OCR Maths M2

Topic Questions from Papers

Projectiles

Answers

$\mathbf{1}$		$\mathrm{v}^{2}=2 \times 9.8 \times 10$	M1		${\text { energy } 1 / 2 \mathrm{mv}^{2}=1 / 2 \mathrm{mu}^{2}+\mathrm{mgh}}$	
		$\mathrm{v}=14$	A1		$1 / 2 \mathrm{v}^{2}=1 / 2.36+9.8 \times 10$	
		speed $=\sqrt{\left(14^{2}+6^{2}\right)}$	M1		$\left(\right.$ must be $\left.6^{2}\right) \mathrm{v}^{2}=36+196=232$	
		speed $=15.2 \mathrm{~ms}^{-1}$	A1			
		$\tan \theta=14 / 6$	M1		$\cos ^{-1}(6 / 15.2)$ etc	
		$\theta=66.8^{\circ}$ (below) horiz.	A1	6	or 23.2° to the vertical	$\mathbf{6}$

(Q2, June 2005)

2	(i)	$\mathrm{x}=49 \cos \theta . \mathrm{t}$	B1			
		$\mathrm{y}=49 \sin \theta . \mathrm{t}-1 / 2.9 .9 . \mathrm{t}^{2}$	B1			
		$\mathrm{y}=\mathrm{x} \tan \theta-4.9 \mathrm{x}^{2} / 49^{2} \cdot \cos ^{2} \theta$	$\begin{array}{\|l} \hline \mathrm{M} \\ 1 \\ \hline \end{array}$		aef (eliminating t)	
		$\mathrm{y}=\mathrm{x} \tan \theta-\mathrm{x}^{2}\left(1+\tan ^{2} \theta\right) / 490$	A1	4	AG	
	(ii)	$30=70 \tan \theta-10\left(1+\tan ^{2} \theta\right)$	M			
		$\tan \theta=(70 \pm \sqrt{ } 3300) \div 20$	$\begin{array}{\|l} \hline \mathrm{M} \\ 1 \end{array}$		(6.37/0.628)	
		81.1°	A1		θ_{1} or θ_{2}	
		$32.1{ }^{\circ}$	A1	4	"	
	(iii)	$\mathrm{x}^{2}\left(1+\tan ^{2} \theta\right) / 490=\mathrm{xtan} \theta$	$\begin{aligned} & \mathrm{M} \\ & 1 \end{aligned}$		set $\mathrm{y}=0$	
		$\mathrm{x}=490 \tan \theta /\left(1+\tan ^{2} \theta\right)$	A1			
		$\mathrm{x}=75.0$	A1			
		$\mathrm{x}=221$ (220.6)	A1			
		$\mathrm{d}=146 \mathrm{~m}$	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~J} \end{aligned}$	5	\checkmark	13
	(iii)	Alternatively (${ }^{\text {st }} 2$ marks)				
		$\begin{aligned} & \mathrm{t}=49 \sin \theta / 4.9 \text { and }(9.88 / 5.31) \\ & \mathrm{x}=49 \cos \theta . \mathrm{t} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{M} \\ 1 \end{array}$		$\begin{aligned} & \frac{s=u t+1 / 2 a t^{2} \text { and }}{x=49 \cos \theta \cdot t} \\ & \text { or } R=u^{2} \sin 2 \theta / g(\text { precise }) \end{aligned}$	
		$\mathrm{x}=490 \sin \theta \cos \theta$	A1		$245 \sin 2 \theta$	

(Q8, June 2005)

$\mathbf{3}$	(i)	$0=50 \sin 25^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$	M1		or $0=50 \sin 25^{\circ}-9.8 \mathrm{t} \& 2 \mathrm{t}: 2 \mathrm{x} 2.16$	
n			A1			
		$\mathrm{t}=4.31 \mathrm{~s}$	A1	3		
	(ii)	$\mathrm{d}=50 \cos 25^{\circ} \times 4.31$	M1		or $\mathrm{u}^{2} \sin \left(2 \times 25^{\circ}\right) / \mathrm{g}$	
		195 m	A1	2	$\int 50 \cos 25^{\circ} \times$ their t	$\mathbf{5}$

