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1 Further kinematics 
Velocity, v, and displacement, x. 

We know that  𝑣 =   𝑑𝑥
𝑑𝑡

  = 𝑥̇,  and   a =   𝑑𝑣
𝑑𝑡

 =   𝑑
2𝑥
𝑑𝑡2

  = 𝑥̈ 

⇒   v = ∫𝑎 𝑑𝑡   and   x = ∫ 𝑣 𝑑𝑡 

Note:   𝑑𝑥
𝑑𝑡

 = 𝑥̇  is the rate of increase of x, therefore it must always be measured in the 

direction of x increasing. For the same reason  𝑑
2𝑥
𝑑𝑡2

  = 𝑥̈  must also be measured in the 
direction of  x increasing. 
x is the displacement from  O  in the positive x-axis direction,  

 

 

 

 

 

You must mark  𝑥̇  and  𝑥̈  in the directions shown 

 

Example:  A particle moves in a straight line and passes a point, O, with speed 5 m s-1 at time 
t = 0. The acceleration of the particle is given by  a = 2t – 6  m s−2.  
Find the distance moved in the first 6 seconds after passing O. 

Solution:  

 

 

 

 

 

 𝑥̇ =  𝑣 = ∫ 𝑥̈  𝑑𝑡 = ∫ 2𝑡 − 6  𝑑𝑡 =   𝑡2 − 6𝑡 + 𝑐 ;      v = 5  when  t = 0  ⇒  c  = 5 

⇒ 𝑣 =  𝑥̇  =   𝑡2 − 6𝑡 + 5   

⇒ 𝑥 =  ∫ 𝑥̇  𝑑𝑡 =   ∫ 𝑡2 − 6𝑡 +  5 𝑑𝑡 =   1
3
𝑡3 − 3𝑡2 + 5𝑡 +  𝑐′    x = 0  when  t = 0  ⇒ 𝑐′  = 0 

⇒ 𝑥 = 1
3
𝑡3 − 3𝑡2 + 5𝑡 . 

First find when  v = 0,  ⇒  t  = 1 or 5. The particle will change direction at each of these times. 
 
t = 0  ⇒  x  =   0 

t = 1  ⇒  x  =   2 1
3
  

t = 5  ⇒  x  =  −8 1
3
 

t = 6  ⇒  x  =  –6 

⇒  particle moves forwards       2 1
3
    from  t = 0 to 1 

       particle moves backwards  10 2
3
   from  t = 1 to 5 

       particle moves forwards     2 1
3
     from  t = 5 to 6 

⇒   total distance moved is      15 1
3
   m. 

O P 

x 

𝑥̇ 

𝑥̈ 

O P 

x 

𝑥̇ 

𝑥̈ 
5 
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Forces which vary with speed 

Reminder   a = 𝒗 𝒅𝒗
𝒅𝒙

 

𝑎 = 𝑑𝑣
𝑑𝑡

= 𝑑𝑥
𝑑𝑡

× 𝑑𝑣
𝑑𝑥

= 𝑣 𝑑𝑣
𝑑𝑥

   

 
Example: On joining a motorway a car of mass 1800 kg accelerates from 10 ms−1 to 30 ms−1. 

The engine produces a constant driving force of 4000 newtons, and the resistance to 
motion at a speed of v ms−1 is 0⋅9v2 newtons. Find how far the car travels while 
accelerating. 

 

Solution:  
In this case the car is always travelling in the same direction. 

Res →  F = ma   4000 − 0.9v2  =  1800 v 
𝑑𝑣
𝑑𝑥

 

⇒  ∫ 𝑑𝑥𝑋
0   =  ∫ 180030

10  × 
𝑣

4000−0∙9𝑣2
  dv 

⇒ X  = − (1800 ÷ 1⋅8) × [ln (4000 − 0 ∙ 9𝑣2]1030 

⇒ X  =  −1000 × ln�3190
3910

�  =  203⋅5164527 

⇒ the car travels a distance of 204 m, to 3 S.F. 
 

 

 

 

   

 
 

 

 

 

 

 

 

 

 

 

 

 0.9v2 

 1800g 

 4000 

 R 



M3  JUNE  2016  SDB   5 

2 Elastic strings and springs 
 

Hooke’s Law 

Elastic strings 

The tension T in an elastic string is  𝑇 = 𝜆𝑥
𝑙

 , where  l  is the natural (unstretched) length of the 
string,  x  is the extension and  λ  is the modulus of elasticity. 

 

 

 

Elastic springs 

The tension, or thrust,  T  in an elastic spring is  𝑇 = 𝜆𝑥
𝑙

 , where  l  is the natural length of the 
spring,  x  is the extension, or compression, and  λ  is the modulus of elasticity. 
In a spring there is tension when stretched, and thrust when compressed. 
 

 
 

 
  Tension (stretched)     Thrust (compressed) 

 
Example: An elastic string of length 1.6 metres and modulus of elasticity 30 N is stretched 

between two horizontal points, P and Q, which are a distance 2.4 metres apart. A particle 
of mass m kg is then attached to the midpoint of the string, and rests in equilibrium, 
0.5 metres below the line PQ. Find the value of m. 

 
Solution: 

By symmetry, the tensions in each half 
of the string will be equal. 

Each half has natural length l = 0⋅8 m, 
and modulus of elasticity  λ = 30 N. 

Pythagoras ⇒  PL = 1⋅3 

⇒     extension in each half, x, = 0⋅5 m 

⇒ T  =  𝜆𝑥
𝑙

 =  30×0∙5
0.8

  =  18⋅75 

 

Res  ↑        2T sin θ  = mg ⇒ 2 × 18⋅75 × 5
13

 =  mg 

⇒ m  =  187∙5
13g

  = 1⋅4717425…  =  1⋅5   to 2 S.F. 

When the string is slack there is no tension. 

 

 T 

 l  x 

 T 

 l  x 

 T 

 x 
 l 

 T  T 

 mg 

 θ   θ  

 θ   θ  

 Q  P 

 0⋅5  

 1⋅2  

  L 
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Example:  Two light strings, S1 and S2, are joined together at one end only. One end of the 
combined string is attached to the ceiling at O, and a mass of 3 kg is attached to the other, 
and allowed to hang freely in equilibrium. The moduli of S1 and S2 are 75 N and 120 N, 
and their natural lengths are 50 cm and 40 cm. Find the distance of the 3 kg mass below O. 

 
Solution: 

As the strings are light, we can ignore their masses and assume that the 
tensions in the two strings are equal.  

(The tension is assumed to be constant throughout the length of the combined string.) 

Res   ↑        T  =  3g 
For S1,    

T = 3g  =  𝜆𝑥
𝑙

 =   75𝑥1
0∙5

       ⇒    𝑥1  =   g
50

   

For S2,    

T = 3g  =  𝜆𝑥
𝑙

 =   120𝑥2
0∙4

  ⇒    𝑥2  =   g
100

   

 ⇒ 𝑥1 + 𝑥2  =   3g
100

 =    0 ∙ 294   

 ⇒ Distance of 3 kg mass below O, is  0⋅5 + 0⋅4 + 0⋅294   

 =  1.194   =  1⋅2 m  to 2 S.F. 
 

  

Example: A box of weight 49 N is placed on a horizontal table. It is to be pulled along by a 
light elastic string with natural length 15 cm and modulus of elasticity 50 N. The 
coefficient of friction between the box and the table is 0⋅4. If the acceleration of the box is 
20 cm s–2 and the string is pulled horizontally, what is the length of the string? 

 
Solution: 
 

 

 

 

 

Res  ↑    R = 49 

Box moving ⇒  F = Fmax = µ R  =  0⋅4 × 49 = 19⋅6 

Res  →   N2L,     T − F = 5 × 0⋅2    ⇒  T = 20⋅6   m = 49 ÷ 9⋅8 = 5 

Hooke’s Law  ⇒   T = 
50×𝑥
0∙15

  =  20⋅6   ⇒   x  = 0⋅0618 

⇒ the length of the string is  0⋅15 + 0⋅0618  =  0⋅2118  =  0⋅212 m   to 3 S.F. 

 

l = 0⋅15 
λ = 50 
µ  = 0⋅4 

S2 

S1 

 x1 

 0⋅4 

 0⋅5 

 x2 
 T 

 3g 

 O 

 T 

 0⋅2 

 0⋅15  x 

 R 

 F 

 49 
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Example: Two elastic springs, S1 and S2, are joined at each end, so that they are side by side. 
The bottom end of the combined spring is placed on a table, and a weight of 60 N is 
placed on the top. The moduli of S1 and S2 are 80 N and 100 N, and their natural lengths 
are 50 cm and 60 cm . Find the distance of the 60 N weight above the table. 

 

Solution: λ1 = 80,  l1 = 0⋅5, and λ2 = 100,  l2 = 0⋅6. 
The springs will have the same compressed length,  
but their compressions, x1 and x2, will differ.    

Res ↑   T1 + T2 = 60       I 

Hooke’s Law  ⇒   T1 = 80𝑥1
0∙5

 ,  T2 = 100𝑥2
0∙6

 II 

I  and  II ⇒ 160 x1 + 500
3

 x2  =  60 

and compressed lengths equal  ⇒   0⋅5 − x1  =  0⋅6 – x2       

⇒    x1  =  x2 − 0⋅1 

⇒ 160(x2 − 0⋅1)  +  500
3

 x2  =  60 

⇒ 980
3

 x2  =  76       ⇒ x2  =  0⋅2326530612 

⇒ weight is  0.6 − x2  =  0⋅3673…  m  =  37 cm  above the table,   to 2 S.F. 

