

MEI Structured Mathematics

Module Summary Sheets

Statistics 1 (Version B: reference to new book)

Topic 1: Exploring Data

Topic 2: Data Presentation

Topic 3: Probability

Topic 4: The Binomial Distribution

Topic 5: Discrete Random Variables

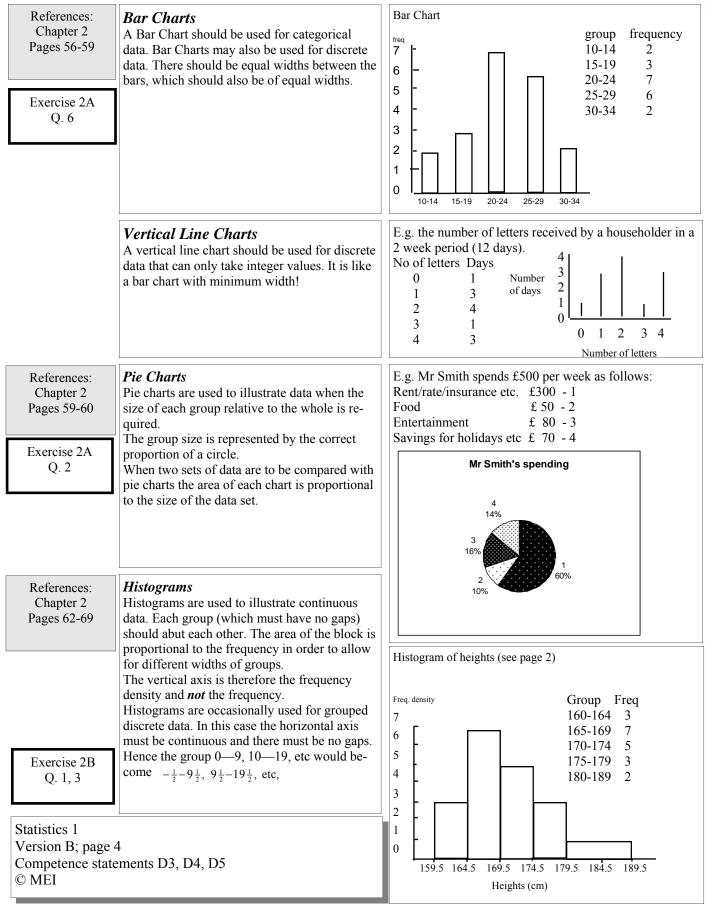
Purchasers have the licence to make multiple copies for use within a single establishment

© MEI, November, 2004

MEI, Oak House, 9 Epsom Centre, White Horse Business Park, Trowbridge, Wiltshire. BA14 0XG. Company No. 3265490 England and Wales Registered with the Charity Commission, number 1058911 Tel: 01225 776776. Fax: 01225 775755.