4	(i)	$\mathrm{x}=7 \mathrm{t}$	B1			
		$\mathrm{y}=-4.9 \mathrm{t}^{2}$ or $-1 / 2 \mathrm{gt}{ }^{2}$	M1		some attempt at vertical motion	
			A1		$\begin{aligned} & \text { sc } y=x \tan \theta-\mathrm{gx}^{2} /\left(2 \mathrm{~V}^{2} \cos ^{2} \theta\right) \\ & \text { with } \theta=0 \mathrm{M} 1 \text { then } \mathrm{A} 1(\max =2) \end{aligned}$	
		$y=-x^{2} / 10$ AG (no fiddles)	A1	4		
	(ii)	$-20=-x^{2} / 10$	M1		or $\mathrm{t}=\sqrt{(20 / 4.9)} \& \mathrm{x}=7 \mathrm{t}$	
		14.1 m	A1	2	sc B1 for 14.1 after wrong work	
	(iii)	$\begin{aligned} & 1 / 2 \mathrm{mv}^{2}=1 / 2 m 7^{2}+m g x 20 \quad \text { n.b. } v^{2}=u^{2} \\ & +2 \text { as gets M0 } \end{aligned}$	M1		OR $\mathrm{v}_{\mathrm{h}}=7$ (B1)	
			A1		$\mathrm{v}_{\mathrm{v}}= \pm 19.8$ (B1) $14 \sqrt{ } 2,2 \sqrt{ } 98$ etc	
		$\mathrm{v}=21 \mathrm{~ms}^{-1}$	A1		$\mathrm{v}=21$ (B1)	
		$\mathrm{dy} / \mathrm{dx}=-2 \mathrm{x} / 10 \& \tan \theta$	M1		$\begin{aligned} & \text { OR } \quad \tan \theta=19.8 / 7 \text { or } \\ & \cos \theta=7 / 21 \text { or } \sin \theta=19.8 / 21 \end{aligned}$	
			A1			
		70.5° to horizontal	A1	6	or $19.5{ }^{\circ}$ to vertical	12

(Q6, Jan 2006)

6	(i)	$\mathrm{v}_{\mathrm{v}}=42 \sin 30^{\circ}(=21)$	B1			
		$0=21^{2}-2 \times 9.8 \times h$	M1			
		$\mathrm{h}=22.5$	A1	3		
	(ii)	$\mathrm{v}_{\mathrm{h}}=42 \cos 30^{\circ}(=36.4)$	B1			
		$\mathrm{v}_{\mathrm{v}}= \pm \mathrm{v}_{\mathrm{n}} \mathrm{x} \tan 10^{\circ}$	M1			
		$\mathrm{v}_{\mathrm{v}}= \pm 6.41$ or $21 \sqrt{ } 3 \tan 10^{\circ}$	A1		or $42 \cos 30^{\circ} . \tan 10^{\circ}$	
		$-6.41=42 \sin 30^{\circ}-9.8 t$	M1	**	must be -6.41(also see "or" x 2)	
		$\mathrm{t}=2.80$	A1	**		
		$y=42 \sin 30^{\circ} \times 2.8-4.9 \times 2.8^{2}$	M1	**		
		$y=20.4$	A1§	**	\checkmark their t	
		$x=42 \cos 30^{\circ} \times 2.80$	M1			
		$x=102$	A1 $\sqrt{ }$		\int their t	
		$\sqrt{ }\left(x^{2}+y^{2}\right)$	M1			
		$d=104$	A1	11		
	or	$6.41^{2}=21^{2}+2 \times-9.8 \mathrm{~s}$	M1	**	vert dist first then time	
		s=20.4	A1	**		
		$20.4=21 \mathrm{t}+1 / 2 .-9.8 \mathrm{t}^{2}$	M1	**		
		$\mathrm{t}=2.80$	A1	**		
	or	$22.5-\mathrm{s}$ and $6.41^{2}=2 \times 9.8 \mathrm{~s}$	M1	**	dist from top ($\mathrm{s}=2.096$)	
		$\mathrm{y}=20.4$	A1	**		
		22.5 \& $2.1=1 / 2.9 .8 \mathrm{t}^{2}$	M1	**	$\begin{aligned} & 2 \text { separate times (2.143, } \\ & 0.654) \end{aligned}$	
		$t=2.80$	A1	**	$2.143+0.654$	14
		alternatively				
	(ii)	$y=x / \sqrt{3}-x^{2} / 270 \quad$ aef	B1		$\begin{aligned} & y=x \tan 30^{\circ}- \\ & 9.8 x^{2} / 2.42^{2} \cdot \cos ^{2} 30^{\circ} \end{aligned}$	
		$\mathrm{d} / \mathrm{/d} x=1 / \sqrt{3}-\mathrm{x} / 135$	M1		for differentiating	
			A1		aef	
		$\mathrm{d} y / \mathrm{d} x=-\tan 10^{\circ}$	M1		must be $-\tan 10^{\circ}$	
		$1 / \sqrt{3}-x / 135=-\tan 10^{\circ}$	A1			
		solve for x	M1			
		$x=102$	A1§		\int on their $\mathrm{dy} / \mathrm{d} x$	
		$y=x / \sqrt{3}-x^{2} / 270$	M1			
		$y=20.4$	A1 $\sqrt{ }$		\int their x	
		$\sqrt{ }\left(x^{2}+y^{2}\right)$	M1			
		$d=104$	A1	(11)		

(Q8, Jan 2007)

