1		CAO
	$s = 4.5650066$ (or $\sigma = 4.27$)	B1		AWFW 4.56 – 4.57 (or AWRT 4.27)
	test stat = $\frac{22.625 - 20}{(4.5650066 \div \sqrt{8})}$	M1		Or $\sqrt{7}$ if $\sigma = 4.27$ used
	= 1.626	A1		AWRT 1.63
	$t_7 = \pm 1.895$	B1		
	Test statistic not in critical region, accept H _o	A1		Comparison of test stat with t_7
	There is insufficient evidence that Gary does not take a mean time of 20 minutes for an annual service.	E1		In context. These last two marks dep on both A1s and hypotheses B1. E1 also dep on previous A1.
	Alternative: If the boundaries of the critical region are calculated, marks as above except $20 \pm 1.895 \times (4.5650066 \div \sqrt{8})$ M1 ((16.94), 23.06) A1 (AWRT)		8	
(b)	5% sig gives $z = 1.64$ to 1.65	B1		AWFW
	$20 + 1.6449 \times (4.6 \div \sqrt{100})$	M1		OE
	= 20 + 0.754 to 0.759	A1		AWFW
	So to not support suspicion need $\bar{x} \le 20.75$	A1		
			4	
	SC 20.76 using this method scores B1, M1,			
	A1, A0			
			12	

Q7	Solution	Marks	Total	Comments
(a)	$P(X < 1) = \begin{bmatrix} 1 & \underline{4x} & dx & \text{or } \frac{1}{2} \times 1 \times \frac{4}{5} \end{bmatrix}$	M1		Including limits
	$= \left[\frac{2}{5}x^{2}\right]_{0}^{0} = \frac{2}{5}$	A1	2	
(b)(i)	$\int_{-\infty}^{\infty} \frac{1}{3t^2 - 20t + 33} dt$	M1		Accept x integral
	$\int_{1} 20$			
	$= \left[\frac{1}{20}\left(t^{3} - 10t^{2} + 33t\right]\right]^{x}$	A1		Correct integration with limits
	$= \frac{1}{20} \left(x^{3} - 10x^{2} + 33x \right) - \frac{1}{20} \left(1 - 10 + 33 \right)$	m1		Use of limits
	$F(x) = \frac{2}{5} + \frac{1}{20}(x^{3} - 10x^{2} + 33x) - \frac{24}{20}$	A1		With ² / ₅ included
	$= \frac{1}{20}(x^3 - 10x^2 + 33x - 16)$			AG
			4	
(ii)	F(1.13) = 0.49819	B1		At least 3 s.f.
	F(1.14) = 0.50527	B1		At least 3 s.f.
	Median requires $F(x) = 0.5$			
	0.49819< 0.5 < 0.50527			Must clearly indicate that median
	So $1.13 < \text{median} < 1.14$	E1		requires $F(x) = 0.5$
	Alternative scheme for (b)(ll)			
	If a calculator, or trial and improvement, has			
	been used to solve the cubic equation directly: $\frac{1}{2}(x^3 - 10x^2 + 22x - 16) = 0.5$	MI		
	$/_{20}(x - 10x + 35x - 10) = 0.5$			
	$\begin{array}{l} \text{Ineutan} - AWFW \ 1.152 \ \text{io} \ 1.155 \\ \text{which lies between 1 12 and 1 14} \end{array}$	AI E1		
	which hes between 1.15 and 1.14	EI	2	
			3	
			9	

A-LEVEL Mathematics

Statistics MS2 – MS2B Mark scheme

6360 June 2015

Version/Stage 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Marks	Total	Comments
(a)	Use of Po(2.8)	M1		Stated or table value (0.8477, 0.9349,
				0.9756 or 3sf equivalents) seen
	$P(\le 5) = 0.935$	Al	•	AWRT
		D1	2	
(b)	Use of Po(4.4)	BI		Stated or attempt at method seen
	$e^{-4.4} \times 4 \ 4^2 \div 2$	M1		Correct formula or by calculator
		1411		concertormula of by calculator
	= 0.119	A1		AWRT
			3	
(c)	Use of Po(15)	B1		Stated or any 1 of 4 relevant values
				seen 0.1848, 0.2676, 0.7489, 0.8195
				~ 1 00 - 100
	We require $P(\leq 17)$	MI		Stated or use of 0.7489
	D(< 11)	M1		Indep Stated on use of 0 1848
		101 1		mucp. Stated of use of 0.1848
	= 0.7489 - 0.1848 = 0.564(1)	A1		AWRT 0.564
			4	
		Total	9	

Note: (a) The mark is not awarded for simply 2.8. Some indication of Poisson is needed. Eg. Po(2.8) or $\lambda = 2.8$

(b) As for part (a), not simply 4.4.