	1	
References:	Types of data	E.g. colours of "Smarties" in a tube are categorical data.
Chapter 1 Pages 12-13	Categorical data are data that are listed by a category or property rather than a number	E.g. Marks gained by students in an examination:
	Discrete data are data that can only take par- ticular values	14, 17, 19, 19, 19, 20, 20, 21, 21, 21, 21, 21, 25, 25, 26, 26, 27, 27, 30, 30, 32 These are discrete data.
	E.g. numbers of cars, marks in an examination	E.g. heights of students measured to the nearest cm:
	Continuous data are data that can take any value. These data will be given in a rounded form depending on the precision of measurement.	160, 162, 164, 165, 165, 165, 166, 168, 169, 169, 171, 172, 172, 173, 174, 175, 176, 177, 180, 182 These are continuous data.
	E.g. mass, length, temperature	The height recorded as 178 cm is in range $177.5 \le 178 < 178.5$
References: Chapter 1 Pages 6-8	<i>Stem and Leaf diagrams</i> A stem and leaf diagram is a way of writing out the data so that the shape of the distribution can	E.g. Stem and leaf diagram of the set of marks above.
Exercise 1A Q. 2, 4	be seen and so that outliers can be seen. A key should always be given.	1 47999 2 001111556677 3 002
References: Chapter 1	<i>Measures of Central Tendency</i> A measure of central location gives a typical	Key: 3 2 means 32
Pages 13-16	("representative") value for a data set.	E.g. for the marks gained in an examination:
Exercise 1B Q. 2 (i), (iv)	Mean: $\bar{x} = \frac{1}{n} \sum x_i$	Mean = $\overline{x} = \frac{14 + 17 + \dots + 32}{20} = \frac{460}{20} = 23$
Q. 2 (1), (1V)	<i>Median</i> is the mid-value of the set, when arranged in ascending or descending order	Median = $\frac{21+21}{2} = 21$
	i.e. the $\frac{n+1}{2}$ th value.	(Halfway between 10th and 11th values) Mode = 21
	<i>Mode</i> is the most frequent value.	Mid-range = $\frac{14+32}{2} = 23$
	<i>Midrange</i> is the mid-point of the highest and lowest values.	E.g. for the marks gained in an examination:
References: Chapter 1	Frequency distributions	x 14 17 19 20 21 25 26 27 30 32
Pages 17-19	There may be some elements of a data set that are equal. In this situation the data may be	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Exercise 1C Q. 2, 4	summarised in a frequency table.	E.g. Find the mean of the grouped heights
	Grouped data	Height(cm) Mid pt <i>f fx</i> 159.5 - 164.5 162 3 486
References: Chapter 1	Data can be grouped into frequency distribu- tions because:	164.5 – 169.5 167 7 1169
Pages 22-29	There may be a lot of data	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Exercise 1D Q. 2, 4	The data may be spread over a wide rangeMost of the values are different	Total: $20 3415$ Estimate of Mean $= \frac{3415}{20} = 170.75$
Statistics 1 Version B; page 2 Competence state	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	You should make sure that you can use your calculator to carry out such calculations—the table is not necessary if you use it properly!
© MEI	<i>mento D</i> 1, <i>D</i> 2, <i>D</i> 0, <i>D</i> 10, <i>D</i> 11	Modal class: 164.5 - 169.5

References: Chapter 1 Pages 31-40	Measures of Spread Indicate how widely spread are the data.	E.g. Find the measures of spread of examination marks on the previous page. <i>Note:</i> You need to know how to use your
Exercise 1E	Range: Highest value – lowest value For any item in the data set, deviation = $x_i - \bar{x}$	calculator—different makes work in different ways. They will have different buttons available in the statistical mode.
Q. 1, 5	Sum of deviations = $\sum \left(x_i - \bar{x} \right) = 0$ always	Range = $32 - 14 = 18$
	Sum of absolute deviations = $\sum \left \left(x_i - \bar{x} \right) \right $ Mean Absolute Deviation = $\frac{1}{n} \sum \left \left(x_i - \bar{x} \right) \right $ Sum of squares of deviations, $S_{xx} = \sum \left(x_i - \bar{x} \right)^2$	$S_{xx} = (14-23)^{2} + 2 \times (17-23)^{2} + \dots (32-23)^{2} = 436$ Or: $\sum fx^{2} = 11016$ So $S_{xx} = \sum fx^{2} - n\bar{x}^{2} = 11016 - 20 \times 23^{2} = 436$
Example 1.5 Page 39	Mean Square Deviation = $\frac{S_{xx}}{n}$	$msd = \frac{436}{20} = 21.8 \implies rmsd = 4.669$ $s^{2} = \frac{436}{19} = 22.95 \implies s = 4.790$
Tage 39	Root mean square deviation(rmsd) = $\sqrt{\frac{S_{xx}}{n}}$ Variance, $s^2 = \frac{S_{xx}}{n-1}$, Standard deviation, $s = \sqrt{\frac{S_{xx}}{n-1}}$	E.g. Find the mean of the following values x f 334 $y = x - 33$ 355 $z = y/2$ gives the following377table394 x y x y f zf 33 04
References: Chapter 1 Pages 40-41 Pages 73-74	An outlier is usually taken to be a value that is more than 2 standard deviations from the mean. It may also be a value that is more than $1.5 \times IQR$ beyond the nearest quartile.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
References: Chapter 1 Pages 46-48	Linear Coding If $y = a + bx$ then $\overline{y} = a + b\overline{x}$; $s_y^2 = b^2 s_x^2$	$\Rightarrow \overline{y} = 3.1 \Rightarrow \overline{x} = 36.1$
Exercise 1F Q. 2	$s_y = b s_x$	E.g. If the examination marks are doubled and then decreased by 20:
Q. 2	Skewness When the mode of a frequency distribution is off to one side then the data may exhibit positive or	$\overline{y} = 2 \overline{x} - 20 = 2 \times 23 - 20 = 26$ $s_y = 2 s_x = 9.581$
References: Chapter 1 Pages 1-6	negative skewness.	Shapes of Distributions Unimodal Uniform Bimodal
	PositiveSymmetricalNegativeN.B. The "skewness" goes "with the tail" rather then the "hump".	N.B. "Bimodal" does not mean that the peaks are of the same height.
	Statistics 1 Version B; page 3 Competence statements D9, D12, D13, D14, I © MEI	D15, D16