$\mathbf{7}$	$0=12 \sin 27^{\circ} \mathrm{t}-4.9 \mathrm{t}^{2}$ any correct.	M 1	or $\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}(\mathrm{B} 2)$
	$\mathrm{t}=1.11 \ldots . \mathrm{method}^{2}$ for total time	A1	correct formula only
	$\mathrm{R}=12 \cos 27^{\circ} \mathrm{xt}$	M1	$12^{2} \mathrm{x} \sin 54^{\circ} / 9.8$ sub in values
	11.9	A1 $\mathbf{4}$	11.9

(Q2, June 2007)

$\mathbf{8}$ (i)	$x=7 \mathrm{t}$	B1	
	$y=21 \mathrm{t}-4.9 \mathrm{t}^{2}$	M1	or $-\mathrm{g} / 2$
		A1	
	$y=21 . x / 7-4.9 x^{2} / 49$	M1	
	$y=3 x-x^{2} / 10$	A1 $\mathbf{5}$	AG
(ii)	$-25=3 x-x^{2} / 10$ (must be -25)	M1	or method for total time (5.26)
	solving quadratic	M1	or 7 x total time
	36.8 m	A1 $\mathbf{3}$	

9 (i)	$12 \times \cos 55^{\circ}$ $6.88 \mathrm{~m} \mathrm{~s}^{-1}$	M1	

(Q1, Jan 2008)

10(i)	$\begin{aligned} & 0=(175 \sin \theta)^{2}-2 \times 9.8 \times 650 \\ & \theta=40.2^{\circ} \end{aligned}$	M1 A1 A1 3	
(ii)	Attempt at $\mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{\text {top }}$ or $\mathrm{t}_{\text {total }}$ 5.61, 23.65, 14.63, 29.26 $t_{2}-t_{1}$ or $2\left(t_{\text {top }}-t_{1}\right)$ or $t_{\text {total }}-2 t_{1}$ time difference $=18.0$	M1 A1 M1 A1 A1 5	$650=175 \sin 55^{\circ} . \mathrm{t}-4.9 \mathrm{t}^{2}$ etc
(iii)	$\begin{aligned} & \mathrm{v}_{\mathrm{h}}=175 \cos 55^{\circ}(100.4) \\ & \mathrm{v}_{\mathrm{v}}=175 \sin 55^{\circ}-9.8 \times 5.61 \\ & \text { speed }=\sqrt{ }\left(88.4^{2}+100.4^{2}\right) \\ & 134 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	B1 M1 M1 A1 4	$\begin{aligned} & \text { or KE } 1 / 2 \mathrm{mv}^{2} \\ & \text { (B1) PE } m x 9.8 \times 650 \\ & \mathrm{v}=\sqrt{ }\left(175^{2}-2 \times 9.8 \times 650\right) \end{aligned}$

(Q7, Jan 2008)

\begin{tabular}{|c|c|c|c|}
\hline 11(i)

(ii) \& $$
\begin{array}{ll}
0=35 \sin \theta \times \mathrm{t}-4.9 \mathrm{t}^{2} & \\
\mathrm{t}=35 \sin \theta / 4.9 & 50 \sin \theta / 7 \\
\mathrm{R}=35 \cos \theta \mathrm{xt} & \text { aef } \\
& \\
\mathrm{R}=35^{2} \sin \theta \cdot \cos \theta / 4.9 & \\
\\
\mathrm{R}=125 \sin 2 \theta \\
\\
110=125 \sin 2 \theta & \\
\theta=30.8^{\circ} \text { or } 59.2^{\circ} \\
\mathrm{t}=3.66 \mathrm{~s} \text { or } 6.13 \mathrm{~s}
\end{array}
$$ \& M1

A1
B1
M1
A1 $\quad 5$
M1
M1+1

A1+15 \& | $\mathrm{R}=\mathrm{u}^{2} \sin 2 \theta / \mathrm{g}$ only ok if proved or $70 \sin \theta / \mathrm{g}$ aef their t eliminate t |
| :--- |
| AG |

\hline
\end{tabular}

(Q4, June 2008)

12 (ii)	$\begin{aligned} & \mathrm{v}_{\mathrm{h}}=2 \\ & \mathrm{v}_{\mathrm{v}}{ }^{2}=2 \times 9.8 \times 4 \\ & \mathrm{v}_{\mathrm{v}}=8.85 \\ & \\ & \text { speed }=\sqrt{ }\left(8.85^{2}+2^{2}\right) \\ & 9.08 \mathrm{~ms}^{-1} \\ & \tan ^{-1}(8.85 / 2) \end{aligned}$

