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1  Further kinematics
Velocity, v, and displacement, Xx.

dx . dv d2x
Weknowthat v = — =x, and a= — = — =
dt dt dt?

= v=[adt and x=[vdt

Note: % = x Is the rate of increase of x, therefore it must always be measured in the

2

direction of x increasing. For the same reason d—tf =X must also be measured in the
direction of x increasing.
x is the displacement from O in the positive x-axis direction,

@) P
® ®

— X
—> i
You must mark x and X in the directions shown

Example: A particle moves in a straight line and passes a point, O, with speed 5 m s at time
t = 0. The acceleration of the particle is givenby a=2t—6 ms™?.
Find the distance moved in the first 6 seconds after passing O.

Solution:
O P
L L
X
—>5 —> X
4
x=v=[X%dt =[2t—6dt = t* —6t+c; v=5 when t=0 = ¢ =5
= v=x= t*—6t+5
= x=[xdt = [t?—6t+ 5dt = ;t>—3t2+5t+ ¢ x=0 when t=0 = ¢ =0

= x=§t3—3t2+5t.

First find when v=0, = t =1 or 5. The particle will change direction at each of these times.

t=0=x=10 = particle moves forwards 2% from t=0to 1l
1

t=1=x= 23 particle moves backwards 102 from t=1t05

t=5 = x = —8% particle moves forwards 2% from t=51t06

t=6 = x = -6 = total distance moved is 155 m.
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Forces which vary with speed

. d
Reminder a=v=
dx

_dv_dx dv_vdv
T dt dt dx  dx

Example: On joining a motorway a car of mass 1800 kg accelerates from 10 ms ™ to 30 ms .

The engine produces a constant driving force of 4000 newtons, and the resistance to
motion at a speed of v ms ™ is 0-9v% newtons. Find how far the car travels while
accelerating.

Solution:
R

In this case the car is always travelling in the same direction.
_ o dv 2
Res > F=ma 4000-09v* = 1800V =~ 0.9v 4000
X _ 30 v

= Jo dx = [}, 1800 x o s dv 1800g

— X =—(1800 = 1-8) x [In (4000 — 0 - 9v2]3Q

3190
3910

= X = -1000 x In( ) = 203-5164527

= the car travels a distance of 204 m, to 3 S.F.
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2  Elastic strings and springs

Hooke’'s Law

Elastic strings

The tension T in an elastic stringis T = ATx , where | is the natural (unstretched) length of the
string, X is the extension and A is the modulus of elasticity.

| - When the string is slack there is no tension.

Elastic springs

The tension, or thrust, T in an elastic springis T = ATX , Where | is the natural length of the
spring, X is the extension, or compression, and A is the modulus of elasticity.

In a spring there is tension when stretched, and thrust when compressed.

T T
B E— e ———
I L4 | )
___________ X s <-X>
< I ><- X > D >
Tension (stretched) Thrust (compressed)

Example: An elastic string of length 1.6 metres and modulus of elasticity 30 N is stretched
between two horizontal points, P and Q, which are a distance 2.4 metres apart. A particle
of mass m kg is then attached to the midpoint of the string, and rests in equilibrium,

0.5 metres below the line PQ. Find the value of m.

Solution:

By symmetry, the tensions in each half
of the string will be equal.

Each half has natural length | = 0-8 m,
and modulus of elasticity 4 =30 N.

Pythagoras = PL =1-3

= extension in each half, x, =0-5m
Ax _ 30X0-5

- T=X= = 1875

l 0.8

Res T 2Tsind=mg = 2><18-75><15—3: mg

—~ m= 118—37;’ = 1.4717425... = 1.5 to2S.F.
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Example: Two light strings, S; and Sy, are joined together at one end only. One end of the
combined string is attached to the ceiling at O, and a mass of 3 kg is attached to the other,
and allowed to hang freely in equilibrium. The moduli of S; and S; are 75 N and 120 N,
and their natural lengths are 50 cm and 40 cm. Find the distance of the 3 kg mass below O.

Solution:
0 As the strings are light, we can ignore their masses and assume that the
A A [~ tensions in the two strings are equal.
: (The tension is assumed to be constant throughout the length of the combined string.)
|
05, Res T T =3g
|
S X
v For Sy,
':\ Ax 75x g
=3q =2 = 21 £
Y T=3g =73 05 = X175
PN For S,
|
0-41 _ _ Ax _ 120x, g
S, TE30=7= %0 7 2T
3g
XZ? AT = x1+x2= mz 0-294
N v
:: = Distance of 3 kg mass below O, is 0-5 + 0-4 + 0-294
39 = 1194 = 12m t02S.F.
Example: A box of weight 49 N is placed on a horizontal table. It is to be pulled along by a

light elastic string with natural length 15 cm and modulus of elasticity 50 N. The
coefficient of friction between the box and the table is 0-4. If the acceleration of the box is
20 cm s and the string is pulled horizontally, what is the length of the string?

Solution:
g f s
S u=04
| >
49 ST

Res T R=49
Box moving = F=Fnx=uR = 04 x49=19-6
Res -> N2L, T-F=5x02 = T=206 m=49+98=5
Hooke's Law = T=2"" = 206 = x =0.0618

= the length of the string is 0-15 + 0.0618 = 0-2118 = 0-212m to 3 S.F.
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Example: Two elastic springs, S1 and S,, are joined at each end, so that they are side by side.
The bottom end of the combined spring is placed on a table, and a weight of 60 N is
placed on the top. The moduli of S; and S, are 80 N and 100 N, and their natural lengths
are 50 cm and 60 cm . Find the distance of the 60 N weight above the table.

Solution: A1 =80, I, =05, and 4, = 100, 1, = 0-6. N AR
A |
The springs will have the same compressed length, ' X EXZ :
but their compressions, x; and x,, will differ. LV v
I LIRERE '0.6
ResT T;+T,=60 | 05, |
| |
Hooke’s Law = Ti= ot T,=222 | : 60 |
0-5 0-6 : :
land Il =  160x+> X, = 60 Y -

and compressed lengths equal = 0-5-x; = 0-6 — X2
= X; = X-01
160(x; — 0-1) + 22 x; = 60

=
980

= = X2 = 76 = X = 0-2326530612
=

weightis 0.6 —x, = 0-3673... m = 37 cm above the table, to2s.F.