References: Chapter 2 Pages 71-73	Quartiles The Lower quartile is the 25% value. The Median is the 50% value.	E.g. the heights of a group of students are summa- rised in the table. Height(cm) Freq. Cum Freq. Upper ht
Example 2.1 Page 72	The <i>Upper quartile</i> is the 75% value. These are denoted Q_1 , Q_2 and Q_3 respectively. The use of quartiles should be avoided for small data sets.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Exercise 2C Q. 1	The <i>Interquartile range</i> $(IQR) = Q_3 - Q_1$	174.5 - 179.5 3 18 179.5 179.5 - 189.5 2 20 189.5
References: Chapter 2 Page 73	Box and Whisker Plots A box and whisker plot is shown here with a "box" at Q_3 and Q_1 together with a vertical line at the Median (Q_2). The ends of the hori- zontal line are the extreme values of the data.	The box and whisker plot is as follows:
		The cumulative frequency graph is as follows:
Exercise 2A Q. 6		20 Frequency 15
References: Chapter 2 Pages 74-77	<i>Cumulative Frequency Curves</i> . Cumulative frequency curves show the accumulated frequency up to each upper class boundary.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Exercise 2C Q. 4	On a graph, cumulative frequency is plotted against the upper class value. It would not be appropriate to use a cumulative frequency curve for discrete values unless they are grouped.	N.B. Sometimes the cumulative frequency diagram is drawn using straight lines between the points.
	The median (50th percentile) and the quartiles (25th and 75th percentiles) can be estimated from the graph. The interquartile range = upper quartile(Q_3) – lower quartile(Q_1) N.B. For grouped values, $Q_1 = \frac{n}{2}, Q_2 = \frac{n}{2}, Q_3 = \frac{3n}{4}$.	For this set of data and the graph: Median $(Q_2) \approx 170$ cm $Q_1 \approx 166$ cm $Q_3 \approx 175$ cm $IQR(Q_3 - Q_1) \approx 9$ cm
References: Chapter 2 Pages 40-41 Pages 73-74	Outliers An outlier is an extreme value. Such a value is defined quantitatively as being more than a certain "distance" from the average. When the mean and s.d. are being used then it is defined as being more than 2 s.d. from the mean.	An outlier would have a value $> 175 + 1.5 \times 9 \approx 188.5$ or $< 166 - 1.5 \times 9 \approx 152.5$ 152.5 cm is well below the range of data, but 188.5 cm is within the upper group, so it is possible that there is an outlier there.
	When the median and IQR are being used then it is defined as being more than $1.5 \times$ the IQR above Q_3 or below Q_1 .	This can only be determined from the original data points, which in this example we do not have.
Statistics 1 Version B; page : Competence state © MEI	5 ements D7, D8, D12, D16	