 

Energy stored in an elastic string or spring 
 

For an elastic string the tension is given by  T = 𝜆𝑥
𝑙

 , when the extension is x. If the string is 
extended by a further small amount, δx, then the work done  δ W ≈ T δx  

⇒    Total work done in extending from  𝑥 =  0  to  𝑥 =  𝑋  is approximately   �𝑇
𝑋

0

𝛿𝑥 

and, as δ𝑥 → 0, the total work done,𝑊 = � 𝑇
𝑋

0
𝑑𝑥 =   �

𝜆𝑥
𝑙

𝑋

0
𝑑𝑥 

⇒ W  =  
𝜆𝑋2

2𝑙
    is the work done in stretching an elastic string from its natural length to an 

extension of  X. 

 

Similarly W  =  
𝜆𝑥2

2𝑙
  is the work done in stretching (or compressing) an elastic spring from its 

natural length to an extension (or compression) of x. 

 

This expression, 
𝜆𝑥2

2𝑙
 ,  is also called the Elastic Potential Energy, or E.P.E., of an elastic spring 

or string. 

 

x2 

 60 

x1 

 0⋅6  0⋅5 
 T1  T2 
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Example: An elastic spring, with natural length 30 cm and modulus of elasticity 42 N, is 
lying on a rough horizontal table, with one end fixed to the table at A. The spring is held 
compressed so that the length of the spring is 24 cm. A teddy bear of mass 2 kg is placed 
on the table at the other end of the spring, and the spring is released. If the friction force is 
5 N, find the speed of the teddy bear when the length of the spring is 29 cm.  

 

Solution: At a length of 0⋅24 m the compression  x = 0⋅3 − 0⋅24 = 0⋅06 and  

the energy stored, E.P.E., is  
42×0∙062

2×0∙3
  = 0⋅252  J. 

At a length of 0⋅28 m the compression  x = 0⋅3 − 0⋅29 = 0⋅01 and  

the energy stored, E.P.E., is  
42×0∙012

2×0∙3
  = 0⋅007  J, 

⇒ energy released by the spring is  0⋅252 − 0⋅007  =  0⋅245   J. 
The initial speed of the teddy bear is 0, and let its final speed be  v  m s−1. 

Work done by the spring is  0⋅245  J, which increases the K.E. 

Work done by friction is  5 × 0⋅04  =  0⋅2  J, which decreases the K.E. 
Final K.E.  =  Initial K.E. + energy released by spring  −  work done by friction 

⇒ 1
2

× 2𝑣2  =   0  +  0⋅245  −  0⋅2   =   0⋅045 

⇒ v  =  √0 ∙ 045  =  0⋅2121320 … 
⇒ speed of the teddy bear is  21 cm s−1,   to 2 S.F. 
 

Example:  A climber is attached to a rope of length 50 m, which is fixed to a cliff face at a 
point  A, 40 metres below him. The modulus of elasticity of the rope is 9800 N, and the 
mass of the climber is 80 kg. The ground is 80 m below the point, A, to which the rope is 
fixed. The climber falls (oh dear!). Will he hit the ground? 

Solution: 
Only an idiot would consider what happens at the moment the 
rope becomes tight! 

Assume the ground is not there – how far would he fall before 
being stopped by the rope. In this case both his initial and final 
velocities would be 0, and let the final extension of the rope be 
x m. 

Loss in P.E.  =  mgh  = 80 g × (40 + 50 + x) 
=  80g (90 + x), which increases K.E. and so is positive. 

Work done in stretching rope, E.P.E., =  9800𝑥
2

2×50
   =  98 x2 

Final K.E.  =  Initial K.E. + Loss in P.E.  −  E.P.E. 

⇒ 0  =  0  +  80g (90 + x)  −  98 x2   ⇒ x2  −  8x  − 720 

⇒ x  =  31.12931993 (or negative) 
The climber would fall  121.1  m if there was no ground, so he would hit the ground 120 m 
below, but not going very fast.   

 40 

 80 
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3 Impulse and work done by variable forces 
Impulse of a variable force 

A particle of mass m moves in a straight line under the influence of a force F(t), which varies 
with time. 

In a small time 𝛿𝑡 the impulse of the force  𝛿𝐼  ≈  F(t) 𝛿𝑡   

 and the total impulse from time  𝑡1  to  𝑡2  is       𝐼 ≈�𝐹(𝑡)
𝑡2

𝑡1

𝛿𝑡 

and as 𝛿𝑡 → 0, the total impulse is    

  I =  ∫ 𝑭(𝒕)𝒕𝟐
𝒕𝟏

𝒅𝒕   

Also,  𝐹(𝑡) = 𝑚𝑎 = 𝑚𝑑𝑣
𝑑𝑡

   

⇒ ∫ 𝐹(𝑡)𝑡2
𝑡1

𝑑𝑡  =  ∫ 𝑚𝑉𝑈 𝑑𝑣  

⇒ I =  ∫ 𝑭(𝒕)𝒕𝟐
𝒕𝟏

𝒅𝒕  = mV − mU 

which is the familiar   impulse = change in momentum   equation. 

 

Example: When a golf ball is hit, the ball is in contact with the club for 0⋅0008 seconds, and 
over that time the force is modelled by the equation  F = kt(0⋅0008 – t)  newtons, where 
k = 4⋅3 × 1010. Taking the mass of the golf ball to be 45 grams, and modelling the ball as a 
particle, find the speed with which the ball leaves the club. 

 

Soution: F(t) = kt(0⋅0008 – t),  U = 0,  V = ?,  m = 0⋅045 

 I =  ∫ 𝐹(𝑡)0∙0008
0 𝑑𝑡  = mV − mU 

⇒ 0⋅045V − 0  = ∫ 𝑘𝑡(0 ∙ 0008 –  𝑡)  0∙0008
0 𝑑𝑡   

 =  𝑘 �0 ∙ 0004𝑡2 − 1
3
𝑡3�

0

0∙0008
  

= 3.41333333… 

⇒ V  =  75⋅9 m s−1   (or  273 km h−1) 

 

 

 

 

 

 

 

 F(t) 
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Work done by a variable force. 

A particle of mass m moves in a straight line under the influence of a force G(x), which varies 
with time. 

Over a small distance 𝛿𝑥 the work done by the force  𝛿𝑊  ≈  𝐺(𝑥)𝛿𝑥   

and the total work done in moving from a displacement  𝑥1  to  𝑥2  is  𝑊 ≈�𝐺𝑥)
𝑥2

𝑥1

𝛿𝑥 

and as 𝛿𝑥 → 0, the total work done is    

  W =  ∫ 𝑮(𝒙)𝒙𝟐
𝒙𝟏

𝒅𝒙   

Also,  𝐺(𝑥) = 𝑚𝑎 = 𝑚𝑑𝑣
𝑑𝑡

= 𝑚𝑑𝑥
𝑑𝑡

× 𝑑𝑣
𝑑𝑥

= 𝑚𝑣 𝑑𝑣
𝑑𝑥

   

⇒ ∫ 𝐺(𝑥)𝑥2
𝑥1

𝑑𝑥  =  ∫ 𝑚𝑣𝑉
𝑈 𝑑𝑣  

⇒ W =  ∫ 𝑮(𝒙)𝒙𝟐
𝒙𝟏

𝒅𝒙  = 𝟏
𝟐
𝒎𝑽𝟐 − 𝟏

𝟐
𝒎𝑼𝟐 

which is the familiar   work - energy   equation. 

 

Example: A particle of mass 0⋅5 kg moves on the positive x-axis under the action of a 
variable force 

40
𝑥2

 newtons, directed away from O. The particle passes through a point 
2 metres from O, with velocity 8 m s−1 in the positive x-direction. It experiences a constant 
resistance force of 6 newtons. Find the speed of the particle when it is 5 metres from O. 

 

Solution:  

 

 

 

 

 

 

The work done by the resistance is 6 × 3 = 18 J    Decreases K.E. so negative 

The work done by the force is ∫ 40
𝑥2

5
2  dx  =  �−40

𝑥
�
2

5
 = 12 J.       Increases K.E. so positive 

Final K.E. = Initial K.E.  − work done by resistance  +  work done by force 

⇒ 1
2

× 0 ∙ 5𝑉2  =   1
2

× 0 ∙ 5 × 82  −   18 + 12 =   10 J 

⇒ V  =  √40  m s−1. 
 

 

x 
O 

 5  2 

 6  
40
𝑥2

 

x 

 8 m s−1  v m s−1 
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4 Newton’s Law of Gravitation 
 

Tycho Brahe made many, many observations on the motion of planets. Then Johannes Kepler, 
using Brahe’s results, formulated Kepler’s laws of planetary motion. Finally Sir Isaac Newton 
produced his Universal Law of Gravitation, from which Kepler’s laws could be derived. 

Newton’s law of gravitation 
The force of attraction between two bodies of masses  M1  and  M2  is directly proportional to 
the product of their masses and inversely proportional to the square of the distance, d, between 
them:- 

  F = 
𝐺𝑀1𝑀2
𝑑2

 

where  G  is a constant known as the constant of gravitation. 
 
However the Edexcel A-level course does not use the full version of this law, but states that 
the force on a body at a distance x m from the centre of the earth is inversely proportional to 
the distance of the body from the centre of the earth,  F = 𝑘

𝑥2
. 

Note that the body must lie on the surface of the earth or above. 

 

Finding k in F = 𝒌𝒙𝟐.  

Model the earth as a sphere, radius R metres. 