Energy stored in an elastic string or spring

For an elastic string the tension is given by T = ATx , when the extension is x. If the string is
extended by a further small amount, &k, then the work done 6W ~ T &

X
= Total work done in extending from x = 0 to x = X is approximately ZT(Sx
0

X X/lx
and, as ox — 0, the total work done, W = f Tdx = f de
0 0
Ax? . i . . .
= W= BT the work done in stretching an elastic string from its natural length to an
extension of X.

. Ax? . . . . . . .
Similarly W = % is the work done in stretching (or compressing) an elastic spring from its

natural length to an extension (or compression) of x.

. . Ax? . . . .
This expression, % , iIs also called the Elastic Potential Energy, or E.P.E., of an elastic spring

or string.
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Example: An elastic spring, with natural length 30 cm and modulus of elasticity 42 N, is
lying on a rough horizontal table, with one end fixed to the table at A. The spring is held
compressed so that the length of the spring is 24 cm. A teddy bear of mass 2 kg is placed
on the table at the other end of the spring, and the spring is released. If the friction force is
5 N, find the speed of the teddy bear when the length of the spring is 29 cm.

Solution: At a length of 0-24 m the compression x =0-3 — 0-24 = 0-06 and
42x0:062

the energy stored, E.P.E., is xo3 0-252 J.
At a length of 0-28 m the compression x =0-3 —0-29 = 0-01 and
42x0-012

the energy stored, E.P.E., is =0-007 J,
2x0-3

= energy released by the spring is 0-252 — 0-007 = 0-245 J.
The initial speed of the teddy bear is 0, and let its final speed be v ms™.
Work done by the spring is 0-245 J, which increases the K.E.
Work done by frictionis 5 x 0-04 = 0-2 J, which decreases the K.E.
Final K.E. = Initial K.E. + energy released by spring — work done by friction

— %x 202 = 0 + 0245 — 02 = 0045

= Vv = v0-045 = 02121320 ...
— speed of the teddy bearis 21cms™, to2s.F.

Example: A climber is attached to a rope of length 50 m, which is fixed to a cliff face at a
point A, 40 metres below him. The modulus of elasticity of the rope is 9800 N, and the
mass of the climber is 80 kg. The ground is 80 m below the point, A, to which the rope is
fixed. The climber falls (oh dear!). Will he hit the ground?

Solution:

Only an idiot would consider what happens at the moment the
rope becomes tight!

Assume the ground is not there — how far would he fall before
being stopped by the rope. In this case both his initial and final b
velocities would be 0, and let the final extension of the rope be
X m.

LossinP.E. = mgh =804 x (40 + 50 + x)
= 80g (90 + x), which increases K.E. and so is positive.

9800x2
2X50

Final K.E. = Initial K.E. + Loss inP.E. — E.P.E.
— 0=0+80g(90+x) — 98x) = x> — 8 —720
31.12931993 (or negative)

The climber would fall 121.1 m if there was no ground, so he would hit the ground 120 m
below, but not going very fast.

= 98 x°

Work done in stretching rope, E.P.E., =

= X
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3 Impulse and work done by variable forces

Impulse of a variable force
A particle of mass m moves in a straight line under the influence of a force F(t), which varies
with time.

In a small time &t the impulse of the force 81 ~ F(t) 6t
t2

and the total impulse from time t; to t, is [= z F(t) 6t
51

and as 6t — 0, the total impulse is
| = ft‘f F(t) dt

dv

Also, F(t) =ma=m —

= [7F@®)dt = [mdv

= = f:le(t)dt =mV —mU

which is the familiar impulse = change in momentum equation.

Example: When a golf ball is hit, the ball is in contact with the club for 0-0008 seconds, and
over that time the force is modelled by the equation F = kt(0-0008 —t) newtons, where
k = 4-3 x 10, Taking the mass of the golf ball to be 45 grams, and modelling the ball as a
particle, find the speed with which the ball leaves the club.

Soution:  F(t) =kt(0-0008 —-t), U=0, V=72, m=0-045

1= [T F(t)dt =mV -mU

— 0045V -0 = [ %%

0 kt(0-0008 - t) dt

=k [0 . 0004¢2 — 1t3]0'0008
- 37 1 @;» F(t)
= 3.41333333...

= V = 759ms* (or 273kmh™)
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Work done by a variable force.

A particle of mass m moves in a straight line under the influence of a force G(x), which varies
with time.

Over a small distance 6x the work done by the force §W =~ G(x)dx

X2

and the total work done in moving from a displacement x; to x, is W = Z Gx) 6x

X1
and as §x — 0, the total work done is
W = fx"f G(x) dx

dv dx dv dv
Also, G(x) =ma=m—=m—X—=mv—
dt dt dx dx

= fxxlz(}(x) dx = f;mv dv

= W= [P6(x)dx =-mV? - imu?
x1 2 2

which is the familiar work - energy equation.

Example: A particle of mass 0-5 kg moves on the positive x-axis under the action of a
: 40 . i .
variable force o newtons, directed away from O. The particle passes through a point

2 metres from O, with velocity 8 m s™ in the positive x-direction. It experiences a constant
resistance force of 6 newtons. Find the speed of the particle when it is 5 metres from O.

Solution:
6 40
O [ 1 <_._>x2| N
2 5) X
€---mmmmmmmm 3 >
X
—>8ms! —>vmst
The work done by the resistance is 6 x 3 =18 J Decreases K.E. so negative
5
. 540 —40
The work done by the force is f —dx = [— =121J. Increases K.E. so positive
2 x? x 1y

Final K.E. = Initial K.E. —work done by resistance + work done by force
= ~Xx0-5/2 = ~x0-5x8 — 18 +12 = 10J
= V = /40 ms™.
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4 Newton’s Law of Gravitation

Tycho Brahe made many, many observations on the motion of planets. Then Johannes Kepler,
using Brahe’s results, formulated Kepler’s laws of planetary motion. Finally Sir Isaac Newton
produced his Universal Law of Gravitation, from which Kepler’s laws could be derived.

Newton’s law of gravitation

The force of attraction between two bodies of masses M; and M is directly proportional to
the product of their masses and inversely proportional to the square of the distance, d, between
them:-

_ GM{M,

==
where G is a constant known as the constant of gravitation.

However the Edexcel A-level course does not use the full version of this law, but states that
the force on a body at a distance x m from the centre of the earth is inversely proportional to
the distance of the body from the centre of the earth, F = x%

Note that the body must lie on the surface of the earth or above.