B1 ${ }^{\text {a }}$ or (B1) $1 / 2 m \times 2^{2}$		or (B1) $1 / 2 \mathrm{mx} 2^{2}$
M1		(B1) $1 / 2 \mathrm{mxv}{ }^{2}$
		(B1) $\mathrm{mx} 9.8 \times 4$
M1		$v=\sqrt{ }\left(2^{2}+2 \times 9.8 \times 4\right)$
A1		
M1		or $\cos ^{-1}(2 / 9.08)$
A1	7	12.7° to vertical

| $\mathbf{1 3}$ | $(20 \sin \theta)^{2}=2 \times 9.8 \times 17$ | M1 | $\begin{array}{l}\text { or B2 for } \\ \max h t\end{array} v^{2} \sin ^{2} \theta / 2 \mathrm{~g}$ |
| :--- | :--- | :--- | :--- |$]$

(Q1, Jan 2009)

14 (i)	$\mathrm{x}=\mathrm{vcos} \theta \mathrm{t}$	B1	
	$\mathrm{y}=\mathrm{v} \sin \theta \mathrm{t}-1 / 2 \times 9.8 \mathrm{t}^{2}$	B1	or g
	substitute $\mathrm{t}=\mathrm{x} / \mathrm{v} \cos \theta$	M1	
	$\mathrm{y}=\mathrm{xtan} \theta-4.9 \mathrm{x}^{2} / \mathrm{v}^{2} \cos ^{2} \theta$	A1 4	AG
(ii)	Sub $\mathrm{y}=-h, \mathrm{x}=h, \mathrm{v}=14, \theta=30$	M1	signs must be correct
	$-h=h / \sqrt{3-h^{2} / 30}$	A1	aef
	solving above	M1	
	$h=47.3$	A1 4	
(iii)	$v_{\mathrm{v}}^{2}=\left(14 \sin 30^{\circ}\right)^{2}-2 \mathrm{x} 9.8 \mathrm{x}(-47.3)$ (double negative needed) ft their -47.3	M1	$14 \cos 30^{\circ} \mathrm{t}=47.3 \mathrm{ft} \& \mathrm{v}_{\mathrm{v}}=14 \sin 30^{\circ}-9.8 \mathrm{t}$
		A1 ft	$\mathrm{t}=3.90$ (or dy/dx $=1 / \sqrt{3}-\mathrm{x} / 15$ etc ft)
	$v_{\mathrm{v}}= \pm 31.2$	A1	$v_{\mathrm{v}}= \pm 31.2 \quad(\tan \alpha=1 / \sqrt{3-47.3 / 15)}$
	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$	M1	$\tan ^{-1}\left(31.2 / 14 \cos 30^{\circ}\right)$
	$\alpha=68.8^{\circ}$ below horiz/21.2 ${ }^{\circ}$ to d'vert.	A1 5	$68.8 \% \ldots$.
(iv)	$1 / 2 \mathrm{mx} 14^{2}+\mathrm{mx} 9.8 \times 47.3=1 / 2 \mathrm{mv}^{2}$	M1	$\mathrm{ft}\left(12.1^{2}+31.2^{2}\right)$
	$\mathrm{v}=33.5$	A1 2	33.5 15

(Q6, Jan 2009)

15 (i)	$\begin{align*} & 9=17 \cos 25^{\circ} \times t \\ & t=0.584 \quad\left(\text { or } 9 / 17 \cos 25^{\circ}\right) \\ & d=17 \sin 25^{\circ} \times 0.584+1 / 2 \times 9.8 \times 0.584^{2} \\ & =h t \operatorname{lost}(5.87) \\ & h=2.13 \end{align*}$	M1 A1 M1 A1 A1 5	$\begin{aligned} & \text { B1 } y=x \tan \theta-4.9 x^{2} / v^{2} \cos ^{2} \theta \\ & \text { M1/A1 } y=9 \tan \left(-25^{\circ}\right)-4.9 \times 9^{2} / 17^{2} \cos ^{2} 25^{\circ} \end{aligned}$ $\begin{aligned} & \mathrm{A} 1 \mathrm{y}=-5.87 \\ & 2.13 \end{aligned}$
(ii)	$\begin{aligned} & v_{h}=17 \cos 25^{\circ} \quad(15.4) \\ & v_{v}=17 \sin 25^{\circ}+9.8 \times 0.584 \\ & v_{v}{ }^{2}=\left(17 \sin 25^{\circ}\right)^{2}+2 \times 9.8 \times 5.87 \\ & v_{v}=12.9 \\ & \tan \theta=12.9 / 15.4 \\ & \theta=40.0^{\circ} \text { below horizontal } \end{aligned}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	M1/A1 dy/dx $=$ $\tan \theta-9.8 x / v^{2} \cos ^{2} \theta$ A1 $\mathrm{d} y / \mathrm{d} x=-0.838$ M1 $\tan ^{-1}(-.838)$ or 50.0° to vertical
(iii)	$\begin{aligned} & \text { speed }=\sqrt{ }\left(12.9^{2}+15.4^{2}\right) \\ & \\ & 1 / 2 m v^{2}=1 / 2 m \times 20.1^{2} \times 0.7 \\ & v=16.8 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	(20.1) NB 0.3 instead of 0.7 gives 11.0 (M0)