The force on a body x metres from the centre of the earth is  F = 𝑘
𝑥2

 

⇒  The force on a particle of mass m at the surface of the earth is 

 F = 
𝑘
𝑅2

 

But we know that the force on m is mg, towards the centre of the earth, 

⇒ 
𝑘
𝑅2

 = mg    ⇒   k = mgR2      This is so easy that you should work it out every time 

 

It can be shown that the force of gravitation of a sphere acting on a particle lying outside the 
sphere, acts as if the whole mass of the sphere was concentrated at its centre. 

 

 

 

 

 

 

 

 m 

  

 R 
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Example: A space rocket is launched with speed U from the surface of the earth whose radius 
is R. Find, in terms of U, g and R, the speed of the rocket when it has reached a height of 
2R. The force on a body x m from the centre of the earth is  F = 𝑘

𝑥2
 

 

 

Solution: Firstly, when the rocket is at a height of 2R,  
it is 3R from the centre of the earth. 

At the surface of the earth, taking the mass of the rocket as m, 

 
𝑘
𝑅2

 = mg   ⇒   k = mgR2    

⇒ Gravitational force at a distance of x from the centre of the 

earth is   
𝑘
𝑥2

  = mg 𝑅2

𝑥2
  

⇒ Work done by gravity  =  ∫  mg 𝑅2

𝑥2
3𝑅
𝑅  dx 

= �−mg 𝑅2

𝑥 �
𝑅

3𝑅
 = 2

3
 mgR     Decreases K.E. so negative 

Final K.E. = Initial K.E.  − work done against gravity 

⇒ 1
2
 mV 2 =  1

2
 mU 2 − 2

3
 mgR 

⇒ V  =  �𝑈2 −  4
3

g𝑅 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2R 
 3R 
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5 Simple harmonic motion, S.H.M. 
The basic S.H.M. equation   𝒙̈  =  −𝝎𝟐𝒙 

If a particle, P, moves in a straight line so that 
its acceleration is proportional to its distance 
from a fixed point O, and directed towards O, 
then 

 𝑥̈  =  −𝜔2𝑥 

and the particle will oscillate between two points,  
A and B, with simple harmonic motion. 

The amplitude of the oscillation is OA = OB = a. 

Notice that 𝑥̈ is marked in the direction of x increasing n the diagram, and, since ω 2  is 
positive, 𝑥̈ is negative, so the acceleration acts towards O. 
 

x = a sin ωt   and  x = a cos ωt   

Solving  𝑥̈  =  −𝜔2𝑥,    A.E. is  m 2 = −ω 2 ⇒ m = ±iω  

⇒ G.S.  is   x = λ sin ω t  +  µ cos ω t    

If  x  starts from O, x = 0 when t = 0,  then  x = a sin ω t    

and  if  x  starts from B, x = a when t =0,   then  x = a cos ω t   
 

Period and amplitude 

From the equations  x = a sin ωt  and   x = a cos ω t   

we can see that the period, the time for one complete oscillation, is  T = 
2𝜋
𝜔

. 

The period is the time taken to go from O → B → A → O,  or  from B → A → B 
and that the amplitude, maximum distance from the central point, is a. 

 

𝒗𝟐  =   𝝎𝟐(𝒂𝟐 − 𝒙𝟐) 

 𝑥̈  =  −𝜔2𝑥,  and remember that  𝑥̈ = 𝑣 𝑑𝑣
𝑑𝑥

  

⇒ 𝑣 𝑑𝑣
𝑑𝑥

=  −𝜔2𝑥     

⇒ ∫𝑣 𝑑𝑣 =   ∫−𝜔2𝑥 𝑑𝑥 

⇒ 1
2
𝑣2  =  −1

2
𝜔2𝑥2 + 1

2
𝑐  

But  v = 0  when  x  is at its maximum, x = ±a,   ⇒      c = a2ω 2  

⇒ 1
2
𝑣2  =  −1

2
𝜔2𝑥2 + 1

2
 a2ω 2 

⇒ 𝑣2  =   𝜔2(𝑎2 − 𝑥2) 

 O  A  B 
x 

𝑥̈ 

a a 

 P 
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Example: A particle is in simple harmonic motion about O. When it is 6 metres from O its 
speed is 4 m s−1, and its deceleration is 1.5 m s−2. Find the amplitude of the oscillation, and 
the greatest speed as it oscillates. Find also the time taken to move a total distance of 16 m 
starting from the furthest point from O. 

Solution: We are told that  v = 4  and  𝑥̈ = −1⋅5  when x = 6 

 𝑥̈ = − ω 2x  ⇒ −1⋅5 = − 6ω 2      

 ⇒ ω = √0 ∙ 25 = 0⋅5             taking positive value 

 𝑣2  =   𝜔2(𝑎2 − 𝑥2)       

 ⇒     16 = 0⋅52(𝑎2 − 62)       

 ⇒ a  =  10       taking positive value 

 

Starting from the furthest point from O, we use  x = a cos ω t = 10 cos 0⋅5t 

The particle starts at x = +10 so when the particle has moved 16 metres, x = −6 

 ⇒ −6 = 10 cos 0⋅5t  

 ⇒ t = 2 arccos(−0⋅6) = 4⋅43  seconds     to 3 S.F. 
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Horizontal springs or strings 

Example: Two identical springs, of natural length l and modulus λ, are joined at one end, and 
placed on a smooth, horizontal table. The two ends of the combined spring are fixed to 
two points, A and B, a distance 2l apart. A particle of mass m is attached to the springs at 
the midpoint of AB; the particle is then displaced a distance a towards B and released. 

 (a) Show that the particle moves under S.H.M.  
(b) Find the period of the motion. 
(c) Find the speed of the particle when it has moved through a distance of 1.5a. 

 

Solution: A good diagram is essential. 
 

 

 

 

 

 

 

(a) Consider the mass at a displacement of x from O.  
Note that you cannot work from x = a.  

T1 = 𝜆𝑥
𝑙

  and is a tension:        T2 = 𝜆𝑥
𝑙

  and is a thrust       as we are dealing with springs 

Res  →, F = ma    ⇒   − 2 × 𝜆𝑥
𝑙

 = m𝑥̈ 

⇒ 𝑥̈ = − 2𝜆
𝑚𝑙
𝑥 , which is the equation of S.H.M., with  2𝜆

𝑚𝑙
 = ω2      λ, m and l are all positive  

 

(Note that the diagram still works when the particle is on the left of O.  x will be negative, and so 
both T1 and T2 will be negative, and will have become thrust and tension respectively.) 
 

(b) The period is  T = 
2𝜋
𝜔

 =  2π �𝑚𝑙
2𝜆

 

(c) When the particle has moved 1.5a, it is on the left of O  and   x = −0.5a 

𝑣2  =   𝜔2(𝑎2 − 𝑥2)    ⇒ 𝑣2  =  2𝜆
𝑚𝑙  �𝑎

2— (−0.5𝑎)2�  =   3𝜆
2𝑚𝑙

𝑎2 

⇒ v  =  � 3𝜆
2𝑚𝑙

  a 

 

 

  

𝑥̈ 

O x 

 T1  T2 

A B 

 l  l 

a 
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Vertical strings or springs 

In these problems your diagram should show clearly  

the natural length, l 
the extension, e, to the equilibrium position, E 
the extension from the equilibrium position to the point P, x. 

 

Example: A mass of m hangs in equilibrium at the end of a vertical string, with natural length 
l and modulus λ. The mass is pulled down a further distance a and released. Show that, 
with certain restrictions on the value of a which you should state, the mass executes 
S.H.M. 

 

Solution:  

In the equilibrium position, E, 

Res  ↑  Te = 
𝜆𝑒
𝑙

 = mg 

After a further extension of  x, the particle is at P, 

Res  ↓   N2L,     mg − T  =  m𝑥̈ 

⇒ mg  −  
𝜆(𝑒+𝑥)

𝑙
  = m𝑥̈ 

⇒ mg  −  
𝜆𝑒
𝑙
− 𝜆𝑥

𝑙
  = m𝑥̈ 

⇒ 𝑥̈  = − 
𝜆
𝑙𝑚

 x   since  
𝜆𝑒
𝑙

 = mg 

        which is S.H.M., with  ω 2 = 
𝜆
𝑙𝑚

. 

The amplitude will be a, and, since this is a string, the mass will perform full S.H.M. only 
if  a ≤ e. 

 

Note  

• If  a  > e  the mass will perform S.H.M. as long as the string remains taut; when the string 
is not taut, the mass will move freely under gravity. 

• If a spring is used then the mass will perform S.H.M. for any a (as long as the mass does 
not try to go above the top of the spring). 
 
 

  

E 

P 

e
 

𝑥̈ 

x 
 T 

 l 

 Te 

 mg 

 mg 
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6 Motion in a circle 1 
Angular velocity 

A particle moves in a circle of radius r with constant 
speed, v. 

Suppose that in a small time δ t the particle moves 
through a small angle  δθ , then the distance moved will 
be  δ s = r δθ  

and its speed   v = 𝛿𝑠
𝛿𝑡

 =   𝑟 𝛿𝜃
𝛿𝑡

 

and, as δ t → 0,  v  =  r 
𝑑𝜃
𝑑𝑡

   =  r 𝜃̇ 

𝑑𝜃
𝑑𝑡

   =  𝜃̇  is the angular velocity, usually written as the Greek letter omega, ω 

and so, for a particle moving in a circle with radius r, its speed is v = rω   
 

Example:  Find the angular velocity of the earth, and the speed of a man standing at the 
equator. The equatorial radius of the earth is 6378 km. 

 

Solution:  The earth rotates through an angle of  2π  radians in 24 hours 

⇒ ω  =  2𝜋
24×3600

  =  7⋅272205217 × 10-5   =  7⋅27 × 10−5  rad s-1   to 3 S.F. 