Finding k in F =%,

Model the earth as a sphere, radius R metres. m
The force on a body x metres from the centre of the earth is F = x%
= The force on a particle of mass m at the surface of the earth is
L

Fexe
But we know that the force on m is mg, towards the centre of the earth,

k
= E =mg = k= ng2 This is so easy that you should work it out every time

It can be shown that the force of gravitation of a sphere acting on a particle lying outside the
sphere, acts as if the whole mass of the sphere was concentrated at its centre.
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Example: A space rocket is launched with speed U from the surface of the earth whose radius
is R. Find, in terms of U, g and R, the speed of the rocket when it has reached a height of

2R. The force on a body x m from the centre of the earth is F = x%

Solution:  Firstly, when the rocket is at a height of 2R, @ '?
it is 3R from the centre of the earth. 2R: !
At the surface of the earth, taking the mass of the rocket as m, l | 3R

[} |
k Y !
—=mg = k= mgR? E
!
= Gravitational force at a distance of x from the centre of the M
.k _ mgR?
earth is 2 2
2
.. _ 3R mgR
= Work done by gravity = [ R .z Ox
213R
_ mgR _2 :
= [— ] =-mgR Decreases K.E. so negative
X R 3

Final K.E. = Initial K.E. — work done against gravity

1 1 2
= -mV%i= —mU?-=mgR
2 2 3

= V= /UZ—ggR
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5 Simple harmonic motion, S.H.M.
The basic S.H.M. equation ¥ = —w?x
If a particle, P, moves in a straight line so that ¥
its acceleration is proportional to its distance . . ‘>: ;
from a fixed point O, and directed towards O, 'A 'O P 'B
then «X_>
2 €-------- ><€-------- >

X = —wx a a

and the particle will oscillate between two points,
A and B, with simple harmonic motion.

The amplitude of the oscillation is OA = OB = a.

Notice that % is marked in the direction of x increasing n the diagram, and, since ®? is
positive, X is negative, so the acceleration acts towards O.

X=asin et and x =acos at

Solving % = —w2x, AEism?’=-0® = m=ziw
= GS.is xX=Asinwt + pcos wt
If x starts from O, x =0whent=0, then x=asin wt

and if x starts from B, x =awhent=0, then x=acos wt

Period and amplitude

From the equations x =asin @t and x=acos ot
: . e 2
we can see that the period, the time for one complete oscillation, is T = f

The period is the time taken to go fromO ->B —>A —> O, or fromB —>A > B
and that the amplitude, maximum distance from the central point, is a.

= w?(a? - x?)
. 2 e dv
¥ = —w*x, and remember that X=v—
dv 2
= V— = —WwWX
dx

1 1
= “v? = ——w?x?*+-=c
2 2
But v=0 when x isatits maximum,x=+a, = c=a’w?
1 1 1
= -v? = —-wx? +-a’0’
2 2 2
= v? = w?(a®—x?)

M3 JUNE 2016 SDB
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Example: A particle is in simple harmonic motion about O. When it is 6 metres from O its
speed is 4 m s, and its deceleration is 1.5 m s™. Find the amplitude of the oscillation, and
the greatest speed as it oscillates. Find also the time taken to move a total distance of 16 m
starting from the furthest point from O.

Solution: We are told that v=4 and ¥ =-1.5 whenx=6

¥=—o™x = -15=-6w’
= w=v0-25=05 taking positive value
v? = w(a? — x?)

= 16 =0-5%(a? — 62)

= a =10 taking positive value

Starting from the furthest point from O, we use x =acos @t =10 cos 0-5t
The particle starts at x = +10 so when the particle has moved 16 metres, X = —6
= —6 =10 cos 0-5t

= t = 2 arccos(—0-6) = 4-43 seconds to 3 S.F.
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Horizontal springs or strings

Example: Two identical springs, of natural length | and modulus A, are joined at one end, and
placed on a smooth, horizontal table. The two ends of the combined spring are fixed to
two points, A and B, a distance 21 apart. A particle of mass m is attached to the springs at
the midpoint of AB; the particle is then displaced a distance a towards B and released.

@ Show that the particle moves under S.H.M.
(b) Find the period of the motion.
(c) Find the speed of the particle when it has moved through a distance of 1.5a.

Solution: A good diagram is essential.

->>
T T,
Al [ | B
<----> :
o * |
|
e e >lg-ceecoaaao EEEET R >
| I I
D CRP > !
a
(@) Consider the mass at a displacement of x from O.
Note that you cannot work from x = a.
y) . . yl .
T, = Tx and is a tension: T,= Tx and is a thrust as we are dealing with springs
Ax ..
Res -, F=ma = —ZxT:mx
. 21 . . . ) 21 2 .
= X=- Ex , which is the equation of S.H.M., with — = w A, mand | are all positive

(Note that the diagram still works when the particle is on the left of O. x will be negative, and so
both T, and T, will be negative, and will have become thrust and tension respectively.)

odis T=2%= 25 [T
(b) The period is T—w—zyz .

(c) When the particle has moved 1.5a, it is on the left of O and x =-0.5a

2 _ 20,2 2 2 _ 20 2 2y _ 34 o
v: = w (a*—x*) = v —ml(a (0.5a))—2mla
31
= v= [~ a
2ml
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Vertical strings or springs

In these problems your diagram should show clearly

the natural length, |

the extension, e, to the equilibrium position, E
the extension from the equilibrium position to the point P, x.

Example: A mass of m hangs in equilibrium at the end of a vertical string, with natural length
I and modulus A. The mass is pulled down a further distance a and released. Show that,
with certain restrictions on the value of a which you should state, the mass executes

S.H.M.

Solution:

[¢°]
R R
-

>

The amplitude will be a, and, since this is a string, the mass will perform full S.H.M. only

if a<e.

Note

e |If a >e the mass will perform S.H.M. as long as the string remains taut; when the string

In the equilibrium position, E,
A
Res T T.= Te =mg

After a further extension of X, the particle is at P,
Res 4 N2L, mg-T = m#

A(e+x) .
= mg - —— =mi
Ae Ax
= mg — T — T =mx
. A . Ae
= X =——X since — =mg
im 1

A
which is S.H.M., with @?=—.
Im

is not taut, the mass will move freely under gravity.

e Ifaspring is used then the mass will perform S.H.M. for any a (as long as the mass does

not try to go above the top of the spring).

16
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6 Motion in acircle 1
Angular velocity

A particle moves in a circle of radius r with constant
speed, v.