16 (i)	$\begin{aligned} & 30^{2}=V_{1}^{2} \sin ^{2} \theta_{1}-2 \times 9.8 \times 250 \\ & V_{1}^{2} \sin ^{2} \theta_{1}=5800 \mathrm{AEF} \\ & V_{1} \cos \theta_{1}=40 \\ & V_{1}=86.0 \\ & \theta_{1}=62.3^{\circ} \end{aligned}$	M1 A1 B1 A1 A1 $[5]$	$1 / 2 m V_{1}^{2}=1 / 2 m 50^{2}+m \times 9.8 \times 250$ AG AG
(ii)	$\begin{aligned} & 0=\sqrt{5800} \mathrm{t}_{\mathrm{p}}-4.9 \mathrm{t}_{\mathrm{p}}^{2} \\ & \mathrm{t}_{\mathrm{p}}=15.5 \\ & -\sqrt{ } 5800=30-9.8 \mathrm{t}_{\mathrm{q}} \\ & \mathrm{t}_{\mathrm{q}}=10.8 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & \\ \text { M1 } & \\ \text { A1 } & {[4]} \end{array}$	$\begin{aligned} & 30=V_{1} \sin \theta_{1}-9.8 \mathrm{t} \\ & \mathrm{t}=4.71 \end{aligned}$
(iii)	$\begin{aligned} & \mathrm{R}=40 \times 15.5 \\ & \mathrm{R}=621 \\ & V_{2} \cos \theta_{2} \times 10.8=621 \\ & 0=V_{2} \sin \theta_{2} \times 10.8-4.9 \times 10.8^{2} \\ & V_{2} \sin \theta_{2}=53.1 \text { or } 53.0 \end{aligned}$ Method to find a value of V_{2} or θ_{2} $\begin{aligned} & \theta_{2}=42.8^{\circ} \\ & V_{2}=78.2 \mathrm{~m} \mathrm{~s}^{-1} \text { or } 78.1 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	 M1 A1 B1 M1 A1 M1 A1 A1 $[8]$	$\begin{aligned} & (620,622) \\ & V_{2} \cos \theta_{2}=57.4 \\ & (52.9,53.1) \\ & 42.6^{\circ} \text { to } 42.9^{\circ} \\ & \text { or } 78.1^{\circ} \end{aligned}$

(Q6, Jan 2010)

17	$v^{2}=2 \times 9.8 \times 10$	M1	Using $v^{2}=u^{2}+2$ as with $u=0$
$v=14 \mathrm{~ms} \mathrm{~s}^{-1}$	A1		
	speed $=\sqrt{ }\left(7^{2}+14^{2}\right)$	M1	Method to find speed using their " v "
	15.7 or $7 \sqrt{ } 5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
$\tan ^{-1}(14 / 7)$ or $\tan ^{-1}(7 / 14)$	M1	Method to find angle using their " v "	
	$63.4^{\circ} \quad$ to the horizontal	A1 6	26.6° to vertical
			$\mathbf{6}$

18 (i) Or last 4 marks of (i)	$\left[\begin{array}{l} \mathrm{R}=0.2 \times 9.8 \times \cos 30^{\circ}(=1.70) \\ \mathrm{F}=0.1 \times 9.8 \times \cos 30^{\circ}(=0.849) \\ 1 / 2 \times 0.2 \times 11^{2}-1 / 2 \times 0.2 \mathrm{v}^{2}= \\ 0.2 \times 9.8 \times 5 \sin 30+5 \times 0.849 \\ \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \\ \mathrm{~F}+0.2 \mathrm{~g} \sin 30= \pm 0.2 \mathrm{a} \\ \mathrm{a}= \pm 9.1 \\ \mathrm{v}^{2}=11^{2}+2 \times \mathrm{a} \times 5 \\ \mathrm{v}=5.44 \mathrm{~m} \mathrm{~s}^{-1} \end{array}\right.$	B1 B1 M1 A1 A1 A1 6 M1 A1 M1 A1	FT on their R , but not $\mathrm{R}=0.2 \mathrm{~g}$ Use of conservation of energy AG Use of N2L, 3 terms Complete method to find v
(ii) Or first 5 marks of (ii)	$\begin{aligned} & \mathrm{t}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{t}=0.919 \mathrm{~s} \\ & \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ & \mathrm{s}=2.72 \times 0.919-4.9 \times 0.919^{2} \\ & \mathrm{~s}=-1.6 \text { (or better) } \end{aligned}$ Ht drop to $C=5 \sin 30^{\circ}=2.5 \mathrm{~m}$ Ball does not hit the roof $y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 V^{2}$ substitute values $\begin{aligned} & V=5.44 \quad \theta=30^{\circ} \quad x=5 \cos 30^{\circ} \\ & y=2.5-9.8 \times 25 \times 3 / 4 \times 4 / 3 /\left(2 \times 5.44^{2}\right) \\ & y=-1.6 \text { (or better) } \end{aligned}$	M1 A1 B1 M1 A1 B1 A1 7 B1 M1 A1 A1 A1	time to lateral position over C Ht dropped all 3 correct
OR (ii)	$\begin{array}{\|l} \mathrm{u}=5.44 \sin 30^{\circ}(=2.72) \\ -2.5=5.44 \sin 30 \mathrm{t}-4.9 \mathrm{t}^{2} \end{array}$ $\mathrm{t}=1.04$ $x=5.44 \cos 30 \times 1.04=4.9 \text { (or better })$ Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 A1 A1 B1 A1 7	aef time to position level with $A C$
OR (ii)	$\mathrm{y}=\mathrm{xtan} \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{~V}^{2}$ substitute values $-2.5=0.577 \mathrm{x}-0.221 \mathrm{x}^{2}$ Attempt to solve quadratic for x $x=4.9$ (or better) Horizontal distance from B to $\mathrm{C}=$ $5 \cos 30=4.3$ (or better) Ball does not hit the roof	B1 M1 A1 M1 A1 B1 A1 7	aef
OR (ii)	$\begin{aligned} & u=5.44 \sin 30^{\circ}=2.72 \\ & -2.5=5.44 \sin 30 t-4.9 \mathrm{t}^{2} \\ & \mathrm{t}=1.0(\text { or better }) \\ & \mathrm{T}=5 \cos 30^{\circ} / 5.44 \cos 30^{\circ} \\ & \mathrm{T}=0.92 \text { (or better) } \\ & \text { Ball does not hit the roof } \end{aligned}$	B1 M1 A1 A1 M1 A1 A1 7	aef time to position level with $A C$ time to lateral position over C