(c) If Po(15) and P(≤ 17) – P(≤ 11) are seen, 3 marks have been earned irrespective of later numbers.

Q2	Solution	Marks	Total	Comments
(a)	k = (b - a)	B1		CAO
			1	
(b)(i)	$\frac{1}{2}(a+b) = 1$ and $\frac{1}{12}(b-a)^2 = 3$	B1		For both equations (not including k)
	$(b-a)^2 = 36 \rightarrow (b-a) = \pm 6$	M1		6 or ± 6 required for this mark
	b > a stated giving $b - a = 6$ only	m1		Consideration of two solutions
	or both $b - a = 6$ and $b - a = -6$ used			
	b = 4 and $a = -2$	A1		CAO not dependent on m1
			4	
(ii)	$P(X < 0) = \frac{1}{3}$	B1		Stated or used (accept 0.333)
	$4 \times p \times (1-p)^3$ where $p =$ candidate's stated P(X < 0)	M1		0 < <i>p</i> < 1
	$=\frac{32}{81}(=0.395)$	A1	3	CAO or AWRT 0.395
		Total	8	

				-
(b)(i)	Alternative solution			
	$\frac{1}{2}(a+b) = 1$ and $\frac{1}{12}(b-a)^2 = 3$	B1		For both equations (not including k)
	$b = 2 - a \longrightarrow 4a^2 - 8a - 32 = 0$ or $a = 2 - b \longrightarrow 4b^2 - 8b - 32 = 0$	M1		For obtaining one of these quadratics or equivalent
	a = -2, b = 4 and $a = 4, b = -2$	A1		For both correct pairs of solutions or one pair with any justification
	Selection of correct solution $b = 4$ and $a = -2$	A1		CAO not dependent on previous A1
			4	

Note: (b) Integration may be used but must reach the two correct equations to earn any marks.

Many will use b - a = 6, ignoring the \pm , and obtain the correct values for a and b. This scores B1 M1 m0 A1.

Q3	Solution	Marks	Total	Comments
(a)(i)	Mean of sample is 909.2	B1		If wrong here, the B1 here may be earned for a correct value seen in (ii)
	Use of 1.96	B1		AWRT
	$909.2 \pm 1.96 imes rac{2.2}{\sqrt{8}}$	M1		Allow for M1 if AWFW 1.64 to 1.65 used instead of 1.96
	907.7, 910.7	A1	4	For both. AWRT
	Notes: 1 Seen use of $s \Rightarrow B1 B1 M0 A0 max$ 2 Seen use of $t \Rightarrow B1 B0 M0 A0 max$ 3 Seen use of t and $s \Rightarrow B1 B0 M0 A0 max$			
(ii)	$t_7 = 2.365$	B1		AWFW 2.36 to 2.37
	$s = 2.39 \text{ or } 2.24 \text{ (or } s^2 = 5.72 \text{ or } 5.00(5))$	B1		AWRT
	$909.2 \pm (2.36 \text{ to } 2.37) \times se$	M1		Allow for M1 if AWFW 1.89 to 1.90 used instead of (2.36 to 2.37)
	where $se = 2.39/\sqrt{8}$ or $2.24/\sqrt{7}$			OE in terms of s^2
	907.2, 911.2	A1		For both. AWRT
	Notes: 1 Seen use of 2.2 \Rightarrow B1 B0 M0 A0 max 2 Seen use of $z \Rightarrow$ B0 B1 M0 A0 max 3 Seen use of z and 2.2 \Rightarrow B0 B0 M0 A0		4	
(b)	Both confidence intervals are above 907 so mean/average weight is probably acceptable	Edep1		OE Dependent on A1 in (i) and A1 in (ii). Must specify both , 907 and mean/average.
	One of data values (or 905.6) is below 907 (or underweight)	E1		
			-	
		T-4-1	2	
		Total	10	

Note: In both (a)(i) and (ii), where working is shown, condone accuracy to more than 4 s.f. Where working is not shown, if accurate to 4 s.f. allow B4. If not accurate to 4 s.f., award B1 for AWRT 908 - 911 in (i) and another B1 for AWRT 907 - 911 in (ii).