Suppose that in a small time ot the particle moves
through a small angle 66, then the distance moved will

AV,
be Ss=r &0 %
s
and its speed v=S = % j

5t 5t @
dae .
and,as ot—>0, v=r— =r86
dt
de . : :
i 6 is the angular velocity, usually written as the Greek letter omega, @

and so, for a particle moving in a circle with radius r, its speed isv = r@

Example: Find the angular velocity of the earth, and the speed of a man standing at the
equator. The equatorial radius of the earth is 6378 km.

Solution:  The earth rotates through an angle of 27 radians in 24 hours

27T

= = = 7.272205217 x 10° = 7.27x 10 rads* to3s.F.

24X3600

A man standing at the equator will be moving in a great circle
— speed v = ro = 6378000 x 7-272205217 x 10° =464 ms™* to3S.F.

Acceleration

A particle moves in a circle of radius r with constant speed, v.

Suppose that in a small time ot the particle moves through a small angle 66, and that its
velocity changes from v; to v,

then its change in velocity is v = v, — v, which is shown in the second diagram.

The lengths of both v, and v, are v, and the angle between v; and v, is 66. isosceles triangle

. 86 56
= 5V:2><VSIn7 z2v><7 =V o0, since sinh~h for h small

ov 60
= —=V —

ot ot

. dv de .
as ot —> 0, acceleration a= —=v— =v§é
dt dt
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But 0 = w =

v v 2
- = a =—=ro
r r

Notice that as 66 — 0, the direction of v becomes perpendicular to both v, and vy, and so
is directed towards the centre of the circle.

2

The acceleration of a particle moving in a circle with speed v is a=re’ = VT ,and is
directed towards the centre of the circle.

Alternative proof

If a particle moves, with constant speed, in a circle of radius r and centre O, then its position
vector can be written

=

=

cos 8 . —si ) ) )
r = r( ) ) = T = r( sin¢ .9) since r is constant
sin @ cosf 6

Particle moves with constant speed = 6 = @ is constant

T =rw (_cz;nee) = speedisv =rm, and is along the tangent since r.=0
.. —cosf 6 ) 2 (cos 9) 2
r=rw L) = —wtr | = —-or
- ( -sinf 6 sin 6 -
2
.. v .
acceleration is ro? (or T) directed towards O. in opposite direction to r

Motion in a horizontal circle

Example: A blob of mass of 3 kg is describing horizontal circles on a smooth, horizontal

table. The blob does 10 revolutions each minute.

An elastic string of natural length 0-6 metres and modulus of elasticity 7-2 newtons is
attached at one end to a fixed point O on the table. The other end is attached to the blob.

Find the full length of the string.

T
__________________ -
Solution:  Let the extension of the string be x. S f 0
A=72,1=06, m=3 O <
10x2m _ m 1 ro
W= = —rads €---==-- ><->
60 3 0.6 X

18

) m\? 2
Res« N2L, T=mra = 3(0-6 + X) x (E) = (06 +x) 3
Hooke’s Law = T= %C =12x
2

- (O-6+x)n? = 12x = 0672 +xz? = 36x

0-612
X = —— = 0.226623537
36—m

= full length of string is 0-6 + x = 0-827 to 3 S.F.

U
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Conical pendulum

Example: An inextensible light string is attached at one end to a fixed point A, and at the
other end to a bob of mass 3kg.

The bob is describing horizontal circles of radius 1-5 metres, with a speed of 4 m s ™.
Find the angle made by the string with the downward vertical.

. . v: 2 3
Solution:  Acceleration= — = — = — |
T 15 3

Res « N2L, Tsinéd =3x 33—2 = 32
Res T T cos 0 = 3g
Dividing = tan @ :z—; = 1.08843...

= 0 =47-4° tolD.P.

Banking

Example: A car is travelling round a banked curve; the radius of the curve is 200 m and the
angle of banking with the horizontal is 20°. If the coefficient of friction between the tyres
and the road is 0-6, find the maximum speed of the car in km h™.

Solution:

For maximum speed — (i) the friction must be acting down the slope and (ii) the friction must
be at its maximum, «R.
= F =06R I

Res T (perpendicular to the acceleration) R cos20 = Fsin20 +mg |
2

Res «, N2L, Fcos20 + Rsin20 = mv— 11

200
I and 1l = m% = R (0-6 cos 20 + sin 20) v
land I = mg = R (cos 20— 0-6 sin 20) \
A

— v = 49.16574344 ms’ = 176.9966764 kmh™ = 180 kmh™ to2s.F.
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Inside an inverted vertical cone

Example: A particle is describing horizontal circles on the inside of an upside down smooth
cone (dunce’s cap), at a height h above the vertex. Find the speed of the particle in terms
of g and h.

Solution: At first, it seems as if there is not enough information. Put in letters and hope for
the best!

Let the angle of the cone be 26, the radius of the circle in which the particle is moving r,
the normal reaction R and the mass of the particle be m.

2 2
Res<—N2L,Rc059:m”7 ”
Res T Rsin & =mg

2
Dividing = cot@ = =
rg
h
But cotd = -
h 2
= -—_
T rg
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~

Motion in a circle 2

Motion in a vertical circle

When a particle is moving under gravity in a vertical circle, the speed is no longer constant.
The *alternative proof’, given a few pages earlier, can easily be modified to show that the

2
acceleration towards the centre is still "7 although there will be a component of the
acceleration along the tangent (perpendicular to the radius) see below.

2
Proof that a = VT for variable speed

If a particle moves in a circle of radius r and centre O, then its position vector can be written
_ . (cos@
L=r (sin 9)
—sin@ 9) _ .5(—siné
: =716
cos@ 6 r ( cos @ )

.. _ . (—cosB 6% — sin@ é) _ _,2(C0sO) . s (—sinf
= r<—sin6 02 + cos6 6 ré (sine) rH( cos @ )

= r = r( since r is constant

From this we can see that the speed isv=rf = ro,
and is perpendicular to the radius since r.1- =0

We can also see that the acceleration has two components

2
. v
r62 =ref = - towards the centre opposite direction to r

and ré perpendicular to the radius which is what we should expect since v = r 8,and r is constant.

. v? . .
In practice we shall only use a=rw?= - directed towards the centre of the circle.

Four types of problem

i) A particle attached to an inextensible string.

i) A particle moving on the inside of a smooth, hollow sphere.
iii) A particle attached to a rod.

iv) A particle moving on the outside of a smooth sphere.

Types i) and ii) are essentially the same: the particle will make complete circles as long as it
is moving fast enough to keep Tor R>0,
where T is the tension in the string, or R is the normal reaction from the sphere.