A man standing at the equator will be moving in a great circle 

⇒ speed  v  =  rω  = 6378000 × 7⋅272205217 × 10−5   = 464 m s−1    to 3 S.F. 
 

Acceleration  

 

 

 

 

A particle moves in a circle of radius r with constant speed, v. 

Suppose that in a small time δ t the particle moves through a small angle  δθ, and that its 
velocity changes from  v1  to  v2,  

then its change in velocity is δ v = v2 − v1, which is shown in the second diagram. 

The lengths of both v1 and  v2  are v, and the angle between  v1 and  v2   is  δθ.   isosceles triangle 

⇒  δ v  =  2 × v sin 𝛿𝜃
2

  ≈ 2v × 𝛿𝜃
2

  = v δθ ,        since  sin h ≈ h  for h small 

⇒ 
𝛿𝑣
𝛿𝑡

 ≈ v  𝛿𝜃
𝛿𝑡

   

as δ t → 0,    acceleration    a =  
𝑑𝑣
𝑑𝑡

  =  v 
𝑑𝜃
𝑑𝑡

  =  v 𝜃̇ 

δθ  

δ s 

r 

ω  

δθ  

v1 

r 

v2 

𝛿𝜃
2

  

v2 
v1 

δv 
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But  𝜃̇  =   ω  =  
𝑣
𝑟
   ⇒   a   =  

𝑣2

𝑟
  = rω 

2    

Notice that as  δθ  →  0,  the direction of  δ v  becomes perpendicular to both v1 and  v2, and so 
is directed towards the centre of the circle. 

The acceleration of a particle moving in a circle with speed  v  is  a = rω2 =  
𝒗𝟐

𝒓
 , and is 

directed towards the centre of the circle. 

Alternative proof 
If a particle moves, with constant speed, in a circle of radius r and centre O, then its position 
vector can be written 

 r  =  𝑟 �cos 𝜃
sin𝜃�  ⇒ 𝒓̇  =  𝑟 �− sin𝜃   𝜃̇

cos 𝜃   𝜃̇
�               since r is constant 

 Particle moves with constant speed    ⇒   𝜃̇  = ω   is constant 

⇒ 𝒓̇  =  𝑟𝜔 �− sin 𝜃
cos 𝜃 � ⇒   speed is v = rω , and is along the tangent     since  r . 𝒓̇ = 0 

⇒ 𝒓̈  =  𝑟𝜔 �− cos 𝜃  𝜃̇ 
– sin𝜃   𝜃̇

�   =  −𝜔2𝑟 �cos 𝜃
sin𝜃�  =  − ω2 r 

⇒  acceleration is  rω 
2  (or 

𝑣2

𝑟
)  directed towards O.       in opposite direction to r   

 

Motion in a horizontal circle 

Example:  A blob of mass of 3 kg is describing horizontal circles on a smooth, horizontal 
table. The blob does 10 revolutions each minute. 

An elastic string of natural length 0⋅6 metres and modulus of elasticity 7⋅2 newtons is 
attached at one end to a fixed point O on the table. The other end is attached to the blob. 

Find the full length of the string. 

 

Solution: Let the extension of the string be x. 

λ = 7⋅2,  l = 0⋅6,  m = 3 

ω = 
10×2𝜋
60

  =  𝜋
3
  rad s-1 

Res ←  N2L,   T = mrω2 =  3(0⋅6 + x) × �𝜋
3
�
2

  = (0⋅6 + x) 
𝜋2

3
  

Hooke’s Law  ⇒ T  =  
7∙2𝑥
0∙6

 = 12x 

⇒    (0⋅6 + x) 
𝜋2

3
   =  12x      ⇒ 0⋅6π 2  + xπ 2  = 36x 

⇒ x  =  
0∙6𝜋2

36−𝜋2
  =  0⋅226623537 

⇒ full length of string is 0⋅6 + x  =  0⋅827    to 3 S.F. 

x  0.6 

rω2 
O 

 T 
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Conical pendulum 
Example: An inextensible light string is attached at one end to a fixed point A, and at the 

other end to a bob of mass 3kg. 

The bob is describing horizontal circles of radius 1⋅5 metres, with a speed of 4 m s−1. 

Find the angle made by the string with the downward vertical. 

 

Solution: Acceleration =  
𝑣2

𝑟
  = 42

1∙5
  = 32

3
  ,  

Res  ←   N2L,    T sin θ   = 3 ×  32

3
   =  32 

Res   ↑       T cos θ  = 3g 

Dividing  ⇒ tan θ  = 
32
3g

  =  1⋅08843… 

⇒ θ  = 47⋅4o     to 1 D.P. 

 

Banking 
Example: A car is travelling round a banked curve; the radius of the curve is 200 m and the 

angle of banking with the horizontal is 20o. If the coefficient of friction between the tyres 
and the road is 0⋅6, find the maximum speed of the car in km h-1. 

 

Solution:  

 

 

 

 

 

For maximum speed − (i)  the friction must be acting down the slope and (ii) the friction must 
be at its maximum, µR. 

⇒ F  =  0⋅6R          I 

Res  ↑   (perpendicular to the acceleration)     R cos 20  =  F sin 20  + mg  II 

Res  ←,  N2L,        F cos 20  +  R sin 20  =  m 
𝑣2

200
    III 

I  and  III  ⇒ m 
𝑣2

200
   =  R (0⋅6 cos 20  +  sin 20)    IV 

I  and  II ⇒    mg     =  R (cos 20 − 0⋅6 sin 20)    V 

IV  ÷  V ⇒   
𝑣2

200g
   =  (0∙6 cos 20  +  sin 20)

(cos 20 − 0∙6 sin 20)
 

⇒ v  =  49.16574344  m s-1  =  176.9966764  km h−1  =  180  km h−1   to 2 S.F. 

A 

O 42

1∙5
   3g 

T 
 1⋅5 

θ  

 R 

 mg 

 F 

𝑣2

200  

 20 

 200 
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Inside an inverted vertical cone 
Example: A particle is describing horizontal circles on the inside of an upside down smooth 

cone (dunce’s cap), at a height h above the vertex. Find the speed of the particle in terms 
of g and h. 

 

Solution: At first, it seems as if there is not enough information. Put in letters and hope for 
the best! 

Let the angle of the cone be 2θ, the radius of the circle in which the particle is moving r, 
the normal reaction R and the mass of the particle be m. 

 

Res  ←  N2L,  R cos θ  =  m 𝑣
2

𝑟
  

Res  ↑   R sin θ   = mg 

Dividing  ⇒ cot θ   =    𝑣
2

𝑟g
 

But     cot θ   =  ℎ
𝑟
 

⇒ ℎ
𝑟

= 𝑣2

𝑟g
 

⇒ v2  =  gh  

⇒ v  =  �gℎ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 ×  

θ  

 R 

𝑣2

𝑟
  

 h 

 r 

 mg 
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7  Motion in a circle 2 
Motion in a vertical circle 

When a particle is moving under gravity in a vertical circle, the speed is no longer constant. 

The ‘alternative proof’, given a few pages earlier, can easily be modified to show that the 
acceleration towards the centre is still  𝑣

2

𝑟
, although there will be a component of the 

acceleration along the tangent (perpendicular to the radius) see below. 

 Proof that  a = 𝒗
𝟐

𝒓
  for variable speed 

If a particle moves in a circle of radius r and centre O, then its position vector can be written 

  r  =  𝑟 �cos 𝜃
sin𝜃�   

⇒ 𝒓̇  =  𝑟 �− sin𝜃   𝜃̇
cos 𝜃   𝜃̇

� =  𝑟𝜃̇ �− sin 𝜃
cos 𝜃 �     since r is constant 

⇒ 𝒓̈  =  𝑟 �−cos𝜃 𝜃̇2  −  sin𝜃  𝜃̈
−sin𝜃 𝜃̇2  + cos 𝜃  𝜃̈

�  =  −𝑟𝜃̇2 �cos𝜃
sin 𝜃�  + 𝑟𝜃̈ �− sin𝜃 

cos𝜃 � 

 

From this we can see that the speed is v = r𝜃̇  =  rω ,  
and is perpendicular to the radius since 𝒓. 𝒓̇ = 0 

We can also see that the acceleration has two components 

 r𝜃̇2 = rω2 = 
𝑣2

𝑟
    towards the centre       opposite direction to r 

and  r𝜃̈ perpendicular to the radius which is what we should expect since v = 𝑟 𝜃̇,and r is constant. 

In practice we shall only use  a = rω 
2 = 

𝑣2

𝑟
, directed towards the centre of the circle. 

 

Four types of problem 

i) A particle attached to an inextensible string. 
ii) A particle moving on the inside of a smooth, hollow sphere. 
iii) A particle attached to a rod. 
iv) A particle moving on the outside of a smooth sphere. 
 
Types  i)  and  ii)  are essentially the same: the particle will make complete circles as long as it 
is moving fast enough to keep T or R ≥ 0, 
where  T  is the tension in the string, or  R  is the normal reaction from the sphere. 
Types  iii)  and  iv)  are similar when the particle is moving in the upper semi-circle, the thrust 
from a rod corresponds to the reaction from a sphere. However the particle will at some stage 
leave the surface of a sphere, but will always remain attached to a rod.  
For a rod the particle will make complete circles as long as it is still moving at the top – the 
thrust from the rod will hold it up if it is moving slowly. 