Q4	Solution	Marks	Total	Comments
(a)	(The 100 vehicles can be regarded as a) random (sample).	B1	1	Must say random and be about the sample. Do not penalise "and independent", but any mention of "normal" anywhere in (a) scores B0
<i>(</i> -)				
(b)	$ H_0: \ \mu_x = 44.1 \\ H_1: \ \mu_x < 44.1 $	B1		Both. Must be "Population mean", μ_x or μ .
	$(\overline{x} =)$ 43.27	B1		CAO
	sd = 3.0579 (var = 9.35 AWRT) or	B1		AWFW 3.055 to 3.060.
	sd = 3.0425 (var = 9.26 AWRT)			AWFW 3.040 to 3.045
	$z/t = \frac{(43.27 - 44.1)}{(3.055 \text{ to } 3.060)}$ or $\frac{(43.27 - 44.1)}{(3.040 \text{ to } 3.045)}$	M1		Denominator is division of candidate's sd by $\sqrt{100}$ or $\sqrt{99}$
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	m1		Numerator is $\pm(\overline{x} - 44.1 \text{ or } 40)$
	= -2.71	A1		AWFW –2.695 to –2.735
	CV: <i>z</i> = -2.32(63)			AWFW –2.32 to –2.33
	or $t = -2.36(46)$	B1		AWFW –2.36 to –2.37
	So test statistic in critical region. (Reject H_0), significant evidence that mean speed has reduced.	Adep1		Dep on preceding A1 and B1, but not on B1 for hypotheses. Must have context and mean (or average).
			8	
(c) (i)	Concluding that the mean speed has reduced (or changed) when in fact it has not	E1		Must be in context. Must refer to mean speed (μ)
(ii)	Concluding that the mean speed is still 44.1 when in fact it has reduced (or changed)	E1	2	Must be in context. Must refer to mean speed (μ)
		Total	11	

Note: (a)

"It is random" is sufficient for B1.

"It is random and normally distributed" scores B0.

"The vehicles arrive at random" scores B0

The final A mark is not awarded for the negative statement "There is no significant evidence that the mean speed is 44.1" or equivalent. There **is** significant evidence of a reduction in the mean. A definite statement "the mean speed has reduced" is accepted for A1.

Alternative method for (b) using critical value for \overline{x}

Q4	Solution	Marks	Total	Comments
(b)	H ₀ : $\mu_x = 44.1$			Both. Must be "Population mean", μ_x
	H ₁ : $\mu_x < 44.1$	B1		or μ.
	$(\overline{x} =)$ 43.27	B1		CAO
	sd = 3.0579 (var = 9.35 AWRT)			AWFW 3.055 to 3.060.
	or	B1		
	sd = 3.0425 (var = 9.26 AWRT)			AWFW 3.040 to 3.045
	CV: $z = -2.32(63)$			AWFW –2.32 to –2.33
	or $t = -2.36(46)$	B1		AWFW –2.36 to –2.37
	$\overline{x}_{cv} = 44.1 - CV \times \underline{3.0579}$ or $\times \underline{3.0425}$	M1		Division of candidate's sd by $\sqrt{100}$ or
	$\sqrt{100}$ $\sqrt{99}$			√99
		ml		Rest of formula
	12.25 . 12.205			A NUENI 42 27 (42 205
	= 43.37 to 43.395	Al		AWFW 43.37 to 43.395
	43.27 < 43.37 or 43.395			
	So test statistic in critical region.	A 1 1		Dep on preceding A1 and B1, but not
	(Reject H_0), significant evidence that mean	Adep1		on B1 for hypotheses. Must have
	speed has reduced.		0	context and mean (or average).
			8	

Alternative method for (b) using confidence interval for \overline{x}

Q4	Solution	Marks	Total	Comments
(b)	$H_0: \mu_x = 44.1 H_1: \mu_x < 44.1 (\overline{x} =) 43.27 sd = 3.0570 (vor = 0.35 AWPT)$	B1 B1		Both. Must be "Population mean", μ_x or μ . CAO
	or or	B1		AWFW 3.055 to 3.060.
	sd = 3.0425 (var = 9.26 AWRT) CV: $z = -2.32(63)$ or $t = -2.36(46)$	B1		AWFW 3.040 to 3.045 AWFW -2.32 to -2.33 AWFW -2.36 to -2.37
	Upper limit of confidence interval = $43.27 + CV \times \frac{3.0579}{\sqrt{100}}$ or $\times \frac{3.0425}{\sqrt{99}}$	M1		Division of candidate's sd by $\sqrt{100}$ or $\sqrt{99}$
		ml		Rest of formula
	= 43.975 to 43.999	A1		AWFW 43.975 to 43.999
	44.1 > 43.975 to $43.999So previous mean above confidence interval.(Reject H0), significant evidence that meanspeed has reduced.$	Adep1	Q	Dep on preceding A1 and B1, but not on B1 for hypotheses. Must have context and mean (or average)
			ð	