Types iii) and iv) are similar when the particle is moving in the upper semi-circle, the thrust
from a rod corresponds to the reaction from a sphere. However the particle will at some stage
leave the surface of a sphere, but will always remain attached to a rod.

For a rod the particle will make complete circles as long as it is still moving at the top — the
thrust from the rod will hold it up if it is moving slowly.

Don’t forget the work-energy equation — it could save you some work.
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Example:

Solution:

(©)

22

Vertical motion of a particle attached to a string

A small ball, B, of mass 500 grams hangs from a fixed point, O, by an inextensible

string of length 2.5 metres. While the ball is in equilibrium it is given a horizontal impulse
of magnitude 5 N s.

()
(b)

(©
(d)

(@)

Find the initial speed of the ball.

Find the tension in the string when the string makes an angle 8 with the
downwards vertical.

Find the value of & when the string becomes slack.

Find the greatest height reached by the ball above the lowest point.

1 _
I=mv-mu = 5=-v =v=10 ms™.

(b) Suppose that the particle is moving with speed v at P.

Res N N2L, T—%gcos& = %
GaininP.E. = %g x (2-5 — 2-5co0s

From the work-energy equation

V2= 100 -5g+ 5gcos@  ......... |

=T = %gcos&+

=T

2

&'&’lc
wu

12=1,1 2 _ 1 5(1 —
SV —2><2><10 2g><25(1 cosé)

1 (100-5g + 5g cos®)
2 2:5

= %gcose +20-g+gcosd
14.7 cosd + 10-2

Notice that this still describes the situation when @ > 90°, since cos@will be negative.

The string will become slack when there is no tension

= T =14.7cosf +10.2=0

10-2

= c0sf = ——

14-7

= #=133.9378399 = 133.9° to the nearest tenth of a degree.
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(d)

At the greatest height, the speed will not be zero, so we cannot use energy to get
straight to the final answer. Therefore we need to ‘stop and start again’.

We know that v = 100 - 5g+ 5gcos@, from I, and that cosé = —% at P,

= v=+17
— initial vertical component of velocity is u = /17 cos @
final vertical component of velocity =0, and g = - 9-8
Using v* = u? + 2as we get s = 0-417598109...
The height of P above A is 2-5 — 2.5 cos@ = 4-234693898
= the greatest height of the ball above Ais 4.7 m to 2 s.F.

I Vertical motion of a particle inside a smooth sphere

Example: A particle is moving in a vertical circle inside a smooth sphere of radius a. At the
lowest point of the sphere, the speed of the particle is U. What is the smallest value of U
which will allow the particle to move in complete circles.

Solution:  Suppose the particle is moving with speed v when it
reaches the top of the sphere, and that the normal reaction of v v?
the sphere on the particle is R. s $ a

2

Resy N2L, R+mg = m%

For the particle to remain in contact with the sphere (i.e. to
make complete circles), R>0

=  V>ag A
From the lowest point, A, to the top, the gainin P.E. is m x g x 2a = 2mga
The work-energy equation gives

1 1
> va:E mU % — 2mga

= U?= v?+4ga > 5ag since v*>ag

Note that if U ? = 5ag the particle will still be moving at the top (v =,/ag), and so will
make complete circles = For complete circles, U>,/5ag.

Note that the method is exactly the same for a particle attached to a string, replacing the
reaction, R, by the tension, T.
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il Vertical motion of a particle attached to a rigid rod

Example: A particle is attached to a rigid rod and is moving in a vertical circle of radius a. At
the lowest point of the circle, the speed of the particle is U. What is the smallest value of U
which will allow the particle to move in complete circles.

Solution:  As long as the particle is still moving at the top of the T
circle, it will make complete circles. Let v be the speed of the Vv v?
particle at the top of the circle. $ a

If the particle is moving slowly (v < ag — see previous
example), the force in the rod will be a thrust, T, and will
prevent it from falling into the circle.

If v=0, it will stop at the top,

= for complete circles v>0

From the lowest point, A, to the top
the gainin P.E. is m x g x 2a = 2mga

The work-energy equation gives

1
mv? =-mu 2 _2mga

N | =

U2= v?+4ga >4ag since V2> 0

=
= For complete circles, U > 2./ag.
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iv Vertical motion of a particle on the outside of a smooth sphere

Example:

A smooth hemisphere of radius a is placed on horizontal ground. A small bead of

mass m is placed at the highest point and then dislodged. & is the angle made between the
line joining the centre of the hemisphere to the bead with the upward vertical.

() Find the force of reaction between the bead and the hemisphere, in terms of m, g, a

and 6.

(b) Find the value of & when the bead leaves the surface of the hemisphere.

(c) Find the speed with which the bead strikes the ground.

Solution:

()

(b)

(©)

Path a

When the angle is 6, assuming the bead is still in contact with the sphere,
P.E. lost = mg(a —a cosé)
Work-energy equation

%mv2:0+mga(1—cos'9) = V¥ =20a(1 —C0S6) ..ovvvueeereanid

2

Res ¥ N2L, mgcosd — R = m%

2
v
= R:mgcose—m; ............... 1

land Il = R=mgcosd —2mg(1 — cosé)
= R = mg(3cosé - 2)

R can never be negative, and so the bead will leave the hemisphere when R =0
= cosé = g

= 0 = 48.2° to the nearest tenth of a degree.

The only force doing work as the particle falls from the top of the hemisphere to
the ground is gravity. Note that R is always perpendicular to the path and so does
no work.

P.E. lost = mga, w is speed with which the particle hits the ground
Work-energy equation gives

1
EmWZ:O+mga

= w = \/2ag
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8 Centres of mass

When finding a centre of mass

Centres of mass depend on the formula Mx = Z m;x; ,or similar.

Remember that eslimoz f(x;)ox = ff(x) dx.
xX—

Centre of mass of a lamina

Example:

A uniform lamina is bounded by the
parabola y* = x and the line x = 4, and
has surface density p.

By symmetry y = 0.
1) To find the mass of the lamina, M

=\

M = Area x density
=2p ['Vx dx

- o] - 2

2) To find x, first choose an element with constant x co-ordinate throughout.
Take a strip parallel to the y-axis, a distance of x; from the x-axis and width &x.
This strip is approximately a rectangle of length 2y; and width ok

= Area of strip = 2y; X

= mass of strip =m; ~ 2y;p o

4 4
= Z mix; = Z 2y;px; 6x
0 0

We know that y =+/x and we let & — 0

- - t 4 51t 128
= Zmixi = ZZyl-pxi ox — j 2px /2 dx = [— px 2] = —
- - o 5 0 5

_Tmx _ 128 32 12 _
TTw T 5 PT3PTE T

centre of mass of the lamina is at (2-4, 0).