Don’t forget the work-energy equation – it could save you some work. 
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i Vertical motion of a particle attached to a string 
 

Example: A small ball, B, of mass 500 grams hangs from a fixed point, O, by an inextensible 
string of length 2⋅5 metres. While the ball is in equilibrium it is given a horizontal impulse 
of magnitude 5 N s. 

 

(a) Find the initial speed of the ball. 

(b) Find the tension in the string when the string makes an angle θ  with the 
downwards vertical. 

(c) Find the value of θ  when the string becomes slack. 

(d) Find the greatest height reached by the ball above the lowest point. 

 

Solution: 

(a) I = mv − mu   ⇒   5 = 1
2
 v ⇒  v  =  10  m s-1. 

 

(b) Suppose that the particle is moving with speed v at P. 

 Res         N2L,   T – 1
2
 g cosθ  =  1

2
  
𝑣2

2∙5
   

Gain in P.E. =  1
2
 g × (2⋅5 − 2⋅5cosθ) 

 
From the work-energy equation 
 
1
2
 × 1

2
 v2  =  1

2
 × 1

2
 × 102  −   1

2
 g × 2⋅5(1 − cosθ) 

 
⇒ v2 =  100 − 5g + 5g cosθ ……… I 
 
⇒ T  =  1

2
 g cosθ  + 1

2
 (100 − 5𝑔 + 5𝑔 cosθ )  

2∙5
 

          =   1
2
 g cosθ  + 20 − g + g cosθ  

⇒ T   =  14⋅7 cosθ  + 10⋅2 
 
Notice that this still describes the situation when θ  > 90o, since cosθ will be negative. 
 

(c) The string will become slack when there is no tension 
 
⇒    T  =  14.7 cosθ  + 10.2 =  0 
⇒    cosθ  =  −10∙2

14∙7
 

⇒    θ = 133⋅9378399   =  133⋅9o   to the nearest tenth of a degree. 
 

 

 

θ  

a = 𝑣
2

2.5
  

 T 

O 
2.5 

P 

 1
2
 g 

v  
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(d)  

 

 

 

 

  

At the greatest height, the speed will not be zero, so we cannot use energy to get 
straight to the final answer. Therefore we need to ‘stop and start again’. 

We know that v2 =  100 − 5g + 5g cosθ ,  from I,  and that cosθ  =  −10∙2
14∙7

  at P, 

  ⇒ v = √17 

  ⇒  initial vertical component of velocity is u = √17 cos θ     

  final vertical component of velocity = 0, and g = − 9⋅8 

Using  v2 = u2 + 2as we get  s = 0⋅417598109… 

  The height of P above A is 2⋅5 − 2⋅5 cosθ  = 4⋅234693898 

  ⇒ the greatest height of the ball above A is  4⋅7 m  to 2 S.F. 

ii Vertical motion of a particle inside a smooth sphere 
Example: A particle is moving in a vertical circle inside a smooth sphere of radius a. At the 

lowest point of the sphere, the speed of the particle is U. What is the smallest value of U 
which will allow the particle to move in complete circles. 

 

Solution: Suppose the particle is moving with speed v when it 
reaches the top of the sphere, and that the normal reaction of 
the sphere on the particle is R. 

 Res ↓  N2L,    R + mg  =  m 
𝑣2

𝑎
   

For the particle to remain in contact with the sphere (i.e. to 
make complete circles),  R ≥ 0 

 ⇒ v2 ≥ ag  

From the lowest point, A, to the top, the gain in P.E. is  m × g × 2a = 2mga 
 The work-energy equation gives 

 1
2
  mv2 = 1

2
  mU 2 − 2mga  

 ⇒ U 2 =  v2 + 4ga  ≥  5ag     since  v2 ≥ ag 

Note that if  U 2 = 5ag the particle will still be moving at the top (v =�𝑎g), and so will 
make complete circles  ⇒ For complete circles,  U ≥ �5𝑎g . 

Note that the method is exactly the same for a particle attached to a string, replacing the 
reaction, R, by the tension, T. 

path 
of ball 

O 

P 
  

A A 

O 

P 

133.9 

v 
43.9 

a 

O 

R+mg 
v 𝑣2

𝑎
  

A 

a 
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iii Vertical motion of a particle attached to a rigid rod 
 

Example: A particle is attached to a rigid rod and is moving in a vertical circle of radius a. At 
the lowest point of the circle, the speed of the particle is U. What is the smallest value of U 
which will allow the particle to move in complete circles. 

 

Solution: As long as the particle is still moving at the top of the 
circle, it will make complete circles. Let v be the speed of the 
particle at the top of the circle. 

If the particle is moving slowly  (v2 < ag − see previous 
example), the force in the rod will be a thrust, T, and will 
prevent it from falling into the circle.  
 
If v = 0, it will stop at the top,  

⇒  for complete circles   v > 0 
From the lowest point, A, to the top  
the gain in P.E. is  m × g × 2a = 2mga 

 The work-energy equation gives 

 

 1
2
  mv2 = 1

2
  mU 2 − 2mga  

 ⇒ U 2 =  v2 + 4ga  > 4ag     since  v2 > 0 

 ⇒ For complete circles,  U > 2�𝑎g . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 T 

a 

O 

mg 
v 𝑣2

𝑎
  

A 

a 
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iv Vertical motion of a particle on the outside of a smooth sphere 
 

Example: A smooth hemisphere of radius a is placed on horizontal ground. A small bead of 
mass m is placed at the highest point and then dislodged. θ  is the angle made between the 
line joining the centre of the hemisphere to the bead with the upward vertical. 

(a) Find the force of reaction between the bead and the hemisphere, in terms of m, g, a 
and θ. 

(b) Find the value of θ  when the bead leaves the surface of the hemisphere. 

(c) Find the speed with which the bead strikes the ground. 

 

Solution:  

 

 

 

 

(a) When the angle is θ, assuming the bead is still in contact with the sphere, 

P.E. lost  =  mg(a − a cosθ) 

Work-energy equation 
1
2
 mv2 = 0 + mga(1 − cosθ)   ⇒  v2 = 2ga(1 − cosθ)   ………………..I 

 Res            N2L,      mg cosθ  −  R  =  m 
𝑣2

𝑎
    

⇒ R  =  mg cosθ  −  m 
𝑣2

𝑎
      ……………II 

 

I and II  ⇒ R = mg cosθ  − 2mg(1 − cosθ)    

⇒ R  =  mg(3cosθ  − 2) 
 

(b) R can never be negative, and so the bead will leave the hemisphere when R = 0 

⇒ cosθ  =  2
3
    

⇒ θ  =  48.2o   to the nearest tenth of a degree.    
(c) The only force doing work as the particle falls from the top of the hemisphere to 

the ground is gravity. Note that R is always perpendicular to the path and so does 
no work. 

P.E. lost  =  mga, w is speed with which the particle hits the ground 

Work-energy equation gives 
1
2
 mw2 = 0 + mga 

⇒ w  =  �2𝑎g 

O 

Path 
of bead 

𝑣2

𝑎   

O 

θ 
a 

mg 

R 

v 
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8 Centres of mass 
 

When finding a centre of mass 

Centres of mass depend on the formula  𝑀𝑥 =  �𝑚𝑖𝑥𝑖 , or similar. 

Remember that   lim
δ𝑥→0

�𝑓(𝑥𝑖)𝛿𝑥 =   �𝑓(𝑥) d𝑥. 

 

Centre of mass of a lamina 

Example:     

 A uniform lamina is bounded by the 
parabola y2 = x and the line x = 4, and 
has surface density ρ. 

By symmetry 𝑦� = 0. 
1) To find the mass of the lamina, M 

 M  =  Area × density 

 = 2ρ  ∫ √𝑥
4
0  𝑑𝑥  

 =  �4
3

 𝜌𝑥3 2� �
0

4
  =  32

3
𝜌 

 

2) To find 𝑥̅, first choose an element with constant x co-ordinate throughout. 

Take a strip parallel to the y-axis, a distance of xi from the x-axis and width δx. 

This strip is approximately a rectangle of length 2yi and width δx 

⇒ Area of strip  ≈ 2yi δx   

⇒   mass of strip = mi  ≈ 2yiρ δx   

⇒   �𝑚𝑖𝑥𝑖

4

0

  ≈   �2𝑦𝑖𝜌𝑥𝑖  𝛿𝑥
4

0

 

We know that  y = √𝑥  and we let  δx → 0 

⇒   �𝑚𝑖𝑥𝑖

4

0

 =  �2𝑦𝑖𝜌𝑥𝑖  𝛿𝑥
4

0

   →  � 2𝜌𝑥3 2�
4

0
 𝑑𝑥 = �

4
5

 𝜌𝑥5 2� �
0

4

=  
128

5
𝜌 

⇒    𝑥̅ =  
∑𝑚𝑖𝑥𝑖
𝑀

 =   
128

5
𝜌 ÷ 

32
3
𝜌 =   

12
5

 =   2 ∙ 4    

⇒ centre of mass of the lamina is at  (2⋅4, 0). 

 
 
 

 δx  

x 

 y2 = x 

 yi 

 y 

x = 4 

 xi  
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Example:  A uniform lamina is bounded by the x- and y-axes and the part of the curve  
y = cos x for which 0 ≤  x ≤  1

2
π. Find 

the coordinates of its centre of mass. 

 Solution:  The figure shows the lamina 
and a typical strip of width δx and 
height cos x, with surface density ρ. 

1)  To find the mass. 

   M  = 𝜌 ∫ cos 𝑥  𝑑𝑥
𝜋
2�

0   

 =  𝜌[sin 𝑥]0
𝜋
2�  = ρ   

 

2) To find 𝑥̅, first choose an element with 
constant x co-ordinate throughout. 

