Edexcel Maths M1 Topic Questions from Papers Collisions | Leave | | |-------|--| | hlank | | | 1. | A particle P of mass 1.5 kg is moving along a straight horizontal line with speed 3 m s ⁻¹ . Another particle Q of mass 2.5 kg is moving, in the opposite direction, along the same straight line with speed 4 m s ⁻¹ . The particles collide. Immediately after the collision the direction of motion of P is reversed and its speed is 2.5 m s ⁻¹ . | | | | |----|--|--------|--|--| | | (a) Calculate the speed of Q immediately after the impact. | (3) | | | | | (b) State whether or not the direction of motion of Q is changed by the collision. | (1) | | | | | (c) Calculate the magnitude of the impulse exerted by Q on P, giving the units o answer. | f your | | | | | | (3) | _ | _ | | | | | | | | | | | | | | | | | | _ | | | | | | _ | | | | | | | | | | | N16740A 2 | 2. | Two small steel balls A and B have mass 0.6 kg and 0.2 kg respectively. They are moving towards each other in opposite directions on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of A is 8 m s ⁻¹ and the speed of B is 2 m s ⁻¹ . Immediately after the collision, the direction of motion of A is unchanged and the speed of B is twice the speed of A . Find | | | |----|---|---|--| | | (a) the speed of A immediately after the collision, (5) |) | | | | (b) the magnitude of the impulse exerted on B in the collision. (3) |) | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | | | | _ | | Leave blank | 2. | (a) | Two particles A and B , of mass 3 kg and 2 kg respectively, are moving in the same direction on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of A is 4 m s ⁻¹ and the speed of B is 1.5 m s ⁻¹ . In the collision, the particles join to form a single particle C . | |----|-----|---| | | | Find the speed of C immediately after the collision. (3) | | | (b) | Two particles P and Q have mass 3 kg and m kg respectively. They are moving towards each other in opposite directions on a smooth horizontal table. Each particle has speed 4 m s ⁻¹ , when they collide directly. In this collision, the direction of motion of each particle is reversed. The speed of P immediately after the collision is 2 m s ⁻¹ and the speed of Q is 1 m s ⁻¹ . Find | | | | (i) the value of m, | | | | (3) | | | | (ii) the magnitude of the impulse exerted on Q in the collision. | | | | (2) | Leave | | |-------|--| | blank | | | 2. | Two particles A and B have mass 0.4 kg and 0.3 kg respectively. They are moving in opposite directions on a smooth horizontal table and collide directly. Immediately before the collision, the speed of A is 6 m s ⁻¹ and the speed of B is 2 m s ⁻¹ . As a result of the collision, the direction of motion of B is reversed and its speed immediately after the collision is 3 m s ⁻¹ . Find | |----|--| | | (a) the speed of <i>A</i> immediately after the collision, stating clearly whether the direction of motion of <i>A</i> is changed by the collision, | | | (4) | | | (b) the magnitude of the impulse exerted on <i>B</i> in the collision, stating clearly the units in which your answer is given. | | | (3) | Leave | | |-------|--| | blank | | | 4. | 4. A particle P of mass 0.3 kg is moving with speed u m s ⁻¹ in a straight line on a smooth horizontal table. The particle P collides directly with a particle Q of mass 0.6 kg, which is at rest on the table. Immediately after the particles collide, P has speed 2 m s ⁻¹ and Q has speed 5 m s ⁻¹ . The direction of motion of P is reversed by the collision. Find | | |----|---|--| | | (a) the value of u , | | | | (4) | | | | (b) the magnitude of the impulse exerted by P on Q . (2) | | | | Immediately after the collision, a constant force of magnitude R newtons is applied to Q in the direction directly opposite to the direction of motion of Q . As a result Q is brought to rest in 1.5 s. | | | | (c) Find the value of R. | | | | (4) | uestion 4 continued | | |---------------------|--| Leave blank | Two particles A and B , of mass 0.3 kg and m kg respectively, are moving in opposite