Q5	Solution	Marks	Total	Comments
(a)	H _o : No association (between the age at which			Allow "rate of tax independent of
	they had left education and the rate of income			age of leaving" but no other words.
	tax that they were paying)			
	(H ₁ :Association)	B1		For at least H _o stated correctly.
	29 445 3 9 5 655			
	98.905 13.1 18.995	M1		Expected values attempted, seen here
	22.65 3 4.35			or after combining
				(at least 4 correct (at least 2dp in 1 st
				and 3 rd columns))
	Combine last two columns			
	Observed Expected	N/1		
	<u>≤ 16 > 16</u> <u>≤ 16 > 16</u>	MII		Attempt at combining columns 2 & 3
	<u>32</u> 7 29.445 9.555			(not just individual cells)
	102 29 98.905 32.095	Δ 1		Combined columns numerically
	17 13 22.65 7.35	AI		correct (six values)
	$\sum (Q_1 - E_1)^2 / E_2 = 0.2217 + 0.0968 + 1.4093$			concer (six values)
	$2(O_i - L_i)/L_i = 0.2217 + 0.0900 + 1.4095$ + 0.6832 + 0.2984 + 4.3431	m1		Attempt at $\Sigma(Q_i - E_i)^2/E_i$ dep on first
				M1 (at least 2 values correct to 3sf)
				Can be implied by correct answer.
	= 7.05	A1		AWFW 7.0 to 7.1
	v = (3-1)(2-1) = 2	B1		Can be implied by correct answer.
				Correct <i>v</i> or $v = 4$ from no combining
	Crit val = $5.99(1)$	B1		AWRT 5.99 or 9.488 from no
				combining
	(Reject H _o)			
	Significant evidence that there is an			
	association between age at leaving education	Adep1		Dep on A1 for 7.05, B1 for 5.99.
	and rate of income tax paid.		0	For conclusion in context.
			9	
(b)				iviust be supported by reference to
				stated O and E values, comparing 8
	Belief supported (or equivalent).	E1		numerical justification comparing
				$\frac{8}{20}$ (27.6%) with $\frac{17}{121}$ (11.3%) or
				$^{12}/_{40}$ (26.5%) with $^{17}/_{151}$ (11.3%)
			1	
		Total	10	
	No combining can score B1 M1 M0 A0 m1 A0) B1 B1 A	Adep0 =	= max of 5 out of 9 (gives 7.118)
	Combining first and third rows can also score E	B1 M1 M	0 A0 m1	A0 B1 B1 Adep0 = max of 5 out of
	9 (gives 1.156). Use of Yates automatically loses m1 A1 and Adep1.			

Note: (a) Final A mark is not awarded for the double negative statement "No significant evidence that there is no association". There **is** significant evidence of an association. A definite conclusion "there is an association between age at leaving education and rate ..." is accepted for A1 "**Association**" is the expected word. Use of **independent** must say "tax rate is not independent of age ...". No other words are accepted.

Q6	Solution	Marks	Total	Comments
(a)	$F(0.4) = \frac{0.4}{2} - \frac{0.16}{16} = 0.2 - 0.01 = 0.19$ $F(0.8) = \frac{0.8}{2} - \frac{0.64}{16} = 0.4 - 0.04 = 0.36$	M1		For either, can be implied by correct answer.
	P(0.4 < X < 0.8) = 0.36 - 0.19 = 0.17	A1	2	CAO
(b)	Clear correct use of differentiation of $F(x)$.	B1	1	AG Sight of F'(x), $\frac{d}{dx}$, $\frac{dy}{dx}$ etc. = correct answer
(c)(i)	$E(X) = \int_0^4 (\frac{1}{2}x - \frac{1}{8}x^2) dx$	M1		Attempt at integrating $xf(x)$ (condone omission of limits and dx)
	$= \left[\frac{1}{4}x^2 - \frac{1}{24}x^3\right]_0^4$	A1		Integration completed correctly with limits
	$=4-\frac{8}{3}=\frac{4}{3}$	A1	3	OE exact form
(ii)	$E(X^{2}) = \int_{0}^{4} \left(\frac{1}{2}x^{2} - \frac{1}{8}x^{3}\right) dx$	M1		Attempt at integrating $x^2 f(x)$ (condone omission of limits and dx)
	$= \left[\frac{1}{6}x^{3} - \frac{1}{32}x^{4}\right]_{0}^{4}$	A1		Integration completed correctly with limits
	$=\frac{32}{3}-8=\frac{8}{3}$	A1		OE exact form
	Var(X) = E(X ²) - E(X) ² = $\frac{8}{3} - (\frac{4}{3})^2$ (= $\frac{8}{9}$)	A1		AG
			4	
(d)	$E(Y) = 3E(X) - 2 = 3 \times \frac{4}{3} - 2 = 2$	B1F		FT their (c)(i) provided $0 < E(X) < 4$
	$\operatorname{Var}(Y) = 3^2 \times \operatorname{Var}(X) = 9 \times \frac{8}{9} = 8$	B1	2	CAO
		Total	12	