=
=
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Example: A uniform lamina is bounded by the x- and y-axes and the part of the curve

Solution:  The figure shows the lamina

1)

2)

3)

y = €0 X for which 0 < x < %n. Find
the coordinates of its centre of mass.

and a typical strip of width ox and
height cos x, with surface density p.

To find the mass.
M =pf0n/2cosx dx

= p[sinx]z/2 =p

To find x, first choose an element with
constant x co-ordinate throughout.

Take a strip parallel to the y-axis, a distance of x; from the x-axis and width ox.
This strip is approximately a rectangle of length y; and width ok
mass of typical strip = m; = y;p X

/> "/

= Zmixl- ~ Zyipxl- ox
0 0

We know thaty = cos x and we let ox — 0
s
/2 n,
= Z mix; — pf xcosx dx = P (—— 1) integrating by parts
0 0
/2 T
Xy tmxg p(z -1 ow
= X = = == -1
M p 2
To find y we can use the same strips, because the centre of mass of each strip is
approximately %yi from the x-axis; we can now consider each strip as a point mass,

m; = yip X, atadistance % y; from the x-axis.
/2 />

1
= Zmi)’i ~ Z}’ipxz}’ifsx
0 0

We know that y =cos x and we let ox — 0
/>

T
1 /2 1
= Zmiyi - E Pf cos?x dx = g oxu any fool can do this integral
0
0

T/, 1
:>__ZO myi _gPm _ T
Y M p 8

— centre of mass is at (g -1, g)

M3 JUNE 2016 SDB

o\

27



Example: A uniform lamina occupies the closed region bounded by the curve y =2 — x,
the line y = x and the x-axis. Find the coordinates of its centre of mass.

Yy
Solution: 1

L1

1) To find the mass, M.

The area = area of triangle + area under curve

= M= p(%xlxl + f12v2—x dx) = %p which | am too lazy to do!

2) Tofindy.
The typical strip is approximately a rectangle of length x, — x; and height dy, with a
constant y-coordinate.

The mass of the strip is m; = p (X2 — X1)dy.
Butx, =2 —y? (liesonthecurve y =v2 —x),and x; =y (liesony = x)
= mi=p -y Y)Y

1 1
= me ~ Zp(z—yiz — Y)Y oy
0 0
1

1
lim my; = jp(Z—yz -y)ydy = i,0 you ought to do this one!
8y—0 = 0 12
1
yo L _a s
= Yy = M myi = 7, T 1
0 6
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3) Tofind x.
The centre of mass of the typical strip is % (X2 + X1) from the y-axis (mid-point of strip)
and m; = p (X, — X1)dy as before.

we can now consider each strip as a point mass, m; = p (X, — X1)dy, at a distance % (X2 + X1)
from the y-axis

1
= Zmixi = zo:/?(xz—xﬂé‘y X%(xz + x1)

But (X2 —X1) (e +X1) = x> =X = 2-y?)’ -y’ = 4-5y° +y"
and the limits go from 0 to 1 because the dy means we are summing in the y direction.

= mel—Zzpm 552 + y*) o

_ 1
lim Zmixi = f SP(4=5y" + yHdy = Zp

6y—0
1
19p
f—i m-x-—_5 = 38
- M [ X4 A _,D - E
6
= the centre of mass is at( )

Centre of mass of a sector

In this case we can find a nice method, using the result for the centre of mass of a triangle.

We take a sector of angle 2« and divide it into many smaller
sectors.

Mass of whole sector = M = %rz X2axp = riap

Consider each small sector as approximately a triangle, with
centre of mass, Gy, 2 along the median from O.

. . . 1
Working in polar coordinates for one small sector, m; = Erzp 66

OP:r:OGlzzr = xizzrcose

= lim Z mix; = f rszgrcosede

50-0 —a

0=—a
= Zr3psin «
_ Ymyx;  Zripsin« 2rsin«
—X= T T r2ap 3«

By symmetry, y =

. 2 i
— centre of mass is at ( T;;““ ,O)
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Centre of mass of a circular arc

For a circular arc of radius r which subtends an angle of 2« at the centre.

The length of the arcisr x 2«
= mass of thearcis M =2arp

First divide the arc into several small pieces, each subtending an
angle of 6@ at the centre. 4

The length of each piece isro60 = m;=rp 60

We now think of each small arc as a point mass at the centre of the
arc, with x-coordinate x; = r cosé@

a
a
= lim Z mix; = f rp Xrcosf db
-

560-0
0=—a
= 2r’psina
_ _ Xmyx; _ 2r’psine  rsin«
X" M 2arp o

By symmetry, y = 0

. ino
— centre of mass is at (r S;n ) 0)

Standard results for centre of mass of uniform laminas and arcs

. 2 .
Triangle 3 of the way along the median, from the vertex.
.. . 4 .
Semi-circle, radius r é from centre, along axis of symmetry
2rsina

Sector of circle, radius r, angle 2o from centre, along axis of symmetry

rsina

Circular arc, radius r, angle 2o from centre, along axis of symmetry
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Centres of mass of compound laminas

The secret is to form a table showing the mass, or mass ratio, and position of the centre of mass

for each component. Then use
7= 2 mx; = _ My
M YT M

to find the centre of mass of the compound body.

Example: A semi-circle of radius r is cut out from a uniform semi-circular lamina of radius
2r. Find the position of the centre of mass of the resulting shape.

Solution:

By symmetry the centre of mass will lie on the axis of
symmetry, OA.

The mass of the compound shape is
M= %(47rr2 ~zr¥)p 23 zrp

and the centre of mass of a semi-circle

is & from the centre.
31

compound shape +  small semi-circle = large semi-circle
3 2 19 2
Mass 7P SACp 27r°p
Distance above O y s B
3 3
— 1
= —7zr2p><y + E/Zrsz— = 27zr2p><—
— _ 28
= = —7

The centre of mass lies on the axis of symmetry, at a distance of %Br from the centre.
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Centre of mass of a solid of revolution

Example: A machine component has the shape of a uniform solid of revolution formed by

rotating the region under the curve y =+v9 — x, x>0, about the x-axis. Find the position
of the centre of mass.