19	(i)	$\begin{aligned} & 0=(14 \sin 30)^{2}-2 \mathrm{gh} \\ & \mathrm{~h}=2.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$ [2]	$\mathrm{h}=(14 \sin 30) \times 1 / 1.4-\mathrm{g}(1 / 1.4)^{2} / 2$ or use $\left(\mathrm{u}^{2} \sin ^{2} \theta\right) / 2 \mathrm{~g}$
	(ii)	$\begin{aligned} & 0.4 \times 15=0.4(14 \cos 30)+I \\ & I=1.15 \end{aligned}$	M1 A1 A1 [3]	Impulse = change in momentum Not 14 or 0 for horizontal speed before impulse aef
	(iii)	$\begin{aligned} & \mathrm{v}^{2}=(14 \sin 30)^{2}+15^{2} \\ & v=16.6 \mathrm{~ms}^{-1} \\ & \tan \theta=14 \sin 30 / 15 \text { OR } \tan \psi=15 / 14 \sin 30 \\ & \theta=25(.0)^{\circ} \text { OR } \psi=65(.0)^{\circ} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ [4]	Not $(14 \sin 30)^{2}+(14 \cos 30)^{2}$ Allow $\sqrt{274}$ Correct trig to find an appropriate angle; not $14 \cos 30$ for 15
	(iv)	$\begin{aligned} & \mathrm{t}=14 \sin 30 / \mathrm{g}(=1 / 1.4=0.7142 . .) \\ & \mathrm{T}=1.43 \mathrm{~s} \\ & \mathrm{R}=14 \cos 30 / 1.4+15 / 1.4 \\ & \mathrm{R}=19.4 \mathrm{~m} \end{aligned}$	M1 A1 M1A1 A1 [5]	Rise or fall time (not to be given in (i)) Accept 10/7 $\left(14^{2} \sin (2 \times 30)+16.6^{2} \sin (2 \times 25)\right) / 2 \mathrm{~g} .14$ resolved, 15 not

(Q6, Jan 2011)

\begin{tabular}{|c|c|c|c|}
\hline 20 i \& \[
\begin{aligned}
\& x=(7 \cos 30) t \\
\& y=(7 \sin 30) t-\mathrm{gt}^{2} / 2 \\
\& y=x \tan 30-g x^{2} /\left(2 x 7^{2} \cos ^{2} 30\right)
\end{aligned}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
[4]
\end{tabular} \& Attempt to eliminate \(t\) \(y=x / \sqrt{ } 3-2 x^{2} / 15\) or \(y=0.577 x-0.133 x^{2}\) aef \\
\hline ii \& \[
\begin{aligned}
\& 2 x^{2} / 15-x / \sqrt{ } 3+0.6=0 \text { or } 9.8 t^{2}-7 t+1.2=0 \\
\& x=1.73 m \text { or } \sqrt{ } 3 m \\
\& \\
\& \quad 2.6(0) \mathrm{m} \text { or } 3 \sqrt{ } 3 / 2 \mathrm{~m}
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
M1 \\
A1 \\
A1 \\
[4]
\end{tabular} \& Create a 3 term Q.E. in \(x\) or \(t\) with \(y=0.6\) Solve 3 term Q.E. for x or t \\
\hline iii