Summary S1 Topic 3: Probability—1

References: Chapter 3 Pages 86-90	Probability Describes the likelihood of different possible outcomes or events occurring as a result of some trial. For events with equally likely outcomes	E.g. In a school of 800 pupils, 500 are boys. If a pupil is chosen at random the probability of a boy can be estimated as $\frac{500}{800} = \frac{5}{8}$
Exercise 3A Q. 1	Theoretical probability $P(A) = \frac{n(A)}{N}$	E.g. The probability of drawing an ace from a
	Experimental probability = $\frac{No.of \ successful \ outcomes}{No.of \ trials}$	pack of cards = $\frac{4}{52} = \frac{1}{13}$
	(This is an estimate of the probability from an experiment.) $0 \le P(A) \le 1$.	E.g. A biased coin is tossed 100 times and it comes down tails 75 times. Experimental probability that the next toss will
References: Chapter 3	<i>Sample Space</i> or <i>Probability Space</i> is an aid to consider the set of all possible outcomes.	give heads = 0.25
Pages 90-91	Venn diagrams are useful tools in understanding the logic of a problem.	E.g. When two dice are thrown the sample space for the total score is as follows:
	The complement of event A, denoted A', is the event "A does not happen". $P(A) + P(A') = 1$ The <i>Expectation</i> of an outcome = np	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
References: Chapter 3 Pages 92-95	<i>Mutually Exclusive events</i> are events that cannot happen simultaneously. The Addition Rule for mutually exclusive events is	5 6 7 8 9 10 11 6 7 8 9 10 11 12
	$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B)$	E.g. probability of drawing an ace or a king from a pack of cards when one card is drawn.
Example 3.5	Non-mutually exclusive events	(Mutually exclusive events)
Page 95	$P(A \text{ or } B) = P(A \cup B) = P(A) + P(B) - P(A \cap B)$	$= P(A) + P(K) = \frac{4}{52} + \frac{4}{52} = \frac{8}{52} = \frac{2}{13}$
Exercise 3A Q. 6	where $P(A \cap B)$ means = $P(A \text{ and } B)$	E.g. Probability of drawing an ace or a spade from a pack of cards when one card is drawn
References: Chapter 3 Pages 98-102	<i>Independent events</i> are events where the outcome of one has no effect on the possible outcome of another.	(non-mutually exclusive events) = P(A) + P(S) - P(A \cap S) = $\frac{4}{52} + \frac{13}{52} - \frac{1}{52} = \frac{16}{52} = \frac{4}{13}$
r ages 98-102	$P(A \cap B) = P(A).P(B)$	E.g. Probability of drawing an ace then a king
	If there is a dependence then they are called Dependent Events.	if two cards are drawn from a pack and the first is replaced before the second is drawn.
Exercise 3B Q. 6	$P(A \cap B) = P(A).P(B A)$	(Events are independent)
References: Chapter 3	Chapter 3 called a conditional probability. A conditional	$= P(A) \times P(K) = \frac{4}{52} \times \frac{4}{52} = \frac{1}{169}$
Pages 107-112	probability is used when your estimate of the probability of an event occuring is altered by a knowledge of whether another event has	E.g. probability of drawing a king and then an ace if the first card is not replaced. (Dependent events)
Exercise 3C Q. 6	occurred. $P(B A) = \frac{P(B \cap A)}{P(A)}$	= P(A) × P(K A) = $\frac{4}{52} \times \frac{4}{51} = \frac{4}{663}$
Statistics 1 Version B; page 6 Competence statem	uents u1, u2, u3, u4, u5, u6, u7, u8, u9, u10, u11, u12	

