Q 1		mark		Sub
(i)	Acceleration is 8 m s ⁻² speed is $0+0.5\times4\times8=16$ m s ⁻¹	B1 B1		2
(ii)	a = 2t	B1		1
(iii)	t = 7	B1		
	a > 0 for $t < 7$ and $a < 0$ for $t > 7$	E1	Full reason required	2
(iv)	Area under graph	M1	Both areas under graph attempted. Accept both positive areas. If 2×3 seen accept ONLY IF reference to average accn has been made. Award for $v = -2t^2 + 28t + c$ seen or 24 and 30 seen	
	$0.5 \times 2 \times 8 - 0.5 \times 1 \times 4 = 6$ so 6 m s ⁻¹	B1	Award if 6 seen. Accept '24 to 30'.	
	Increase	E1	This must be clear. Mark dept. on award of M1	3
	total	8		

Q 2		mark		Sub
(i)	a = 24 - 12t	M1 A1	Differentiate cao	2
(ii)	Need $24t - 6t^2 = 0$ t = 0, 4	M1 A1	Equate $v = 0$ and attempt to factorise (or solve). Award for one root found. Both. cao.	2
(iii)	$s = \int_{0}^{4} (24t - 6t^{2}) dt$ $= \left[12t^{2} - 2t^{3}\right]_{0}^{4}$ $(12 \times 16 - 2 \times 64) - 0$	M1	Attempt to integrate. No limits required.	
	$= \left[12t^2 - 2t^3\right]_0^4$	A1	Either term correct. No limits required	
	$(12 \times 16 - 2 \times 64) - 0$	M1	Sub $t = 4$ in integral. Accept no bottom limit	
	= 64 m	A1	substituted or arb const assumed 0. Accept reversed limits. FT their limits. cao. Award if seen. [If trapezium rule used. M1 At least 4 strips: M1 enough strips for 3 s. f. A1 (dep on 2 nd M1) One strip area correct: A1 cao]	4
	total	8		

Q 3		mark		Sub
(i)	$\mathbf{R} + \begin{pmatrix} -3\\4 \end{pmatrix} + \begin{pmatrix} 21\\-7 \end{pmatrix} = \begin{pmatrix} 0\\0 \end{pmatrix}$	M1	Sum to zero	
	$\mathbf{R} = \begin{pmatrix} -18 \\ 3 \end{pmatrix}$	A1	Award if seen here or in (ii) or used in (ii).	
			$[SC1for \begin{pmatrix} 18 \\ -3 \end{pmatrix}]$	2
(ii)				
	$ \mathbf{R} = \sqrt{18^2 + 3^2}$	M1	Use of Pythagoras	
	= 18.248 so 18.2 N (3 s. f.)	A1	Any reasonable accuracy. FT R (with 2 non-zero cpts)	
	angle is $180 - \arctan\left(\frac{3}{18}\right) = 170.53^{\circ}$	M1	Allow $\arctan\left(\frac{\pm 3}{\pm 18}\right)$ or $\arctan\left(\frac{\pm 18}{\pm 3}\right)$	
	so 171° (3 s. f.)	A1	Any reasonable accuracy. FT R provided their angle is obtuse but not 180°	4
	total	6		

Q 4		mark		Sub
(i)	10 N T N R N 4g N 60°	B1	All forces present. No extras. Accept mg , w etc. All labelled with arrows. Accept resolved parts only if clearly additional. Accept no angles	1
(ii)	Resolve parallel to the plane $10 + T \cos 30 = 4g \cos 30$ $T = 27.65299 \text{ so } 27.7 \text{ N } (3 \text{ s. f.})$	M1 A1 A1	All terms present. Must be resolution in at least 1 term. Accept $\sin\leftrightarrow\cos$. If resolution in another direction there must be an equation only in T with no forces omitted. No extra forces. All correct Any reasonable accuracy	3
(iii)	Resolve perpendicular to the plane $R + 0.5 T = 2g$ $R = 5.7735 \text{ so } 5.77 \text{ N } (3 \text{ s. f.})$	M1 A1 A1	At least one resolution correct. Accept resolution horiz or vert if at least 1 resolution correct. All forces present. No extra forces. Correct. FT <i>T</i> if evaluated. Any reasonable accuracy. cao.	3
	total	7		

Q 5		mark		Sub
(i)	$x = 2 \Rightarrow t = 4$ $t = 4 \Rightarrow y = 16 - 1 = 15$	B1 F1	cao FT their t and y. Accept 15 j	2
(ii)	$x = \frac{1}{2}t \text{ and } y = t^2 - 1$ Eliminating t gives $y = ((2x)^2 - 1) = 4x^2 - 1$	M1	Attempt at elimination of expressions for x and y in terms of t Accept seeing $(2x)^2 - 1 = 4x^2 - 1$	2
(iii)	either We require $\frac{dy}{dx} = 1$ so $8x = 1$ $x = \frac{1}{8}$ and the point is $\left(\frac{1}{8}, -\frac{15}{16}\right)$ or Differentiate to find \mathbf{v} equate \mathbf{i} and \mathbf{j} cpts so $t = \frac{1}{4}$ and the point is $\left(\frac{1}{8}, -\frac{15}{16}\right)$	M1 B1 A1 M1 M1	This may be implied Differentiating correctly to obtain 8 <i>x</i> Equating the i and j cpts of their v	3
	total	7		Ì