OR \& \begin{tabular}{l}
$$
\begin{aligned}
& v^{2}=(7 \sin 30)^{2}-2 \times 9.8 \times 0.6 \\
& v=0.7 \mathrm{~ms}^{-1} \\
& \tan \theta=0.7 /(7 \cos 30) \\
& \theta=6.59^{\circ} \text { to horizontal or } 83.4^{\circ} \text { to vertical }
\end{aligned}
$$

Attempt to differentiate equation of trajectory $\tan 30-\mathrm{gx} /\left(7^{2} \cos ^{2} 30\right)$

Substitute $x=\sqrt{ } 3$ and equate to $\tan \theta$ $\theta=6.59^{\circ}$ to horizontal or 83.4° to vertical

 \&

M1

A1

M1

A1

[4]

M1

A1

M1

A1 [4]

 \&

Using $v^{2}=u^{2}-2 g s$ with u a component of 7 ; can find t first from their x in (i), and then use $\mathrm{v}=\mathrm{u}+\mathrm{at}$.

Use component of 7

Allow $1 / \sqrt{ } 3-4 x / 15$ or $y^{\prime}=0.577-0.267 x$
\end{tabular}

\hline
\end{tabular}

(Q5, June 2011)
$\theta=11.1^{\circ}$ below horizontal

Expect 32.8, need not be evaluated.
Expect -6.46 , need not be evaluated.
Use of Pythagoras or relevant trig on $\operatorname{cv}\left(v_{x}\right)$ and $\operatorname{cv}\left(v_{y}\right)$

AEF; allow 11.2

22	(i)	$\begin{aligned} & \text { For } P 4.9 t^{2}=60 \\ & t=3.5(0) \\ & \text { For } Q \quad 0=25 \sin \theta \times t-1 / 2 \times 9.8 \times t^{2} \\ & \theta=43.3 \\ & P Q=(25 \cos \theta-15) \times t_{c} \\ & \quad=11.2 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[6]} \end{aligned}$	Signs must be consistent. aef	;r.com
	(ii)	$25 \cos \theta(t)=15(t)$ and solving for θ $\theta=53.1$ For $Q s_{y 1}=25 \sin \theta \times t-1 / 2 \times 9.8 \times t^{2}$ For $P \quad s_{y 2}= \pm 1 / 2 \times 9.8 \times t^{2}$ Using $s_{y 1}+s_{y 2}=60$ Solving for t $\begin{aligned} & t=3 \\ & v=25 \sin \theta-9.8 \times 3 \end{aligned}$ $v=-9.4$ therefore falling.	M1 A1 B1 B1 *M1 M1dep* A1 M1 A1 $[9]$	Equating horizontal components of velocity (or displacement) and solving for θ. Other methods include finding time to max height for Q .	
OR	(ii)	$25 \cos \theta(t)=15(t)$ and solving for θ $\theta=53.1$ For $Q \quad y=x \tan \theta-\frac{g x^{2}}{2 \times(25)^{2} \cos ^{2} \theta}$ For $P \quad y=(60-) \frac{g x^{2}}{2 \times(15)^{2}}$ Equate y and solve for x Use $x=u \cos \theta t$ to find t $\begin{aligned} & t=3 \\ & v=25 \sin \theta-9.8 \times 3 \end{aligned}$ $v=-9.4$ therefore falling.	M1 A1 B1 B1 *M1 M1dep* A1 M1 A1 $[9]$	Equating horizontal components of velocity (or displacement) and solving for θ. Must include 60. Other methods include finding time to max height for Q .	

(Q7, Jan 2012)

23	(i)		$\begin{aligned} & 1 / 2 \times 9.8 \times t^{2}=0.2 \\ & t=0.2(02) \\ & s=14.4 \times t_{c} \\ & s=2.91 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Using SUVAT to find t , consistent signs for g and 0.2 aef Using their value of t
		OR	Use equation of trajectory $-0.2=x \tan 0-g x^{2} \sec ^{2} 0 /\left(2 \times 14.4^{2}\right)$ Solve quadratic for x $x=2.91$	M1 A1 M1 A1 [4]	B1 for correct equation of the trajectory seen anywhere but award in part (ii) unless different method seen; consistent signs for g and 0.2
	(ii)		$U \sin 15 \times t-1 / 2 \times 9.8 \times t^{2}=-0.2$ $U \cos 15 \times t=6$ Eliminate t Attempt to solve to find U $U=10.2 \mathrm{~ms}^{-1}$	*M1 A1 B1 Dep*M1 Dep*M1 A1 [6]	Using $\mathrm{s}=u t+1 / 2 a t^{2}$ with $s= \pm 0.2$ and $a= \pm g$ Eliminate U Attempt to solve to find $t(=0.607)$
		OR	$y=x \tan \theta-g x^{2} \sec ^{2} \theta / 2 U^{2}$ Substitute values for y, x, θ $-0.2=6 \tan 15-g .6^{2} \sec ^{2} 15 / 2 U^{2}$ Attempt to solve for U $U=10.2 \mathrm{~ms}^{-1}$	*B1 Dep*M1 A1 Dep*M2 A1 $[6]$	