Solution:

<€-2->
1
NeJ
|
=

y

”

9 9
Mass, M, of the solid = pf ry? dx = pf 7(9-x) dx
0 0

= M :82—1p7r.

The diagram shows a typical thin disc of thickness 6x and radius y =+v9 — x.
— Mass of disc = p7y? = pr(9—X) &
Note that the x coordinate is the same (nearly) for all points in the disc

9
= Z m;x;

Z pr(9—x)x; ox
9
lim Zmixl- = f pr(9—x)x dx = &pn
6x—0 0 2

Q

0

243
o Xmx; Sopm
= I = =

= =3
M 82—1p7'[
By symmetry, y =0

= the centre of mass is on the x-axis, at a distance of 3 from the origin.
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Centre of mass of a hemispherical shell — method la

This method needs techniques for finding the surface area of a solid of revolution from FP3.

Preliminary result

Take a small section of a curve of length §s and the corresponding lengths 6x and Sy, as
shown in the diagram.

A very small section of curve will be nearly straight

[1 H b 6
and we can form a ‘triangle’. ﬂ 8y

= 8572 6x° + 6y° 6x
5s\* SY\*
—_ ~ 1 -
= (6x> + <5x)
daséx - 0 (ds) 1+ (dy )2
- —_ = —
and as 6x , Tx Ix
Mass of shell

Let the density of the shell be p, radius r
In the xy-plane, the curve has equation

X2+y2:r2

= 2x+2y——0 = = ==

,2 2
1+ dy y+x

Take a slice perpendicular to the x-axis through the point
(i, yi) to form a ring with arc length §s.

Area of thering = 27yi6s = mass of ring m; = 2xzyip és

— Total mass = Z 2ny;p 6s

= Total mass M = Slimoz 2ny;p 6s = onyp ds
S—

r ds r y? + x?
= M= LZnypd—dx = J;)Znyp 52 dx

-
= M= f 2np\/r? dx = 2mpr
0

,
x ] = 2mpr?
0
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To find Zmixl- = ZZﬂyip&q X;

_ T ds
= gér_r)loz 27y; pOsS x; = f 27p yx Tx dx

0

r y2 + x2 221 X
= f 27mp yx dx = 2mpr|—| = mpr
0 y? 21,
- Xmx mpr® _
- YT Ty T 2mpr: 2

= the centre of mass is on the line of symmetry at a distance of % r from the centre.

Centre of mass of a hemispherical shell — method 1b

This method is similar to method 1a but does not need FP3 techniques, so is suitable for people
who have not done FP3 (I think it is preferable to method 2 — see later).

Mass of shell
Let the density of the shell be p, radius r

Take a slice perpendicular to the x-axis through the point
(x;, yi) to form a ring with arc length 66, and
circumference 2zy. This can be “flattened out’ to form a
rectangle of length 27y and height 66

Area of the ring =
= massofring m; =2z pyxirdo

= Total mass = Z 2myrp 66

= Total mass M = slémoz 2nyrp 660 = onyrp do

But y=rsin 4

T
2

s
2
= M=f 2nr?sinf pdf = 2mpr? [—cosel = 2mpr?
0
0

To find z mix; = Z 2ry;r pbo x;

2
= lim ZZﬁyirp&xi = f 2npryx dO
66-0 0

But x=rcos @ and y=rsiné
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T

= Zmixi =]227rpr3sin9c059 do
0

Vs
5 [—cos2072 3
=7npr [—] = npr
2 1o
__ Xmyx;  ompr® v
= x = M 2mpr?2 2

= the centre of mass is on the line of symmetry at a distance of % r from the centre.

Centre of mass of a conical shell

To find the centre of mass of a conical shell, or the
surface of a cone, we divide the surface into small
sectors, one of which is shown in the diagram.

We can think the small sector as a triangle with

centre of mass at G1, where OG; = §0P.

This will be true for all the small sectors, and the
x-coordinate, X1, of each sector will be the same

= the x-coordinate of the shell will also be x;

As the number of sectors increase, the approximation gets better, until it is exact,
and as OG; = 20P then OG =204 (similar triangles)

= the centre of mass of a conical shell is on the line of symmetry, at a distance of 2 of the
height from the vertex.
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Centre of mass of a square based pyramid

A square based pyramid has base area A and height h
The centre of mass is on the line of symmetry

= volume = §Ah

<--x ->

= mass M= %Ahp

Take a slice of thickness o at a distance x; from O

The base of the slice is an enlargement of the base of
the pyramid with scale factor %

<--T e >

: 2
= ratio of areas is (%)
2
— area of base of slice is %A

= mass of slice m; = 6x

h h 3 )
: _ 2 _ L2
= Sljlcr_r}oZmixl- = W Ap dx = Zh Ap
x=0
_ Xmx; Th?Ap 3
= X = = = Zh
M 3 Ahp

The centre of mass lies on the line of symmetry at a distance 2 h from the vertex.

The above technique will work for a pyramid with any shape of base.

The centre of mass of a pyramid with any base has centre of mass 2 of the way along the line
from the vertex to the centre of mass of the base (considered as a lamina).

There are more examples in the book, but the basic principle remains the same:
e find the mass of the shape, M
e choose, carefully, a typical element, and find its mass (involving o or dy)
e for solids of revolution about the x-axis (or y-axis), choose a disc of radius y and
thickness ox, (or radius x and thickness oy).
e find Y m;x; or Y m;y;

e let ox or 8y — 0, and find the value of the resulting integral

_ 1 _ 1
o X=_Xmx, §= o Xmy;
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Standard results for centre of mass of uniform bodies

Solid hemisphere, radius r ' from centre, along axis of symmetry
Hemispherical shell, radius r - from centre, along axis of symmetry
Solid right circular cone, height h % from vertex, along axis of symmetry
Conical shell, height h ey from vertex, along axis of symmetry

Centres of mass of compound bodies
This is very similar to the technique for compound laminas.
Example: A solid hemisphere of radius a is placed on a solid cylinder of height 2a. Both

objects are made from the same uniform material. Find the position of the centre of mass
of the compound body.