Q7	Solution	Marks	Total	Comments
(a)	(I) <i>a</i> requires the "= 3" value using Po(2) = $(e^{-2} \times 2^3) \div 3!$ or $0.8571 - 0.6767$ or 0.1804 from calculator = 0.180	M1		One M1 for correct use of correct Poisson for either <i>a</i> or <i>b</i> .
	(II) $b = 1 - P(\text{demand} \le 3) = 1 - 0.8571 = 0.143$	m1		A dependent m1 for use of Poisson again for b or a or for subsequent use
	(III) $b = 1 - (0.135 + 0.271 + 0.271 + 0.180) = 0.143$			of probability sum = 1
	(IV) $a = 1 - (0.135 + 0.271 + 0.271 + 0.143) = 0.180$	A 1		A1 for both correct calculations AG
	(I) & (II) or (I) & (III) or (II) & (IV)			
	SC If M0 can award B1 for $a + b = 0.323$ derived from sum of probabilities = 1		2	
			3	
(b)	$E(X) = 1 \times 0.135 + 2 \times 0.271 + 3 \times 0.271 + 4 \times 0.180 + 5 \times 0.143$	M1		Evidence of at least two of the five
	= 2.925	A1		OE AWFW 2.92 to 2.93
	$E(X^{2}) = 1^{2} \times 0.135 + 2^{2} \times 0.271 + 3^{2} \times 0.271 + 4^{2} \times 0.180 + 5^{2} \times 0.143$	M1		Evidence of at least two of the five
	(= 0.135 + 1.084 + 2.439 + 2.88 + 3.575) = 10.113	A1		products added AWRT 10.1
	S.D. = $\sqrt{(10.113 - 2.925^2)} = 1.25$	B1	5	AWRT
(c)	$1 \times E(X) - 0.5 \times (5 - E(X))$	M1	5	Candidate's $E(X)$
	$= \pm 1.89$	A1		AWRT Condone omission of '£'
	or profit/loss table			
	Profit -1 0.5 2 3.5 5 $P(X=x)$ 0.135 0.271 0.271 0.180 0.143	(M1)		
	$E(Profit) = -0.135 + 0.135 + 0.542 + 0.630 + 0.715 = \text{\pounds}1.89$	(A1)	2	AWRT Condone omission of '£'

Note: (a) One of the three methods of getting 0.180 - formula, subtraction of two figures from tables, or direct calculation showing fourth decimal place (4) – must be seen before the M1 for use of Poisson is awarded. Similarly for 0.143 (0.1429) done using Poisson.

If value of E(X) calculated in part (b) is used retrospectively in part (a) to calculate *a* and *b*, then only the SC B1 can be earned.

Q7	Solution	Marks	Total	Comments
(d)	x 1 2 3 4 P(X=x) 0.135 0.271 0.271 0.323	M1 A1		P(demand \geq 3)= P(X = 4) Complete distribution (not necessarily in a table)
	$E(X) = 1 \times 0.135 + 2 \times 0.271 + 3 \times 0.271 + 4 \times 0.323$ = 2.782	A1		E(X) = 2.78(2) without shown working scores B3
	$E(Profit) = 1 \times E(X) - 0.5 \times (4 - E(X))$ = £2.17 (which is more than £1.89)	M1 A1		AWRT Condone omission of '£'
	or profit/loss table $ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(M1) (A1) (A1) (M1)		Any two profit values correct P(demand ≥ 3)= P(X = 4) Complete table
	= \pounds 2.17 (which is more than \pounds 1.89)	(A1)	5	AWRT Condone omission of '£'
		Total	15	