Take a strip parallel to the y-axis, a distance of xi from the x-axis and width δx. 

This strip is approximately a rectangle of length yi and width δx 

mass of typical strip = mi  ≈ yiρ δx   

⇒   �𝑚𝑖𝑥𝑖

𝜋
2�

0

  ≈   �𝑦𝑖𝜌𝑥𝑖  𝛿𝑥

𝜋
2�

0

 

We know that y = cos x  and we let  δx → 0 

⇒   �𝑚𝑖𝑥𝑖

𝜋
2�

0

   →  𝜌� 𝑥 cos 𝑥  𝑑𝑥 =  ρ � 
𝜋
2
− 1�

𝜋
2�

0
                                 integrating by parts  

⇒    𝑥̅ =
∑ 𝑚𝑖𝑥𝑖
𝜋
2�

0
𝑀

  =   
ρ ( 𝜋2  − 1)

𝜌
  =  

π
2

  − 1   

3) To find 𝑦� we can use the same strips, because the centre of mass of each strip is 
approximately  1

2
 yi  from the x-axis; we can now consider each strip as a point mass, 

mi ≈ yiρ δx,  at a distance 1
2
 yi  from the x-axis. 

⇒   �𝑚𝑖𝑦𝑖

𝜋
2�

0

  ≈   �𝑦𝑖𝜌 ×
1
2
𝑦𝑖 𝛿𝑥

𝜋
2�

0

 

We know that  y = cos x  and we let  δx → 0 

⇒ �𝑚𝑖𝑦𝑖

𝜋
2�

0

  →   
1
2

 𝜌� cos2 𝑥  𝑑𝑥
𝜋
2�

0
=

1
8

 ρ π                           any fool can do this integral 

⇒ 𝑦� =  
∑ 𝑚𝑖𝑦𝑖
𝜋
2�

0
𝑀

=
1
8 ρ π 
𝜌

 =    
π
8

  

⇒ centre of mass is at   �π
2

 − 1, π

8
� 

 

yi 

xi 
δx 

y 

x 

y = cos x 

𝜋
2 

1 

O 
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Example:  A uniform lamina occupies the closed region bounded by the curve  𝑦 = √2 − 𝑥, 
the line  y = x and the x-axis. Find the coordinates of its centre of mass. 

 

Solution:   

 

 

 

 

 

 

 

 

 

 

1) To find the mass, M. 
The area =  area of triangle  +  area under curve 

⇒ M  =  ρ (1
2
 × 1 × 1  +  ∫ √2 − 𝑥2

1  𝑑𝑥)  =  7
6
𝜌                  which I am too lazy to do! 

 
2) To find 𝑦�. 

The typical strip is approximately a rectangle of length  x2 − x1  and height  δy, with a 
constant  y-coordinate.  
The mass of the strip is  mi = ρ (x2 − x1)δy. 
But x2 = 2 − y2  (lies on the curve  𝑦 = √2 − 𝑥), and x1 = y  (lies on y = x) 
⇒ mi = ρ (2 − yi

2  − yi)δy 

⇒ �𝑚𝑖𝑦𝑖

1

0

  ≈   �𝜌
1

0

(2 − 𝑦𝑖2  − 𝑦𝑖)𝑦𝑖δ𝑦     

lim
𝛿𝑦→0

 �𝑚𝑖𝑦𝑖

1

0

  =   � 𝜌(2 − 𝑦2  − 𝑦)𝑦 𝑑𝑦  =   512𝜌
1

0
                                        you ought to do this one!    

⇒     𝑦�  =   
1
𝑀
�𝑚𝑖𝑦𝑖

1

0

 =  
5𝜌
12

  7𝜌6   
   =   514       

 
 
 
 
 
 
 

   

 

 
 

 

  

  y 

 1 
y = √2 − 𝑥 

y = x 

(1, 1) 

(x1, y) (x2, y) 

y 
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3) To find 𝑥̅. 
The centre of mass of the typical strip is  1

2
 (x2 + x1)  from the y-axis (mid-point of strip) 

and  mi = ρ (x2 − x1)δy  as before. 

we can now consider each strip as a point mass, mi ≈ ρ (x2 − x1)δy,  at a distance 1
2
 (x2 + x1)  

from the y-axis 

⇒   �𝑚𝑖𝑥𝑖 =  �ρ (𝑥2 − 𝑥1)δ𝑦 ×
1

0

1
2(𝑥2  +  𝑥1)    

But  (x2 − x1) (x2 + x1) = x2
2 − x1

2   =  (2 − y2)2  − y2  =  4 – 5y2 + y4 
and the limits go from 0 to 1 because the δy means we are summing in the y direction. 

⇒   �𝑚𝑖𝑥𝑖 =  �
1
2
ρ  (4 –  5𝑦2  + 𝑦4) δ𝑦   

1

0

       

lim
𝛿𝑦→0

�𝑚𝑖𝑥𝑖   =  �   
1
2
ρ (4 –  5𝑦2  +  𝑦4)

1

0
 𝑑𝑦 =   1915 𝜌    

⇒     𝑥̅  =   
1
𝑀
�𝑚𝑖𝑥𝑖

1

0

 =  
19𝜌
15

  7𝜌6   
   =   3835       

⇒    the centre of mass is at  �38
35

, 5
14�. 

 

Centre of mass of a sector 

In this case we can find a nice method, using the result for the centre of mass of a triangle. 

We take a sector of angle 2α and divide it into many smaller 
sectors. 

Mass of whole sector  =  M = 1
2
𝑟2 × 2𝛼 × 𝜌 =   𝑟2𝛼𝜌  

Consider each small sector as approximately a triangle, with 
centre of mass, G1, 23 along the median from O.  

Working in polar coordinates for one small sector, mi = 1
2
𝑟2𝜌 𝛿𝜃 

OP = r ⇒ OG1 ≅ 2
3
𝑟  ⇒  xi ≅ 2

3
𝑟 cos 𝜃   

⇒ lim
𝛿𝜃→0

� 𝑚𝑖𝑥𝑖

𝛼

𝜃=−𝛼

  =    � 1
2𝑟

2𝜌 × 2
3𝑟 cos 𝜃 𝑑𝜃

𝛼

−𝛼
 

=  23𝑟
3𝜌 sin ∝ 

⇒  𝑥  =  
∑𝑚𝑖𝑥𝑖
𝑀

 =   
2
3𝑟

3𝜌 sin ∝
𝑟2𝛼𝜌

 =
2𝑟 sin ∝

3𝛼
   

By symmetry, 𝑦 = 0 

⇒  centre of mass is at �2𝑟 sin∝
3𝛼

 , 0� 

 

α  

θ  

δθ  
G1  × P (r, θ )  

O  

xi  

r  
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Centre of mass of a circular arc 

For a circular arc of radius r which subtends an angle of 2α at the centre. 

The length of the arc is r × 2α   
⇒  mass of the arc is  M = 2α rρ  
First divide the arc into several small pieces, each subtending an 
angle of δθ at the centre. 

The length of each piece is rδθ   ⇒  mi = rρ δθ 
We now think of each small arc as a point mass at the centre of the 
arc, with x-coordinate xi = r cosθ  

⇒   lim
𝛿𝜃→0

� 𝑚𝑖𝑥𝑖

𝛼

𝜃=−𝛼

 =   � 𝑟𝜌 × 𝑟 cos 𝜃  𝑑𝜃
𝛼

−𝛼
  

 = 2r2ρ sinα  

⇒  𝑥  =  
∑𝑚𝑖𝑥𝑖
𝑀

 =   
2𝑟2𝜌 sin ∝

2𝛼𝑟𝜌
 =

𝑟 sin ∝
𝛼

 

By symmetry, 𝑦 = 0 

⇒  centre of mass is at �𝑟 sin∝
𝛼

 , 0� 

 

 

 

 

 

 

 

Standard results for centre of mass of uniform laminas and arcs 
Triangle 2

3
 of the way along the median, from the vertex. 

Semi-circle, radius r 4𝑟
3𝜋

 from centre, along axis of symmetry 

Sector of circle, radius r, angle 2α  2𝑟 sin𝛼
3𝛼

  from centre, along axis of symmetry 

Circular arc, radius r, angle 2α 𝑟 sin𝛼
𝛼

  from centre, along axis of symmetry 

 

 

 

 

 

α
  

θ
   

δθ   r
  

rδθ   

xi  
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Centres of mass of compound laminas 

The secret is to form a table showing the mass, or mass ratio, and position of the centre of mass 
for each component. Then use   

𝑥̅ =  
∑𝑚𝑖𝑥𝑖   
𝑀

,   𝑦� =  
∑𝑚𝑖𝑦𝑖  
𝑀

 
 
to find the centre of mass of the compound body. 
 
 
Example:  A semi-circle of radius r is cut out from a uniform semi-circular lamina of radius 

2r. Find the position of the centre of mass of the resulting shape. 
 
Solution:   
 
 By symmetry the centre of mass will lie on the axis of 

symmetry, OA. 
 

The mass of the compound shape is  
 M =  1

2
 (4π r2 − π r2)ρ  = 3

2
 π r2 ρ    

 
and the centre of mass of a semi-circle  
is   4𝑟

3𝜋
 from the centre. 

 
 
 
 
 
     

 Mass  3
2
 π r2 ρ 1

2
 π r2 ρ 2π r2 ρ 

 Distance above O 𝑦 4𝑟

3𝜋
 8𝑟

3𝜋
   

   ⇒       3
2
 π r2 ρ × 𝑦        +      1

2
 π r2 ρ × 4𝑟

3𝜋
        =       2π r2 ρ × 8𝑟

3𝜋
 

    
   ⇒ 𝑦  =  28

9
𝑟 

 
The centre of mass lies on the axis of symmetry, at a distance of   28

9
𝑟  from the centre. 