Solution: A

|
By symmetry the centre of mass of the compound x Gy @

body, G, will lie on the axis of symmetry. \
................... TR
The mass of the hemisphere is g ra’pat Gy, and 0 :
|
the mass of the cylinder is za’ x 2ap = 27a’pat xG :
G, :

xGz 1 2a
= mass of the compound shape is !
|
M=2 ﬂaap, :
33a v

0G; = ’Y and 0G;=a

Now draw up a table

Body hemisphere + cylinder = compound body
Mass g ra’p 2za’p g ralp
Distance above O 3?“ —-a y

= %ﬂa3p>< — + 2za’px(-a) = E7za3p><}7

= y = —2q

. 21 .
= centre of mass is at G, below O, where OG = ;& on the axis of symmetry.
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Centre of mass of a hemispherical shell — method 2
Note: if you use this method in an exam question which asks for a calculus technique, you
would have to use calculus to prove the results for a solid hemisphere first.
The best technique for those who have not done FP3 is method 1b.
We can use the theory for compound bodies to find the centre of mass of a hemispherical shell.

From a hemisphere with radius r + &r we remove a hemisphere with radius r, to form a
hemispherical shell of thickness &r and inside radius r.

radius r+or r
Mass 2z (r+ o1) °p 27r°p 22 (r+ 1) °p - Znr’p
centre of mass
above base 3(r + or) ir y
= §7z(r+5r)3px§(r+5r) - gyzrg’px%r = {gyz(r+5r)3p— §7zr3p}§
= i o (r*+4r’sr ... —r%) = 2mp P +3r%sr... -y ignoring (5r)? and higher

= rPsrz2rfsry
andas or — 0, izér

The centre of mass of a hemispherical is on the line of symmetry, % r from the centre.
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Tilting and hanging freely

Tilting

Example:  The compound body of the previous example is placed on a slope which makes an

angle @ with the horizontal. The slope is sufficiently rough to prevent sliding. For what
range of values of & will the body remain

in equilibrium.

Solution:  The body will be on the point of
tipping when the centre of mass, G, lies
vertically above the lowest corner, A.

. 21
Centre of mass is 2a — 3 a

43
=5, a from the base
At this point
tan @ = oo = 2

= 0 =36-65610842

The body will remain in equilibrium for
6 < 36-7° to the nearest 0-1°.
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Hanging freely under gravity

This was covered in M2. For a body hanging freely from a point A, you should always state, or
show clearly in a diagram, that AG is vertical — this is the only piece of mechanics in the
question!

Body with point mass attached hanging freely
The best technique will probably be to take moments about the point of suspension.

Example: A solid hemisphere has centre O, radius a and mass 2M. A particle of mass M is
attached to the rim of the hemisphere at P.

The compound body is freely suspended under gravity from O. Find the angle made by
OP with the horizontal.

Solution:  As usual a good, large diagram is
essential.

Let the angle made by OP with the
horizontal be 6, then ZOGL = 6.

We can think of the hemisphere as a
point mass of 2M at G,

where OG = %a .

The perpendicular distance from O to the
line of action of 2Mg is OL = 3?asin o,
and

the perpendicular distance from O to the

line of action of Mg
is OK = a cosé

Taking moments about O
2Mg x %‘lsine = Mg x a cosé

= tand = %
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Hemisphere in equilibrium on a slope

Example: A uniform hemisphere rests in equilibrium on a slope which makes an angle of
20° with the horizontal. The slope is sufficiently rough to prevent the hemisphere from
sliding. Find the angle made by the flat surface of the hemisphere with the horizontal.

Solution:  Don’t forget the basics.

The centre of mass, G, must be vertically
above the point of contact, A. If it was
not, there would be a non-zero moment
about A and the hemisphere would not be
in equilibrium.

BGA is a vertical line, so we want the
angle 4.

OA must be perpendicular to the slope
(radius - tangent), and with all the 90°
angles around A, ZOAG = 20°.

Let a be the radius of the hemisphere

then OG = %a and, using the sine rule

sin£0GA __ sin20

a - 3a/8
Clearly ZOGA isobtuse = ZOGA =114-209...
= /0BG =114-209... — 90 = 24-209...

— 0 = 90 —24-209... = 65-8° to the nearest 0-1°.

= ZOGA=65-790.... or 114.209...
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tilting bodies, 39 vertical strings or springs, 16
Force Work
impulse of variable force, 9 variable force, 10

varying with speed, 4
Gravitation

Newton's law, 11
Hooke’s Law

elastic springs, 5

elastic strings, 5

energy stored in a string or spring, 7

42 M3 JUNE 2016 SDB



	1 Further kinematics
	Velocity, v, and displacement, x.
	Forces which vary with speed
	Reminder   a = 𝒗,𝒅𝒗-𝒅𝒙.


	2 Elastic strings and springs
	Hooke’s Law
	Elastic strings
	Elastic springs
	Energy stored in an elastic string or spring


	3 Impulse and work done by variable forces
	Impulse of a variable force
	Work done by a variable force.

	4 Newton’s Law of Gravitation
	Newton’s law of gravitation
	Finding k in F = ,𝒌-,𝒙-𝟐...

	5 Simple harmonic motion, S.H.M.
	The basic S.H.M. equation   ,𝒙. = −,𝝎-𝟐.𝒙
	x = a sin (t   and  x = a cos (t
	Period and amplitude
	,𝒗-𝟐. =  ,𝝎-𝟐.,,𝒂-𝟐.−,𝒙-𝟐..
	Horizontal springs or strings
	Vertical strings or springs

	6 Motion in a circle 1
	Angular velocity
	Acceleration
	Alternative proof

	Motion in a horizontal circle
	Conical pendulum
	Banking
	Inside an inverted vertical cone


	7  Motion in a circle 2
	Motion in a vertical circle
	Proof that  a = ,,𝒗-𝟐.-𝒓.  for variable speed

	Four types of problem
	i Vertical motion of a particle attached to a string
	ii Vertical motion of a particle inside a smooth sphere
	iii Vertical motion of a particle attached to a rigid rod
	iv Vertical motion of a particle on the outside of a smooth sphere


	8 Centres of mass
	Centre of mass of a lamina
	Centre of mass of a sector
	Centre of mass of a circular arc
	Standard results for centre of mass of uniform laminas and arcs

	Centres of mass of compound laminas
	Centre of mass of a solid of revolution
	Centre of mass of a hemispherical shell – method 1a
	Centre of mass of a hemispherical shell – method 1b
	Centre of mass of a conical shell
	Centre of mass of a square based pyramid
	Standard results for centre of mass of uniform bodies

	Centres of mass of compound bodies
	Centre of mass of a hemispherical shell – method 2
	Tilting and hanging freely
	Tilting
	Hanging freely under gravity
	Body with point mass attached hanging freely

	Hemisphere in equilibrium on a slope