© MEI

Summary S1 Topic 3: Probability—2

References: Chapter 5 Pages138-140 Exercise 5A Q. 1, 3, 4	Factorials "6 factorial" is written 6! and its value is $6! = 6 \times 5 \times 4 \times 3 \times 2 \times 1$ It represents the number of ways of placing 6 differ- ent items in a line.	E.g. $7! = 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1 = 5040$ The numbers get very large and different calculators revert to standard form at different values. i.e. $14! = 8.71782912 \times 10^{10}$
References: Chapter 5 Pages 142-146	Permutations and Combinations A permutation is a selection of things in which the order matters. ${}^{n} P_{r} = \frac{n !}{(n - r)!}$ A combination is a selection of things in which the	E.g. the number of ways of choosing 2 items from 10. ${}^{10}C_2 = {\binom{10}{2}} = \frac{10!}{8!2!} = \frac{10.9}{1.2} = 45$
Example 5.5 Page 144	order does not matter. The number of ways of choosing <i>r</i> items from <i>n</i> dis- tinct items is given by ${}^{n}C_{r} = \binom{n}{r} = \frac{n!}{(n-r)!r!}$	E.g. the number of ways of choosing 8 items from 10. ${}^{10}C_8 = {\binom{10}{8}} = \frac{10!}{8!2!} = \frac{10.9}{1.2} = 45$
Exercise 5B Q. 1, 2, 3	Symmetry: ${}^{n}C_{r} = {n \choose r} = \frac{n!}{(n-r)!r!} = {n \choose n-r} = {}^{n}C_{n-r}$	i.e. ${}^{10}C_8 = {}^{10}C_2$
References: Chapter 5 Page 145	Pascal's Triangle The row starting 1 n gives the $(n+1)$ coefficients in the expansion of $(a+b)^n$. They represent the num- ber of ways of choosing 0, 1, 2, n items from n .	E.g. the number of ways of choosing 3 items from 5. Extend Pascal's Triangle by one more line.
Exercise 5B Q. 8	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 5 10 10 5 1 The number required is the 3rd entry in the 5th line. i.e. 10
References: Chapter 5 Page 147-149	Probabilities in less simple cases Combinations are sometimes combined by multipli- cation. i.e. The number of ways of choosing 3 males from 5 and also 4 females from 6	 E.g. A committee of three is to be selected from 4 boys and 3 girls. (i) How many different selections are possible? (ii) How many of these contain 2 boys and 1 girl? (iii) How many of the selection for the selection of the s
Exercise 5B Q. 7	$= {}^{5}C_{3} \times {}^{6}C_{4} = 10 \times 15 = 150$	(iii) What is the probability that the committee consists of 2 boys and 1 girl? (i) There are 7 people so the total number of committees is ${}^{7}C_{3} = \frac{7!}{3!4!} = 35$.
Statistics 1 Version B; page 7 Competence stateme © MEI	ents H4, H5	(ii) The number of ways of choosing 2 boys from 4 and 1 girl from 3 is ${}^{4}C_{2} \times {}^{3}C_{1} = 6 \times 3 = 18$ (iii) Prob = $\frac{18}{35}$