 
 
 
 
 
 
 
 

r 
O 

A 

2r 

compound shape    +  small semi-circle    =  large semi-circle 
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Centre of mass of a solid of revolution 

Example: A machine component has the shape of a uniform solid of revolution formed by 
rotating the region under the curve  y = √9 − 𝑥 , x ≥ 0, about the x-axis. Find the position 
of the centre of mass. 

 

Solution:   

 

 

 

 

 

 

 

Mass,𝑀, of the solid  =   ρ � π 𝑦2
9

0
 𝑑𝑥 =   ρ � π (9 − 𝑥)

9

0
 𝑑𝑥 

 ⇒     M  =  81
2
𝜌𝜋. 

The diagram shows a typical thin disc of thickness δx and radius  y = √9 − 𝑥. 

 ⇒     Mass of disc  ≈  ρπ y2δx  =  ρπ (9 − x) δx   

Note that the x coordinate is the same (nearly) for all points in the disc 

         ⇒  �𝑚𝑖𝑥𝑖   ≈  � ρπ (9 − 𝑥𝑖)𝑥𝑖 δ𝑥 
9

0

 

       lim
𝛿𝑥→0

�𝑚𝑖𝑥𝑖   =   � ρπ (9 − 𝑥)𝑥
9

0
 𝑑𝑥 =   2432 𝜌𝜋    

⇒     𝑥̅  =  
∑𝑚𝑖𝑥𝑖
𝑀

 =    
243
2 𝜌𝜋

 812 𝜌𝜋
  = 3 

By symmetry, 𝑦� = 0   

 
 ⇒     the centre of mass is on the x-axis, at a distance of 3 from the origin. 
 

 

 

 

 

 

 

 

  O 

x 

y = √9 − 𝑥 

y 

δx 

x 9 
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Centre of mass of a hemispherical shell – method 1a 

This method needs techniques for finding the surface area of a solid of revolution from FP3. 

Preliminary result 

Take a small section of a curve of length 𝛿𝑠 and the corresponding lengths 𝛿𝑥 and 𝛿𝑦, as 
shown in the diagram. 

A very small section of curve will be nearly straight,  

and we can form a ‘triangle’. 

⇒ 𝛿𝑠2 ≅ 𝛿𝑥2 + 𝛿𝑦2 

⇒      �
𝛿𝑠
𝛿𝑥
�
2

 ≅   1 +  �
𝛿𝑦
𝛿𝑥
�
2

 

and as 𝛿𝑥 → 0, �
𝑑𝑠
𝑑𝑥
� =  � 1 +  �

𝑑𝑦
𝑑𝑥
�
2

 

 

Mass of shell 

Let the density of the shell be ρ, radius r 
In the xy-plane, the curve has equation 

 x2 + y2 = r2 

⇒ 2x + 2y 𝑑𝑦
𝑑𝑥

  = 0 ⇒ 𝑑𝑦
𝑑𝑥

  = −𝑥
𝑦

 

⇒ �𝑑𝑠
𝑑𝑥
� =  � 1 +  �𝑑𝑦

𝑑𝑥
�
2

  =    �𝑦2+ 𝑥2

𝑦2
 

 

Take a slice perpendicular to the x-axis through the point 
(xi, yi) to form a ring with arc length 𝛿𝑠. 
 

Area of the ring ≅ 2π yi𝛿𝑠      ⇒ mass of ring  mi ≅ 2π yi ρ 𝛿𝑠       

 ⇒  Total mass  ≅  �2𝜋𝑦𝑖𝜌 𝛿𝑠 

⇒  Total mass  𝑀 = lim
𝛿𝑠→0

�2𝜋𝑦𝑖𝜌 𝛿𝑠   =   �2𝜋𝑦𝜌 𝑑𝑠 

⇒    𝑀 =  � 2𝜋𝑦𝜌
𝑟

0
 
𝑑𝑠
𝑑𝑥

 𝑑𝑥 =   � 2𝜋𝑦𝜌
𝑟

0
�
𝑦2 +  𝑥2

𝑦2
 𝑑𝑥 

⇒    𝑀 =  � 2𝜋𝜌�𝑟2
𝑟

0
 𝑑𝑥   =    2𝜋𝜌𝑟 � 𝑥 �

0

𝑟

=   2𝜋𝜌𝑟2 

 

 

𝛿𝑠  

𝛿𝑥  

𝛿𝑦  

xi yi 

•   (xi, yi) 

x 

y 𝛿𝑠 

 

r 

r 

− r 
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To �ind  �𝑚𝑖𝑥𝑖  =  �2π 𝑦𝑖  ρ 𝛿𝑠 𝑥𝑖   

 

⇒  lim
𝛿𝑠→0

� 2π 𝑦𝑖 ρ 𝛿𝑠 𝑥𝑖  =   �  2πρ 𝑦𝑥 
𝑑𝑠
𝑑𝑥

𝑟

0
  𝑑𝑥 

 

=   �  2πρ 𝑦𝑥 �
𝑦2 +  𝑥2

𝑦2
𝑟

0
  𝑑𝑥 =    2𝜋𝜌𝑟 �

𝑥2

2
�
0

𝑟

 =  𝜋𝜌𝑟3   

⇒      𝑥  =   
∑𝑚𝑖𝑥𝑖
𝑀

 =   
𝜋𝜌𝑟3

2𝜋𝜌𝑟2
 =  

𝑟
2

 

⇒   the centre of mass is on the line of symmetry at a distance of  1
2
 r  from the centre. 

 

Centre of mass of a hemispherical shell – method 1b 

This method is similar to method 1a but does not need FP3 techniques, so is suitable for people 
who have not done FP3 (I think it is preferable to method 2 – see later). 

 

Mass of shell 

Let the density of the shell be ρ, radius r 
Take a slice perpendicular to the x-axis through the point 
(xi, yi) to form a ring with arc length 𝑟𝛿𝜃, and 
circumference 2πy. This can be ‘flattened out’ to form a 
rectangle of length 2πy and height 𝑟𝛿𝜃 

Area of the ring ≅      
⇒ mass of ring  mi ≅ 2π ρ y×i𝑟𝛿𝜃 

 ⇒  Total mass  ≅  �2𝜋𝑦𝑟𝜌 𝛿𝜃 

⇒  Total mass  𝑀 = lim
𝛿𝜃→0

�2𝜋𝑦𝑟𝜌 𝛿𝜃   =   � 2𝜋𝑦𝑟𝜌 𝑑𝜃 

But  y = r sin θ  

⇒    𝑀 =  � 2𝜋𝑟2 sin𝜃 𝜌
𝜋
2

0
𝑑𝜃 =   2𝜋𝜌𝑟2 �− cos 𝜃�

0

𝜋
2

=  2𝜋𝜌𝑟2 

To �ind  �𝑚𝑖𝑥𝑖  =  �2π 𝑦𝑖𝑟 ρ 𝛿𝜃 𝑥𝑖    

⇒  lim
𝛿𝜃→0

�2π 𝑦𝑖𝑟 ρ 𝛿𝑠 𝑥𝑖  =   �  2πρ 𝑟 𝑦𝑥 
π
2

0
  𝑑𝜃 

But  x = r cos θ   and   y = r sin θ  

xi 

yi 

•   (xi, yi) 

x 

y 𝑟𝛿𝜃 

 

r 

r 

− r 

𝛿𝜃 

 
r 

θ 
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⇒  �𝑚𝑖𝑥𝑖  = �  2πρ 𝑟3 sin 𝜃 cos𝜃
π
2

0
  𝑑𝜃 

                         = πρ 𝑟3   �
− cos 2𝜃

2
�
0

𝜋
2

  =   πρ 𝑟3    

 ⇒            𝑥    =   
∑𝑚𝑖𝑥𝑖  
𝑀

 =    
πρ 𝑟3

 2𝜋𝜌𝑟2
  =   

𝑟
2

 

⇒   the centre of mass is on the line of symmetry at a distance of  1
2
 r  from the centre. 

 

 

 

 

 

 

 

Centre of mass of a conical shell 

To find the centre of mass of a conical shell, or the 
surface of a cone, we divide the surface into small 
sectors, one of which is shown in the diagram. 

We can think the small sector as a triangle with 
centre of mass at G1, where OG1 = 23𝑂𝑃. 

This will be true for all the small sectors, and the 
x-coordinate, x1, of each sector will be the same 

⇒  the x-coordinate of the shell will also be x1  
 

As the number of sectors increase, the approximation gets better, until it is exact, 

and as OG1 = 23𝑂𝑃  then OG = 23𝑂𝐴   (similar triangles) 

⇒  the centre of mass of a conical shell is on the line of symmetry, at a distance of  23 of the 
height from the vertex. 

 

 

 

 

 

 

 

x1 

G1 

O 
G 

× P 

A 
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Centre of mass of a square based pyramid 

A square based pyramid has base area A and height h 

The centre of mass is on the line of symmetry 

⇒ volume = 13 Ah 

⇒ mass  M = 1
3
 Ahρ  

Take a slice of thickness δ x at a distance xi from O 
The base of the slice is an enlargement of the base of 
the pyramid with scale factor 𝑥𝑖ℎ   

⇒ ratio of areas is �𝑥𝑖ℎ�
2
 

⇒  area of base of slice is  𝑥𝑖
2

ℎ2
𝐴 

⇒ mass of slice  mi  =  𝛿𝑥 

⇒  lim
𝛿𝑥→0

�𝑚𝑖𝑥𝑖

ℎ

𝑥=0

 =   �
𝑥3

ℎ2
𝐴𝜌 

ℎ

0
𝑑𝑥  =   14ℎ

2𝐴𝜌 

⇒   𝑥  =  
∑𝑚𝑖𝑥𝑖
𝑀

 =   
   14ℎ

2𝐴𝜌   
1
3 𝐴ℎρ 

 =  34 ℎ 

The centre of mass lies on the line of symmetry at a distance 34 ℎ from the vertex. 

