Q 1		mark		Sub
(i)	Acceleration is $8 \mathrm{~m} \mathrm{~s}^{-2}$ speed is $0+0.5 \times 4 \times 8=16 \mathrm{~m} \mathrm{~s}^{-1}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$		2
(ii)	$a=2 t$	B1		1
(iii)	$t=7$ $a>0$ for $t<7$ and $a<0$ for $t>7$	$\begin{aligned} & \text { B1 } \\ & \text { E1 } \end{aligned}$	Full reason required	2
(iv)	Area under graph $0.5 \times 2 \times 8-0.5 \times 1 \times 4=6 \text { so } 6 \mathrm{~m} \mathrm{~s}^{-1}$ Increase	M1 B1 E1	Both areas under graph attempted. Accept both positive areas. If 2×3 seen accept ONLY IF reference to average accn has been made. Award for $v=-2 t^{2}+28 t+c$ seen or 24 and 30 seen Award if 6 seen. Accept ' 24 to 30 '. This must be clear. Mark dept. on award of M1	3
	total	8		

Q 2		mark		Sub
(i)	$a=24-12 t$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Differentiate cao	2
(ii)	Need $24 t-6 t^{2}=0$ $t=0,4$	M1 A1	Equate $v=0$ and attempt to factorise (or solve). Award for one root found. Both. cao.	2
(iii)	$\begin{aligned} & s=\int_{0}^{4}\left(24 t-6 t^{2}\right) \mathrm{d} t \\ & =\left[12 t^{2}-2 t^{3}\right]_{0}^{4} \\ & (12 \times 16-2 \times 64)-0 \\ & =64 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1	Attempt to integrate. No limits required. Either term correct. No limits required Sub $t=4$ in integral. Accept no bottom limit substituted or arb const assumed 0 . Accept reversed limits. FT their limits. cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f. A1 (dep on $2^{\text {nd }} \mathrm{M} 1$) One strip area correct: A1 cao]	4
	total	8		

Q 3		mark		Sub
(i)	$\begin{aligned} & \mathbf{R}+\binom{-3}{4}+\binom{21}{-7}=\binom{0}{0} \\ & \mathbf{R}=\binom{-18}{3} \end{aligned}$	M1 A1	Sum to zero Award if seen here or in (ii) or used in (ii). [SC1for $\binom{18}{-3}$]	2
(ii)	$\begin{aligned} & \|\mathbf{R}\|=\sqrt{18^{2}+3^{2}} \\ & =18.248 \ldots \text { so } 18.2 \mathrm{~N}(3 \mathrm{s.f.}) \\ & \text { angle is } 180-\arctan \left(\frac{3}{18}\right)=170.53 \ldots{ }^{\circ} \\ & \text { so } 171^{\circ}(3 \mathrm{~s} . \mathrm{f} .) \end{aligned}$	M1 A1 M1 A1	Use of Pythagoras Any reasonable accuracy. FT R (with 2 non-zero cpts) Allow arctan $\left(\frac{ \pm 3}{ \pm 18}\right)$ or $\arctan \left(\frac{ \pm 18}{ \pm 3}\right)$ Any reasonable accuracy. FT R provided their angle is obtuse but not 180°	4
	total	6		

Q 4		mark		Sub
(i)		B1	All forces present. No extras. Accept mg, wetc. All labelled with arrows. Accept resolved parts only if clearly additional. Accept no angles	1
(ii)	Resolve parallel to the plane $10+T \cos 30=4 g \cos 30$ $T=27.65299 \ldots \text { so } 27.7 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	All terms present. Must be resolution in at least 1 term. Accept $\sin \leftrightarrow \cos$. If resolution in another direction there must be an equation only in T with no forces omitted. No extra forces. All correct Any reasonable accuracy	3
(iii)	Resolve perpendicular to the plane $R+0.5 T=2 g$ $R=5.7735 \ldots \text { so } 5.77 \mathrm{~N} \text { (3 s. f.) }$	M1 A1 A1	At least one resolution correct. Accept resolution horiz or vert if at least 1 resolution correct. All forces present. No extra forces. Correct. FT T if evaluated. Any reasonable accuracy. cao.	3
	total	7		

Q 5		mark		Sub
(i)	$\begin{aligned} & x=2 \Rightarrow t=4 \\ & t=4 \Rightarrow y=16-1=15 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { F1 } \end{aligned}$	cao FT their t and y. Accept $15 \mathbf{j}$	2
(ii)	$x=\frac{1}{2} t \text { and } y=t^{2}-1$ Eliminating t gives $y=\left((2 x)^{2}-1\right)=4 x^{2}-1$	M1 E1	Attempt at elimination of expressions for x and y in terms of t Accept seeing $(2 x)^{2}-1=4 x^{2}-1$	2
(iii)	either We require $\frac{\mathrm{d} y}{\mathrm{~d} x}=1$ so $8 x=1$ $x=\frac{1}{8}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$ or Differentiate to find \mathbf{v} equate \mathbf{i} and \mathbf{j} cpts so $t=\frac{1}{4}$ and the point is $\left(\frac{1}{8},-\frac{15}{16}\right)$	M1 B1 A1 M1 M1 A1	This may be implied Differentiating correctly to obtain $8 x$ Equating the \mathbf{i} and \mathbf{j} cpts of their \mathbf{v}	3
	total	7		