References: Chapter 6 Pages 153-156	 <i>The Binomial Distribution</i> Requires Two outcomes where the constant probability of success is <i>p</i> and failure is <i>q</i> = 1 - <i>p</i> <i>n</i> Trials 	E.g. A fair die is thrown 10 times. Find the prob- ability of throwing (i) 4 sixes, (ii) at least two sixes. Let X = No. of sixes thrown. $p = \frac{1}{6}, q = \frac{5}{6}$ $X \sim B(10, \frac{1}{6})$
Exercise 6A Q. 4	• Outcome of any trial is independent of all other trials. If a random variable <i>X</i> is binomially distributed, we write <i>X</i> ~B(<i>n</i> , <i>p</i>) and	(i) $P(X = 4) = {\binom{10}{4}} {\left(\frac{1}{6}\right)}^4 {\left(\frac{5}{6}\right)}^6 = 0.0543$
References: Chapter 6 Pages 158-159	$P(X = r) = {n \choose r} p^{r} q^{n-r}$ Mean (Expected Value) = np	(ii) $P(X = 0 \text{ or } 1) = \left(\frac{5}{6}\right)^{10} + 10 \cdot \left(\frac{5}{6}\right)^9 \left(\frac{1}{6}\right) = 0.1615 + 0.3230$ = 0.4845 $\Rightarrow P(\text{at least } 2 \text{ sixes}) = 1 - 0.4845 = 0.5155$
Example 6.3 Page 160	Cumulative Binomial Probability Tables. Binomial probabilities can be found using the formula for each term as above or by using the Cumulative Binomial Probability tables on pages $34 - 39$ of the Students' Handbook. e.g. the top left entry on page 39 is for $n = 20$ and $p = 0.05$. The entry represents the term $P(X = 0) = 0.95^{20} = 0.3585$.	E.g. A fair die is thrown 20 times. Find the prob- ability of getting: (i) five or fewer 6's, (ii) more than seven 6's, (iii) four 6's. X=No of sixes thrown; $p = \frac{1}{6} \cdot q = \frac{5}{6}$ X~B(20, $\frac{1}{6}$) (i) P(X ≤ 5) = 0.8982 (see page E17)
Exercise 6B Q. 7 References:	The entry below it represents $P(X \le 1) = 0.7358$. Calculating each term gives $P(X \le 1) = P(X = 0) + P(X = 1)$ $= (0.95)^{20} + 20(0.95)^{19}(0.05) = 0.3585 + 0.3774$ = 0.7358	(ii) $P(X>7) = 1 - P(X \le 7) = 1 - 0.9887 = 0.0113$ (iii) $P(X=4) = P(X \le 4) - P(X \le 3) = 0.7687 - 0.5665 = 0.2022$
Chapter 7 Pages 167-175 Pages 177-179 Exercise 7A Q. 2, 7	<i>Hypothesis Testing</i> A null hypothesis is a hypothesis which is to be tested. The alternative hypothesis represents the departures from the null hypothesis. In setting up the alternative hypothe- sis a decision needs to be made regarding whether it is to be 1-sided or 2-sided. The significance level needs to be decided.	E.g. A man claims to be able to tell the throw of a die by mind reading. He is asked to guess the throw of a die 20 times and is correct 9 times. Find the probability that he is correct 9 or more times. Comment on the test result. Find how many times he would have had to be correct to verify his claim at the 5% significance level.
References: Chapter 7 Pages 182-184	 Hypothesis testing process Establish null and alternative hypotheses Decide on the significance level Collect data 	X = No of correct claims; $p = \frac{1}{6}, q = \frac{5}{6}$ X ~ B(20, $\frac{1}{6}$)
Example 7.2 Page 178	 Conduct test Interpret result in terms of the original claim 1-tail or 2-tail tests 	H ₀ : $p = \frac{1}{6}$ (He is correct only by chance) H ₁ : $p > \frac{1}{6}$ (He is mind reading) P(X ≥ 9) = 1 – P(X ≤ 8) = 1 – 0.9972 = 0.0018 (< 0.05)
Exercise 7B Q. 2	 1-tail tests are applied if departures in a particular direction are emphasised. There is only one critical region. 2-tail tests are applied if no particular direction is emphasised. There are two critical regions. 	So reject H ₀ and conclude that he is mind reading. Establish critical values at 5% : $P(X \ge 7) = 1 - P(X \le 6) = 1 - 0.9629 = 0.031 (3\%)$ $P(X \ge 6) = 1 - P(X \le 5) = 1 - 0.8982 = 0.1018 (10\%)$ 7 is the smallest value which lies inside the 5% region.
Exercise 7C Q. 6	 A 10% significance level in a 2-tail test gives a critical region of 5% in each tail. 	 (He would have to be correct 7 or more times) E.g. To test a claim a coin is biased towards heads a 1-tail test is appropriate.
Statistics 1 Version B; page Competence stat © MEI	8 tements h1, h2, h3, h6, h7, h8, h9, h10, h11, h12, h13	If the claim is the the coin is biased (either way) a 2-tail test should be used. $H_0: p = 0.5; H_1: p \neq 0.5$