 

The above technique will work for a pyramid with any shape of base. 

The centre of mass of a pyramid with any base has centre of mass 34  of the way along the line 
from the vertex to the centre of mass of the base (considered as a lamina). 

There are more examples in the book, but the basic principle remains the same:  

• find the mass of the shape, M 

• choose, carefully, a typical element, and find its mass (involving δx  or δy)   

• for solids of revolution about the x-axis (or y-axis), choose a disc of radius y and 

thickness δ x, (or radius x and thickness δ y). 

• find  ∑𝑚𝑖𝑥𝑖  or  ∑𝑚𝑖𝑦𝑖 

• let  δx  or  δy  → 0, and find the value of the resulting integral 

• 𝑥̅ =  1
𝑀
∑𝑚𝑖𝑥𝑖  ,   𝑦� =  1

𝑀
 ∑𝑚𝑖𝑦𝑖   

 
 
 
 
 
 

h 

δ x 

xi 

O 
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Standard results for centre of mass of uniform bodies 
 
Solid hemisphere, radius r 3𝑟

8
  from centre, along axis of symmetry 

Hemispherical shell, radius r 𝑟
2
   from centre, along axis of symmetry 

Solid right circular cone, height h 3ℎ
4

  from vertex, along axis of symmetry 
Conical shell, height h 2ℎ

3
  from vertex, along axis of symmetry 

 
 

Centres of mass of compound bodies 

This is very similar to the technique for compound laminas. 

 

Example:  A solid hemisphere of radius a is placed on a solid cylinder of height 2a. Both 
objects are made from the same uniform material. Find the position of the centre of mass 
of the compound body. 

 
Solution:   
 
 By symmetry the centre of mass of the compound 

body, G, will lie on the axis of symmetry. 
 

The mass of the hemisphere is 2
3
 π a3ρ at G1, and 

the mass of the cylinder is π a2 × 2aρ  = 2π a3ρ at 
G2 
  
⇒ mass of the compound shape is  
 
M  =  8

3
 π a3ρ, 

OG1 = 3𝑎
8

,   and   OG2 = a 
 
Now draw up a table 
 
 Body     hemisphere        +  cylinder          =         compound body 

 Mass 2
3
 π a3ρ 2π a3ρ   8

3
 π a3ρ 

 Distance above O 3𝑎
8

 − a 𝑦�  

     

   ⇒   2
3
 π a3ρ ×  3𝑎

8
     +    2π a3ρ × (−a)  =       8

3
 π a3ρ × 𝑦�  

   ⇒ 𝑦�  =  −21
32
𝑎 

 
⇒ centre of mass is at G, below O, where OG  =   

21
32
𝑎, on the axis of symmetry. 

 

O 

 a 

 2a 

G1 

G2 

G 
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Centre of mass of a hemispherical shell – method 2 

Note: if you use this method in an exam question which asks for a calculus technique, you 
would have to use calculus to prove the results for a solid hemisphere first. 

The best technique for those who have not done FP3 is method 1b. 

We can use the theory for compound bodies to find the centre of mass of a hemispherical shell. 

From a hemisphere with radius r + δ r we remove a hemisphere with radius r, to form a 
hemispherical shell of thickness δ r and inside radius r. 
 

 

 

radius r + δ r r 

Mass 2
3π (r + δ r) 3ρ  2

3π r3ρ 2
3π (r + δ r) 3ρ  −  23π r3ρ 

centre of mass 
above base 3

8(𝑟 + 𝛿𝑟) 3
8 𝑟 𝑦 

 

 ⇒      23π (r + δ r) 3ρ × 38(𝑟 + 𝛿𝑟)     −        23π r3ρ × 38 𝑟        =    { 23π (r + δ r) 3ρ  −  23π r3ρ}𝑦 

 ⇒ 1
4
 πρ (r4 + 4r3δ r …  − r4)   =    23πρ (r3 + 3r2δ r …  − r3) 𝑦       ignoring (δ r)2 and higher   

 ⇒ r3δ r ≅  2r2 δ r 𝑦 

and as  δ r → 0,  𝑦 = 1
2
 r 

The centre of mass of a hemispherical is on the line of symmetry, 1
2
 r  from the centre. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

minus equals 
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Tilting and hanging freely 

Tilting 
Example:  The compound body of the previous example is placed on a slope which makes an 

angle θ  with the horizontal. The slope is sufficiently rough to prevent sliding. For what 
range of values of θ  will the body remain 
in equilibrium. 

 

Solution:  The body will be on the point of 
tipping when the centre of mass, G, lies 
vertically above the lowest corner, A. 

Centre of mass is  2a − 
21
32
𝑎  

 = 43
32
𝑎 from the base 

 

At this point 

 tan θ  = 𝑎
43𝑎

32�
  =  32

43
 

 ⇒ θ  = 36⋅65610842 

 

The body will remain in equilibrium for  

 θ  ≤  36⋅7o   to the nearest 0⋅1o. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 a 

G 

θ  

A 

θ  
 43
32

 a 
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Hanging freely under gravity 
This was covered in M2. For a body hanging freely from a point A, you should always state, or 
show clearly in a diagram, that  AG  is vertical – this is the only piece of mechanics in the 
question! 

Body with point mass attached hanging freely 
The best technique will probably be to take moments about the point of suspension. 

 

Example: A solid hemisphere has centre O, radius a and mass 2M. A particle of mass M is 
attached to the rim of the hemisphere at P.  

The compound body is freely suspended under gravity from O. Find the angle made by 
OP with the horizontal. 

 

Solution: As usual a good, large diagram is 
essential. 

Let the angle made by OP  with the 
horizontal be θ, then ∠OGL = θ . 

We can think of the hemisphere as a 
point mass of 2M at G,  
where OG = 3𝑎

8
 . 

 

The perpendicular distance from O to the 
line of action of 2Mg is 𝑂𝐿 = 3𝑎

8
sin𝜃, 

and  

the perpendicular distance from O to the 
line of action of Mg  
is OK = a cosθ   

 

Taking moments about O 

2Mg × 3𝑎
8

sin𝜃  =  Mg × a cosθ  

⇒ tanθ   =  4
3
 

⇒ θ  =  53⋅1o . 
 

 

 

 

 

 

θ  
θ  

θ  a 
3𝑎
8

 

O 

 Mg 

 2Mg 

G 

L K 

P 
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Hemisphere in equilibrium on a slope 

Example:  A uniform hemisphere rests in equilibrium on a slope which makes an angle of 
20o with the horizontal. The slope is sufficiently rough to prevent the hemisphere from 
sliding. Find the angle made by the flat surface of the hemisphere with the horizontal. 

 

Solution:  Don’t forget the basics. 
The centre of mass, G, must be vertically 
above the point of contact, A. If it was 
not, there would be a non-zero moment 
about A and the hemisphere would not be 
in equilibrium. 

BGA is a vertical line, so we want the 
angle θ . 

OA must be perpendicular to the slope 
(radius    tangent), and with all the 90o 
angles around A, ∠OAG = 20o. 
Let a be the radius of the hemisphere 

then OG = 3𝑎
8

  and, using the sine rule 

 sin∠𝑂𝐺𝐴
𝑎

 =  sin 203𝑎
8�

   ⇒  ∠OGA = 65⋅790….  or   114⋅209…  

 Clearly ∠OGA  is obtuse   ⇒ ∠OGA = 114⋅209… 

 ⇒ ∠OBG = 114⋅209… − 90 = 24⋅209…  

 ⇒ θ  =  90 − 24⋅209…  =  65⋅8o  to the nearest 0⋅1o. 
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Index 

Acceleration 
v dv/dx, 3 

x dv/dt, 3 

Angular velocity, 17 

Centres of mass 
bodies hanging freely, 40 

bodies with mass attached, 40 

circular arc, 30 

compound  bodies, 37 

compound  laminas, 31 

conical shell, 35 

hemisphere on slope, 41 

hemispherical shell method 1a, 33 

hemispherical shell method 1b, 34 

hemispherical shell method 2, 38 

laminas, 26 

pyramids, 36 

sector of circle, 29 

solids of revolution, 32 

standard results for laminas and arcs, 30 

standard results for uniform bodies, 37 

tilting bodies, 39 

Force 
impulse of variable force, 9 

varying with speed, 4 

Gravitation 
Newton's law, 11 

Hooke’s Law 
elastic springs, 5 

elastic strings, 5 

energy stored in a string or spring, 7 

Impulse 
variable force, 9 

Motion in a circle 
acceleration towards centre, 17 

angular velocity, 17 

banking, 19 

conical pendulum, 19 

horizontal circles, 18 

inverted hollow cone, 20 

vertical circles, 21 

vertical circles at end of a rod, 24 

vertical circles at end of a string, 22 

vertical circles inside a sphere, 23 

vertical circles on outside of a sphere, 25 

Simple harmonic motion 
a sin ω t  and  a cos ω t, 13 

amplitude, 13 

basic equation, 13 

horizontal strings or springs, 15 

period, 13 

v2 = ω2(a2 - x2), 13 

vertical strings or springs, 16 

Work 
variable force, 10 
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