Q 6		mark		Sub
(i)	$2000=1000 a \text { so } a=2 \text { so } 2 \mathrm{~m} \mathrm{~s}^{-2}$ $12.5=5+2 t \text { so } t=3.75 \text { so } 3.75 \mathrm{~s}$	B1 M1 A1	Use of appropriate uvast for t cao	3
(ii)	$\begin{aligned} & 2000-R=1000 \times 1.4 \\ & R=600 \text { so } 600 \mathrm{~N} \text { (AG) } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	N2L. Accept $F=m g a$. Accept sign errors. Both forces present. Must use $a=1.4$	2
(iii)	$2000-600-S=1800 \times 0.7$ $S=140 \text { so } 140 \mathrm{~N} \text { (AG) }$	M1 A1 E1	N2L overall or 2 paired equations. $F=m a$ and use 0.7. Mass must be correct. Allow sign errors and 600 omitted. All correct Clearly shown	3
(iv)	$T-140=800 \times 0.7$ $T=700 \text { so } 700 \mathrm{~N}$	M1 B1 A1	N2L on trailer (or car). $F=800 a$ (or 1000a). Condone missing resistance otherwise all forces present. Condone sign errors. Use of 140 (or $2000-600$) and 0.7	
(v)	N2L in direction of motion car and trailer $-600-140-610=1800 a$ $a=-0.75$ For trailer $T-140=-0.75 \times 800$ so $T=-460$ so 460 thrust	M1 A1 A1 M1 A1 F1	Use of $F=1800 a$ to find new accn. Condone 2000 included but not T. Allow missing forces. All forces present; no extra ones Allow sign errors. Accept \pm. cao. N2L with their $a(\neq 0.7)$ on trailer or car. Must have correct mass and forces. Accept sign errors cao. Accept ± 460 Dep on M1. Take tension as +ve unless clear other convention	
	total	17		

Q 7		mark		Sub
(i)	$\begin{aligned} & u=\sqrt{10^{2}+12^{2}}=15.62 . . \\ & \theta=\arctan \left(\frac{12}{10}\right)=50.1944 \ldots \text { so } 50.2(3 \text { s.f. }) \end{aligned}$	B1 M1 A1	Accept any accuracy 2 s . f. or better Accept $\arctan \left(\frac{10}{12}\right)$ (Or their $15.62 \cos \theta=10$ or their $15.62 \sin \theta=12$) [FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B 0 M 0 SC 1 for both $u \cos \theta=10$ and $u \sin \theta=12$ seen]	3
(ii)	$\text { vert } \quad 12 t-0.5 \times 10 t^{2}+9$ $=12 t-5 t^{2}+9 \quad(\mathrm{AG})$ horiz $10 t$	M1 A1 E1 B1	Use of $s=u t+0.5 a t^{2}, a= \pm 9.8$ or ± 10 and $u=12$ or 15.62.. Condone $-9=12 t-0.5 \times 10 t^{2}$, condone $y=9+12 t-0.5 \times 10 t^{2}$. Condone g. All correct with origin of $u=12$ clear; accept 9 omitted Reason for 9 given. Must be clear unless $y=s_{0}+\ldots$ used.	4
(iii)	$\begin{aligned} & 0=12^{2}-20 s \\ & s=7.2 \text { so } 7.2 \mathrm{~m} \end{aligned}$	M1 A1	Use of $v^{2}=u^{2}+2 a s$ or equiv with $u=12, v=0$. Condone $u \leftrightarrow v$ From CWO. Accept 16.2.	2
(iv)	We require $0=12 t-5 t^{2}+9$ Solve for t the + ve root is 3 range is 30 m	M1 M1 A1 F1	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60 t=10 t$ Comparison with Horiz displacement of A	B1 E1	Condone unsimplified expression. Award for $20 \cos 60=10$ Comparison clear, must show $10 t$ for each or explain.	2
(vi)	vertical height is $20 \sin 60 t-0.5 \times 10 t^{2}=10 \sqrt{3} t-5 t^{2}(\mathrm{AG})$	A1	Clearly shown. Accept decimal equivalence for $10 \sqrt{3}$ (at least 3 s. f.). Accept $-5 t^{2}$ and $20 \sin 60=10 \sqrt{3}$ not explained.	1
(vii)	$\begin{aligned} & \text { Need } 10 \sqrt{3} t-5 t^{2}=12 t-5 t^{2}+9 \\ & \Rightarrow t=\frac{9}{10 \sqrt{3}-12} \\ & t=1.6915 \ldots \text { so } 1.7 \mathrm{~s}(2 \mathrm{s.f.}) \text { (AG) } \end{aligned}$	M1 A1 E1	Equating the given expressions Expression for t obtained in any form Clearly shown. Accept 3 s. f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	3
	total	19		