References: Chapter 4 Pages 118-124	A Discrete Random Variable is a random variable which is a set of discrete values such as $\{0,1,2,3,n\}$ and is used to model discrete data. The particular values taken are usually denoted by lower	Example 3 The Random Variable <i>X</i> is given by the number of heads obtained when three fair coins are tossed together. The probability distribution is as follows:
Example 4.1 Page 121	case letters and we usually use suffices. e.g. $x_1, x_2, x_3, x_4, \dots, x_n$	x 0 1 2 3
	This means that, given the set of numbers $x_1, x_2, x_3, x_4, \dots, x_n$, which occur with probabilities $p_1, p_2, p_3, p_4, \dots, p_n$,	e.g. $P(X=2) = \frac{3}{8}$
Exercise 4A Q 5 ,8	then $p_1 + p_2 + p_3 + p_4 + \dots + p_n = 1$. A random variable is usually denoted by an upper case	When three fair coins are tossed together the outcomes are theoretically as follows:
	letter, e.g. <i>X</i> . $P(X = x_i) = p_i$ means the probability that the random variable	ННН ННТ НТН ТНН ТТН ТНТ НТТ ТТТ,
	X takes the particular value x_i is p_i .	from which it can be seen that exactly two heads appear in three of the eight possible outcomes.
	For a small set of values we can often conveniently list the associated probabilities.	Example 4
	The rule which assigns probabilities to the various outcomes is known as the Probability Function of X .	The Random Variable <i>Y</i> is given by the formula P(Y = r) = kr for $r = 1, 2, 3, 4$. Find the value
References:	Sometimes it is possible to write the probability function as a formula.	of <i>k</i> and the probability distribution. The distribution is as follows:
Chapter 4 Pages 126-130	Expectation	y 1 2 3 4
Example 4.4 Page 130	If a discrete random variable, <i>X</i> , takes possible values $x_1, x_2, x_3, x_4, \dots, x_n$ with associated probabilities $p_1, p_2, p_3, p_4, \dots, p_n$ then the Expectation E(<i>X</i>) of X is given by	p k 2k 3k 4k Since $\Sigma p = 1, k + 2k + 3k + 4k = 1$ giving $k = \frac{1}{10}$
	$E(X) = \sum x_i p_i$ The Expectation is just another name for the mean. It is therefore sometimes denoted by μ , the symbol used for the mean of a population.	The probability distribution is therefore as follows:
	Expectation of a function of X. If g[X] is a function of the discrete random variable, X, then	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	E(g[X]) is given by E(g[X]) = Σ g[x _i]p _i	E.g. For example 3 we have:
	e.g. $E(X^2) = \sum x_i^2 p_i$ N.B. $E(X^2)$ is not the same as $[E(X)]^2$.	$E[X] = \sum xp = 0 \times \frac{1}{8} + 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8}$ 12
Exercise 4B Q. 6, 7	Variance The variance of a discrete random variable <i>X</i> , Var(<i>X</i>), is given by the formula Var(<i>X</i>) = $E[(X - \mu)^2]$.	$= \frac{12}{8} = 1.5$ E[X ²] = $\sum x^2 p = 0^2 \times \frac{1}{8} + 1^2 \times \frac{3}{8} + 2^2 \times \frac{3}{8} + 3^2 \times \frac{1}{8}$
Exercise 4C Q. 1, 2	Since the variance of a distribution can also be given by the formula $s^2 = \sum x_i^2 p_i - (\sum x_i p_i)^2$, we obtain the alternative, and very useful formula $\operatorname{Var}(X) = s^2 = \operatorname{E}(X^2) - [\operatorname{E}(X)]^2 = \operatorname{E}(X^2) - \mu^2$.	$=\frac{24}{8}=3$
Statistics 1		For example 3 we have:
Version B; page Competence state © MEI	9 ements R1, R2, R3, R4	$E[X^2] = 3, E[X] = 1.5$ Var(X) = 3 - 1.5 ² = 0.75