(Q4, June 2012)

24 (i)	$\begin{aligned} & \mathrm{x}=\mathrm{u} \cos \theta \mathrm{t} \\ & \mathrm{y}=\mathrm{usin} \theta \mathrm{t}-1 / 2 \mathrm{gt}^{2} \\ & \text { Eliminate } \mathrm{t} \\ & \text { Get } \mathrm{y}=\mathrm{x} \tan \theta-\mathrm{gx}^{2} \sec ^{2} \theta / 2 \mathrm{u}^{2}[\mathbf{A G}] \end{aligned}$	B1 B1 M1 A1 [4]	www	
(ii)	Substitute $\mathrm{x}=22, \mathrm{y}=-2.1$ and $\mathrm{u}=14$ Use $\sec ^{2} \theta=1+\tan ^{2} \theta$ Tidy to $12.1 \tan ^{2} \theta-22 \tan \theta+10=0$ [AG] Solve QE for $\tan \theta$ $\theta=42.3$	$\begin{gathered} \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \\ \text { [5] } \end{gathered}$	May start again of course www allow in radians (0.738)	
(iii)	$\begin{aligned} & t=22 / 14 \cos \theta \\ & t=2.12 s \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	May work vertically, but must solve for t to get M1	

25		(i)	$\begin{aligned} & u \cos \theta=14 \cos 20 \\ & \\ & -14 \sin 20=u \sin \theta-1.4 g \\ & u^{2}=(1.4 g-14 \sin 20)^{2}+(14 \cos 20)^{2} \\ & u=15.9 \quad \text { AG } \\ & \tan \theta=(1.4 g-14 \sin 20) / 14 \cos 20 \\ & \theta=34.2 \end{aligned}$	B1 M1 A1 M1 A1 M1 A1 $[7]$	$U_{x}=13.15 \ldots$ Horizontal component of initial velocity, could use U_{x} Complete method to find vertical component of initial velocity, could use U_{y} $U_{y}=8.9317 \ldots \ldots$ Method to find u cwo Method to find θ or a relevant angle SC M1A1 for $-\tan 20=(u \sin \theta-1.4 g) / u \cos \theta$ OR $14^{2}=(u \sin \theta-1.4 g)^{2}+(u \cos \theta)^{2}$ B1M1A1 for both.
		(ii)	$\begin{aligned} & 1 / 2 m\left(15.9^{2}-14^{2}\right)=m g y \\ & y=2.9 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { [3] } \end{aligned}$	Method to find Level of P above A
	OR	(ii)	$\begin{aligned} & (14 \sin 20)^{2}=(15.9 \sin \theta)^{2}-2 g s \text { or } s=15.9 \sin \theta \times 1.4-1 / 2 g \times 1.4^{2} \\ & s=2.9 \mathrm{~m} \end{aligned}$	$\begin{gathered} \hline \text { M1 } \\ \text { A1ft } \\ \text { A1 } \\ {[3]} \\ \hline \end{gathered}$	Use constant acc formulae, a complete method needed. ft their θ from (i). no θ value used then M1A0.
		(iii)	$\begin{aligned} & -2.9=v \sin 20 . t-9.8 t^{2} / 2 \\ & 2.9 \tan 20=v \cos 20 . t \end{aligned}$ Eliminate t to obtain equation in v only Solve for v $v=1.37$	$\begin{gathered} \text { B1ft } \\ \text { B1ft } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	ft their 2.9 ft their 2.9 Eliminate v to obtain equation in t only and solve for t Substitute t to find v
	OR	(iii)	$-2.9=(2.9 \tan 20) \times \tan 20-g(2.9 \tan 20)^{2} / 2 v^{2} \cos ^{2} 20$ Solve for v $v=1.37$	$\begin{gathered} \mathrm{M} 2 \\ \text { A1ft } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \end{gathered}$	Using equation of trajectory method.
	OR	(iii)	$2.9 / \cos 20=1 / 2 \operatorname{gcos} 20 \times t^{2}$ $0=v t-1 / 2 \mathrm{~g} \sin 20 \times t^{2}$ Eliminate t Solve for v $v=1.37$	$\begin{gathered} \text { B1ft } \\ \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \\ {[5]} \\ \hline \end{gathered}$	$t=0.817$
		(iv)	$e=0.098$	$\begin{gathered} \hline \text { B1ft } \\ {[1]} \end{gathered}$	$\mathrm{ft} \mathrm{their} v$ from (iii), must be $v / 14$.