directions along the same straight horizontal line so that the particles collide directly. Immediately before the collision, the speeds of A and B are 8 m s ⁻¹ and 4 m s ⁻¹ respectively. In the collision the direction of motion of each particle is reversed and, immediately after the collision, the speed of each particle is 2 m s ⁻¹ . Find | | | |--|----------------|--| | (a) the magnitude of the impulse exerted by <i>B</i> on <i>A</i> in the | collision, (3) | | | (b) the value of m . | (4) | 1. | Two particles A and B have masses 4 kg and m kg respectively. They are moving towards each other in opposite directions on a smooth horizontal table when they collide directly. Immediately before the collision, the speed of A is 5 m s ⁻¹ and the speed of B is 3 m s ⁻¹ . Immediately after the collision, the direction of motion of A is unchanged and the speed of A is 1 m s ⁻¹ . | | | |----|---|-----|--| | | (a) Find the magnitude of the impulse exerted on <i>A</i> in the collision. | (2) | | | | Immediately after the collision, the speed of B is 2 m s ⁻¹ . | | | | | (b) Find the value of <i>m</i> . | (4) | Leave | | |-------|--| | blank | | | 1. | Two particles P and Q have mass 0.4 kg and 0.6 kg respectively. The particles are at rest on a smooth horizontal table. Particle P is given an impulse of magnitude 3 the direction PQ . | | |----|--|-----| | | (a) Find the speed of P immediately before it collides with Q . | | | | | (3) | | | Immediately after the collision between P and Q , the speed of Q is 5 m s ⁻¹ . | | | | (b) Show that immediately after the collision P is at rest. | (3) | Leave blank | 3. | Two particles A and B are moving on a smooth horizontal plane. The mass of A is where $2 < k < 3$, and the mass of B is m . The particles are moving along the same straine, but in opposite directions, and they collide directly. Immediately before they col | ight | |----|--|------| | | the speed of A is $2u$ and the speed of B is $4u$. As a result of the collision the speed of A halved and its direction of motion is reversed. | | | | (a) Find, in terms of k and u , the speed of B immediately after the collision. | (3) | (b) State whether the direction of motion of B changes as a result of the collision, explaining your answer. **(3)** Given that $k = \frac{7}{3}$, (c) find, in terms of m and u, the magnitude of the impulse that A exerts on B in the collision. **(3)** 3. Two particles A and B are moving on a smooth horizontal plane. The mass of A is 2m and the mass of B is m. The particles are moving along the same straight line but in opposite directions and they collide directly. Immediately before they collide the speed of A is 2u and the speed of B is 3u. The magnitude of the impulse received by each particle in the collision is $\frac{7mu}{2}$. Find (a) the speed of A immediately after the collision, **(3)** (b) the speed of *B* immediately after the collision. **(3)** |
 | |------|
 | Leave | |-------| | blank | | 1. | A particle A of mass 2 kg is moving along a straight horizontal line with speed $12 \mathrm{ms^{-1}}$. Another particle B of mass m kg is moving along the same straight line, in the opposite direction to A , with speed $8 \mathrm{ms^{-1}}$. The particles collide. The direction of motion of A is unchanged by the collision. Immediately after the collision, A is moving with speed $3 \mathrm{ms^{-1}}$ and B is moving with speed $4 \mathrm{ms^{-1}}$. Find | Dia. | |----|---|------| | | (a) the magnitude of the impulse exerted by B on A in the collision, (2) | | | | | | | | (b) the value of m . (4) | Leave | | |-------|--| | blank | | | 2. | Particle P has mass $m \log a$ and particle Q has mass $3m \log a$. The particles are min opposite directions along a smooth horizontal plane when they collide di Immediately before the collision P has speed $4u \text{ m s}^{-1}$ and Q has speed $ku \text{ m s}^{-1}$, wis a constant. As a result of the collision the direction of motion of each particle is regard the speed of each particle is halved. | rectly.