Q 6		mark		Sub
(i)	$2000 = 1000a \text{ so } a = 2 \text{ so } 2 \text{ m s}^{-2}$	B1		
		M1	Use of appropriate <i>uvast</i> for <i>t</i>	
	12.5 = 5 + 2t so $t = 3.75$ so 3.75 s	A1	cao	3
(ii)	$2000 - R = 1000 \times 1.4$	M1	N2L. Accept $F = mga$. Accept sign errors. Both forces present. Must use $a = 1.4$	
	R = 600 so 600 N (AG)	E1	Torces present. What use $u = 1.4$	2
(iii)	$2000 - 600 - S = 1800 \times 0.7$	M1	N2L overall or 2 paired equations. $F = ma$ and use 0.7. Mass must be correct. Allow sign errors and	2
	S = 140 so 140 N (AG)	A1 E1	600 omitted. All correct Clearly shown	
(iv)				3
(11)	$T - 140 = 800 \times 0.7$	M1	N2L on trailer (or car). $F = 800a$ (or $1000a$). Condone missing resistance otherwise all forces present. Condone sign errors.	
	T = 700 so 700 N	B1 A1	Use of 140 (or 2000 – 600) and 0.7	3
(v)	NOT in direction of motion on and twiller			3
	N2L in direction of motion car and trailer			
	-600 - 140 - 610 = 1800 a	M1	Use of $F = 1800a$ to find new accn. Condone 2000 included but not T . Allow missing forces.	
		A1	All forces present; no extra ones Allow sign errors.	
	a = -0.75	A1	Accept ±. cao.	
	For trailer $T - 140 = -0.75 \times 800$	M1	N2Lwith their $a \neq 0.7$ on trailer or car. Must have correct mass and forces. Accept sign errors	
	so $T = -460$ so 460	A1	cao. Accept ±460	
	thrust	F1	Dep on M1. Take tension as +ve unless clear other convention	
			Convention	6
	total	17		

Q 7		mark		Sub
(i)				
	$u = \sqrt{10^2 + 12^2} = 15.62$	B1	Accept any accuracy 2 s. f. or better	
	$\theta = \arctan\left(\frac{12}{10}\right) = 50.1944$ so 50.2 (3s.f.)	M1	Accept $\arctan\left(\frac{10}{12}\right)$	
			(Or their $15.62\cos\theta = 10$ or their $15.62\sin\theta = 12$)	
		A1	[FT their 15.62 if used] [If θ found first M1 A1 for θ F1 for u] [If B0 M0 SC1 for both $u\cos\theta = 10$ and $u\sin\theta = 12$ seen]	3
(ii)	vert $12t - 0.5 \times 10t^2 + 9$	M1	Use of $s = ut + 0.5at^2$, $a = \pm 9.8$ or ± 10 and $u = 12$ or 15.62 Condone $-9 = 12t - 0.5 \times 10t^2$, condone	
		A1	$y = 9 + 12t - 0.5 \times 10t^2$. Condone g. All correct with origin of $u = 12$ clear; accept 9 omitted	
	$= 12t - 5t^2 + 9$ (AG)	E1	Reason for 9 given. Must be clear unless $y = s_0 +$	
	horiz 10t	B1	used.	4
(iii)	2		2 2	·
	$0 = 12^2 - 20s$	M1	Use of $v^2 = u^2 + 2as$ or equiv with $u = 12$, $v = 0$. Condone $u \leftrightarrow v$	
	s = 7.2 so 7.2 m	A1	From CWO. Accept 16.2.	2
(iv)	We require $0 = 12t - 5t^2 + 9$ Solve for t the + ve root is 3 range is 30 m	M1 M1 A1 F1	Use of y equated to 0 Attempt to solve a 3 term quadratic Accept no reference to other root. cao. FT root and their x. [If range split up M1 all parts considered; M1 valid method for each part; A1 final phase correct; A1]	4
(v)	Horiz displacement of B: $20 \cos 60t = 10t$	B1	Condone unsimplified expression. Award for	
	Comparison with Horiz displacement of A	E1	$20\cos 60 = 10$ Comparison clear, must show $10t$ for each or explain.	2
(vi)	vertical height is $20\sin 60t - 0.5 \times 10t^2 = 10\sqrt{3}t - 5t^2 \text{ (AG)}$	A1	Clearly shown. Accept decimal equivalence for $10\sqrt{3}$ (at least 3 s. f.). Accept $-5t^2$ and $20\sin 60 = 10\sqrt{3}$ not explained.	1
(vii)	Need $10\sqrt{3}t - 5t^2 = 12t - 5t^2 + 9$	M1	Equating the given expressions	
	$\Rightarrow t = \frac{9}{10\sqrt{3} - 12}$	A 1	Expression for <i>t</i> obtained in any form	
	$10\sqrt{3}-12$ t = 1.6915 so 1.7 s (2 s. f.) (AG)	E1	Clearly shown. Accept 3 s. f. or better as evidence. Award M1 A1 E0 for 1.7 sub in each ht	
	total	19		3