here <i>k</i> | |----|--|--------------------------| | | (a) Find the value of k . | (4) | | | | (4) | | | (b) Find, in terms of m and u , the magnitude of the impulse exerted on P by Q . | (3) | Leave blank | 1. | Two particles B and C have mass m kg and 3 kg respectively. They are moving towards each other in opposite directions on a smooth horizontal table. The two particles collide directly. Immediately before the collision, the speed of B is 4 m s ⁻¹ and the speed of C is 2 m s ⁻¹ . In the collision the direction of motion of C is reversed and the direction of motion of C is unchanged. Immediately after the collision, the speed of C is 1 m s ⁻¹ and the speed of C is 3 m s ⁻¹ . | blank | |----|---|-------| | | (a) the value of m , | | | | (3) | | | | (b) the magnitude of the impulse received by C . | | | | (2) | Leave blank | 2. | Particle P has mass 3 kg and particle Q has mass 2 kg. The particles are moving opposite directions on a smooth horizontal plane when they collide directly. Immediate before the collision, P has speed 3 m s ⁻¹ and Q has speed 2 m s ⁻¹ . Immediately after the collision, both particles move in the same direction and the difference in their speeds 1 m s ⁻¹ . | ly
ne | |----|--|----------| | | (a) Find the speed of each particle after the collision. | 5) | | | (b) Find the magnitude of the impulse exerted on P by Q . | 3) | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | | | _ | | Leave | |-------| | blank | | 1. A railway truck P , of mass m kg, is moving along a $15 \mathrm{ms^{-1}}$. Truck P collides with a truck Q of mass $3000 \mathrm{ms^{-1}}$. The direction of motion of P is reversed by the collision | 000 kg , which is at rest on the same 1000 kg , which is at rest on the same 1000 kg , and the speed of Q is 9 m s^{-1} . | |--|---| | Modelling the trucks as particles, find | | | (a) the magnitude of the impulse exerted by P on Q | , (2) | | (b) the value of m . | (3) | Leave | | |-------|--| | blank | | | 1. | Two particles A and B , of mass $5m$ kg and $2m$ kg respectively, are moving in opporting directions along the same straight horizontal line. The particles collide directly. Immediately before the collision, the speeds of A and B are 3 m s^{-1} and 4 m s^{-1} respectively. direction of motion of A is unchanged by the collision. Immediately after the collision speed of A is 0.8 m s^{-1} . | osite
Itely
The | olank | |----|--|-----------------------|-------| | | (a) Find the speed of <i>B</i> immediately after the collision. | (3) | | | | In the collision, the magnitude of the impulse exerted on A by B is 3.3 N s. | | | | | (b) Find the value of m. | (3) | _ | | | | | | | | Leave | |-------| | blank | | 1. Two particles P and Q have masses $4m$ and m respectively. The particle towards each other on a smooth horizontal plane and collide directly. The and Q immediately before the collision are $2u$ and $5u$ respectively. Immediately, the speed of P is $\frac{1}{2}u$ and its direction of motion is reversed. | The speeds of P | |--|-----------------| | (a) Find the speed and direction of motion of Q after the collision. | | | (b) Find the magnitude of the impulse exerted on P by Q in the collision | (3) | Leave | |-------| | blank | | 1. Two particles A and B, of mass 2 kg and 3 kg respectively, are moving towards each other in opposite directions along the same straight line on a smooth horizontal surface. The particles collide directly. Immediately before the collision the speed of A is 5 m s ⁻¹ and the speed of B is 6 m s ⁻¹ . The magnitude of the impulse exerted on B by A is 14 N s. Find | | |---|-----| | (a) the speed of A immediately after the collision, | (3) | | (b) the speed of <i>B</i> immediately after the collision. | (3) | Leave | |-------| | blank | | 1. | Particle P has mass 3 kg and particle Q has mass m kg. The particles are moving in oppose directions along a smooth horizontal plane when they collide directly. Immediately before the collision, the speed of P is 4 m s ⁻¹ and the speed of Q is 3 m s ⁻¹ . In the collision to direction of motion of P is unchanged and the direction of motion of P is reverse. Immediately after the collision, the speed of P is 1 m s ⁻¹ and the speed of P is 1.5 m s ⁻¹ | ore
the
ed. | |----|--|-------------------| | | (a) Find the magnitude of the impulse exerted on <i>P</i> in the collision. | (3) | | | (b) Find the value of m. | (3) | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | | | | | _ | | | | |