Edexcel Maths M1

Mark Scheme Pack
2001-2013

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN

Final
HM

January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LQNQOATHEXAMMNATIONS
Stewart House 32 Russell Square London WC1B 5DN
January 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LOADSASAh EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

Question number	Scheme	Marks
1.	$\begin{aligned} & \underset{\substack{3}}{\substack{3.5}} \underset{0.2}{\longrightarrow} \text { Befere } \\ & (a) \quad 0.5 \times 3-0.2 \times 2=0.5 \times 1.5+0.2 \times r \\ & \Rightarrow v=1.75 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { Mi Al } \\ & \text { A1 (3) } \end{aligned}$
	(b) $\begin{aligned} I & =0.2(2+1.75) \\ & =0.75 \mathrm{Ns} \end{aligned}$	$\begin{aligned} & \text { MI AIV } \\ & \text { Al (3) } \end{aligned}$
		(6)

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WCIB 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LONDON EXASAMNATIONS
Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LONDON EXAMINATIONS
Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEL - LOADBAEXAMMATIONS
Stewart House 32 Russell Square London WC1B 5DN
June 2003
Advanced Supplementary/Adyanced Level
General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN
June 2001
Advanced Supplementary/Advanced Level
General Certificate of Education

EDEXCEEACOUNDGOTION
Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

[Allow M1 $A 2,1,0$ for moments eq ri abl any pr.
Then $M 1 A 1$ fer complete $S J=\rightarrow T=)$.
(c) $R(\uparrow) 4 T=450+\omega \rightarrow \omega=600 \mathrm{~N}$
(M) needs complete $s \Lambda^{2} \rightarrow W R=$).
(d) By haring weight act ar centre/mid-pr.
b. (a) $F=(6 i+2 j)+(3 \underline{i}-5 j)=(9 \underline{i}-3 j) N$

(c) "F$=m a^{\prime \prime} \Rightarrow \vec{a}=(3 i-j) \mathrm{ms}^{-2}$
(d) $\quad \underline{v}=(-2 i+j),+2(3 i-j),=4 i-j$

$$
S_{\text {peed }}=\sqrt{\left(4^{2}+1^{2}\right)=4 \cdot 12 \mathrm{~ms}^{-1}}
$$

$M 1 A 1$
BI (1)
$m|A| \sqrt{(E)}$
Al
(3)

MI ATV (F)
(2)
$m i, m, A \mid \sqrt{(a)}$
M| AI

EDEXCEL FOUSATBEATION

Stewart House 32 Russell Square London WC1B 5DN
January 2002
Advanced Supplementary/Advanced Level
General Certificate of Education

(c) Sub: $T=3 m a+F$ or $T m g-5 m a f$

$$
\rightarrow T=3 m g
$$

$m, A_{1}(2)$
(d) Speed when Q hits floor: $v^{2}=2 \times 0.4 \mathrm{~g} \times h \mathrm{~m}|A| N$

$$
=\frac{4}{5} g h
$$

Decel ${ }^{2}$ of $P: 3 m f=1.8 \mathrm{mg} \Rightarrow f=0.6 \mathrm{~g} \mathrm{~m}: \mathrm{A} 1$
Dist moved by $P: \frac{4}{5} g h=2 \cdot \frac{3}{5} g \cdot s$

$$
\Rightarrow \quad s=\frac{2}{3} h
$$

Question Number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & s=u t+\frac{1}{2} a t^{2}: 50=5 \times 4+\frac{1}{2} \times a \times 4^{2} \\ & \quad \Rightarrow 30=8 a \Rightarrow a=3.75 \mathrm{~m} \mathrm{~s}^{-1} \\ & 30^{2}=5^{2}+2 \times 3.75 \times s \\ & \Rightarrow s=116 \frac{2}{3} \mathrm{~m} \end{aligned}$	M1 A1 A1 M1 A1 ft A1 (3) \quad (6 marks)
2.		M1 A1 A1 (3) M1 A1 (one) M1 A1 (both) (4) (7 marks)
3. $\quad\left(\begin{array}{c}\text { a) } \\ \\ \\ \\ \\ \\ \\ \\ \\ \text { b) }\end{array}\right.$	$\mathrm{M}(C): 16 \times 30=w \times 20+5 \times 70$ (3 terms) $\begin{equation*} \Rightarrow d=55 \mathrm{~cm} \tag{1} \end{equation*}$ Tension equal along string, i.e. tensions = weights throughout or no contributions from strings in moments equation	M1 A1 A1 (3) M1 A2ft (-1 eeoo) A1 (4) B1 (8 marks)

$(\mathrm{ft}=$ follow through mark; -1 eeoo $=$ minus one mark for each error or omission $)$

Question Number	Scheme	Marks
4. (a) (b) (c)	$\mathrm{F}=\frac{2}{5} R$ $\mathrm{R}(\uparrow): R \cos 30^{\circ}-\mathrm{F} \cos 60^{\circ}=6 g$ $R \frac{\sqrt{3}}{2}-\frac{2}{5} R-\frac{1}{2}=6 g$ $\Rightarrow R=88.3 \mathrm{~N}(\text { or } 88 \mathrm{~N})$ $\begin{aligned} \mathrm{R}(\leftarrow): P & =R \cos 60^{\circ}+\mathrm{F} \cos 30^{\circ} \\ & =74.7 \mathrm{~N}(\text { or } 75 \mathrm{~N}) \end{aligned}$ $\begin{align*} & \text { Component of weight }\left(\begin{array}{l} \\ \hline \end{array}=6 g \cos 60^{\circ}\right. \\ & \\ & =29.4 \mathrm{~N} \end{aligned}, ~ \begin{aligned} & R^{\prime}=6 g \cos 30^{\circ}=50.9 \mathrm{~N} \\ & \mathrm{~F}_{\max }=0.4 R^{\prime}=20.36 \mathrm{~N} \\ & \text { Since } 29.4>20.36 \text {, the box moves } \tag{5} \end{align*}$	B1 M1 A1 A1 (4) M1 A1 A1 (3) B1 M1 A1 M1 A1 cso (12 marks)
(b) (c) (d) (e)	$\begin{aligned} & \text { angle required }=153.4^{\circ} \\ & \mathbf{a}=\frac{1}{3}[(\mathbf{i}-2 \mathbf{j})-(-5 \mathbf{i}+7 \mathbf{j})] \\ & =(2 \mathbf{i}-3 \mathbf{j}) \mathrm{m} \mathrm{~s}^{-2} \\ & \mathbf{F}=m \mathbf{m}=4 \mathbf{i}-6 \mathbf{j} \\ & \|\mathbf{F}\|=\sqrt{ }(16+36)=7.21 \mathrm{~N} \\ & \mathbf{v}=(-5+2 t) \mathbf{i}+(7-3 t) \mathbf{j} \\ & \mathbf{v} \text { parallel to } \mathbf{i}+\mathbf{j} \Rightarrow \frac{-5+2 t}{7-3 t}=1 \\ & \Rightarrow t=2.4 \mathrm{~s} \end{aligned}$	M1 A1 A1 (3) M1 A1 (2) M1 M1 A1 (3) M1 A1ft M1 M1 A1 (13 marks)

(cso = correct solution only)

((*) indicates final line is given on the paper; cso = correct solution only)

Question Number	Scheme	Marks
1. (a) (b)	$\begin{array}{ll} R(\uparrow): & T \cos 30^{\circ}=6 \\ & T=6.93 \\ R(\rightarrow): \quad ' T ’ \sin 30^{\circ}=F \\ & F=3.46 \end{array}$	M1 A1 A1 (3) M1 A1 A1 (3) (6 marks)
2. (a) (b)	$\begin{aligned} & 3 \mathbf{i}-7.5 \mathbf{j}=1.5 \mathbf{a} \Rightarrow \mathbf{a}=2 \mathbf{i}-5 \mathbf{j} \\ & \|\mathbf{a}\|=\sqrt{ }\left(2^{2}+5^{2}\right)=\sqrt{ } 29 \approx 5.39(\text { awrt }) \\ & \mathbf{v}=(2 \mathbf{i}+3 \mathbf{j})+4(2 \mathbf{i}-5 \mathbf{j}) \\ & \quad=10 \mathbf{i}-17 \mathbf{j} \end{aligned}$	M1 A1 M1 A1 (4) M1, A1ft A1 (3) (7 marks)
3. (a) (b) (c)	$\begin{aligned} \frac{1}{2} \times T \times 20+4 T \times 20+\frac{1}{2} \times 50 \times 20 & =1220 \\ T & =8 \end{aligned}$ $\text { Acceleration }=\frac{20}{8}=2.5 \mathrm{~m} \mathrm{~s}^{-2}$	B1 B1 (2) M1 A1 A1 (3) M1 A1ft (2) (8 marks)

Question Number	Scheme	Marks
4. (a) (b) (c)	$\mathrm{M}(A): 80 \times \frac{x}{2}+20 \times x=90 \times 2$ Solve for x : $x=3$ By having weight act at B. $R(\uparrow): R+3 R=100(R=25)$ $\mathrm{M}(A): 25 y+75 \times 2=80 \times 1.5+20 \times 3$ Solve: $y=1.2 \mathrm{~m}$	
5. (a) (b) (c)	$8^{2}=10^{2}+2 a \times 5 \rightarrow a=(-) 3.6 \mathrm{~m} \mathrm{~s}^{-2}$ $\begin{aligned} & R=10 g \cos 20^{\circ} \\ & F=\mu R \text { used } \end{aligned}$ $10 g \sin 20^{\circ}-\mu .10 g \cos 20^{\circ}=10(-3.6)$ Solve: μ. $=0.75$ (or 0.755) $A C$ maximum if speed at $C=0$ $\begin{aligned} & \therefore 0^{2}=10^{2}-2 \times 3.6 \times s \\ & \quad s \approx 13.9 \mathrm{~m} \text { (awrt) } \end{aligned}$	M1 A1 B1 B1 M1 A1 M1 A1 M1 A1 (10 marks)

Question Number	Scheme	Marks
6. (a) (b) (c)	$\begin{align*} & 1500 \times 10+2500 \times 5=1500 \times 4+2500 \times v \\ & \rightarrow v=8.6 \mathrm{~m} \mathrm{~s}^{-1} \quad(*) \tag{*}\\ & P: 1500 a=-500 \quad\left(\Rightarrow a=-\frac{1}{3} \mathrm{~m} \mathrm{~s}^{-2}\right) \\ & 0^{2}=4^{2}-2 \times \frac{1}{3} \times s \quad \Rightarrow s=24 \mathrm{~m} \\ & P: 0=4-\frac{1}{3} t \Rightarrow t-12 \mathrm{~s} \\ & Q: s=8.6 \times 12=103.2 \mathrm{~m} \\ & \text { Distance apart }=103.2-24=79.2 \mathrm{~m} \end{align*}$	M1 A1 A1 (3) M1 M1 A1 M1 (3) M1 A1 M1 A1 (11 marks)
(a) (b) (c) (d)	$\begin{aligned} & v_{P}=\frac{(50 \mathbf{i}-25 \mathbf{j})-(20 \mathbf{i}+35 \mathbf{j})}{\frac{1}{2}}=60 \mathbf{i}-120 \mathbf{j} \\ & \mathbf{p}=20 \mathbf{i}+35 \mathbf{j}+(60 \mathbf{i}-120 \mathbf{j}) \mathrm{t} \\ & v_{Q}=\frac{120}{5}(4 \mathbf{i}-3 \mathbf{j}) \quad(=96 \mathbf{i}-72 \mathbf{j}) \\ & \mathbf{q}=96 \mathbf{t i}-72 t \mathbf{j} \\ & t=2: \mathbf{p}=140 \mathbf{i}-205 \mathbf{j}, \mathbf{q}=192 \mathbf{i}-144 \mathbf{j} \end{aligned}$ Use of $(P Q=) \mathbf{q}-\mathbf{p}$ or $\mathbf{p}-\mathbf{q}(=Q P)$ $(=52 \mathbf{i}+61 \mathbf{j})$ $P Q=\sqrt{ }\left(52^{2}+61^{2}\right) \approx 80 \mathrm{~km}$	M1 A1 M1 A1 ft \quad (2) M1 M1 A1 \quad (3) M1 M1 M1 A1 \quad (11 marks)

Question Number	Scheme	Marks
8. $\begin{array}{r}(a) \\ \\ \\ (b) \\ \\ (c) \\ \\ \text { (d) }\end{array}$		M1 A1 A1 (3)
	A: $17.6-m g \sin 30^{\circ}=m \times \frac{2}{5} g$ Solve: $\rightarrow m=2$	M1, A1 ft M1 A1 (4)
	Speed of B at ground: $v^{2}=2 \times \frac{2}{5} g \times 0.25(=1.4)$ $I=3 \times v=4.2 \mathrm{Ns}$	M1 M1 A1 (3)
	A: $-m g \sin 30^{\circ}=m a \Rightarrow a=-\frac{1}{2} g=-4.9$	M1 A1
	$0=1.4-4.9 \mathrm{t}$	M1
	$T=0.29 \mathrm{~s}($ or 0.286 s$)$	A1 (4)
		(14 marks)

Question Number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & \text { CLM: } \quad 2000 \times 10=2000 v+3000 \times 5 \\ & v=2.5 \mathrm{~m} \mathrm{~s}^{-1} \\ & I=3000 \times 5 \quad(\text { or } 2000(10-2.5)) \\ & =15000 \mathrm{Ns} \end{aligned}$	M1, A1 B1 (3) M1 (2) (5 marks)
2. (a) (b)	$\begin{aligned} & \mathrm{R}(\uparrow) \quad 8=12 \cos \beta \text { or } 12 \sin \alpha \\ & \Rightarrow \beta=41.8^{\circ} \text { or } \alpha=48.2^{\circ} \\ & \Rightarrow \theta=138.2^{\circ} \end{aligned}$ $\begin{aligned} \mathrm{R}(\rightarrow) \quad X & =12 \cos 41.8^{\circ} \quad\left(\text { or } 12 \sin 48.2^{\circ}\right) \\ & =8.94 \end{aligned}$	M1 A1 A1 (3) M1 A1ft A1 (3) (6 marks)
3. (a) (b)	$\begin{align*} \mathbf{a} & =[-14 \mathbf{i}+21 \mathbf{j}-(6 \mathbf{i}-27 \mathbf{j})] \div 4 \\ & =(-5 \mathbf{i}+12 \mathbf{j}) \mathrm{m} \mathrm{~s}^{-2} \\ \|\mathbf{a}\| & =\sqrt{ }\left(5^{2}+12^{2}\right)=13 \\ \|\mathbf{F}\| & =m\|\mathbf{a}\|=0.4 \times 13=5.2 \mathrm{~N} \tag{3} \end{align*}$	M1 A1 A1 (3) M1 M1 A1 (6 marks)
Alt (b)	$\begin{aligned} & \mathbf{F}=0.4(5 \mathbf{i}+12 \mathbf{j})=2 \mathbf{i}+4.8 \mathbf{j} \\ & \|\mathbf{F}\|=\sqrt{ }\left(2^{2}+4.8^{2}\right)=5.2 \mathrm{~N} \end{aligned}$	M1 M1 A1 (3)

Question Number	Scheme	Marks
4. (a) (b) Alt. (b) (c)	$\begin{aligned} & \mathbf{p}=10 t \mathbf{j} \\ & \mathbf{q}=(6 \mathbf{i}+12 \mathbf{j})+(-8 \mathbf{i}+6 \mathbf{j}) t \\ & t=3: \mathbf{p}=30 \mathbf{j}, \mathbf{q}=-18 \mathbf{i}+30 \mathbf{j} \\ & \Rightarrow \text { dist. apart }=18 \mathrm{~km} \\ & \mathbf{P Q}=\mathbf{q}-\mathbf{p}=(6-8 t) \mathbf{i}+(12-4 t) \mathbf{j} \\ & t=3: \mathbf{P Q}=-18 \mathbf{i}+0 \mathbf{j} \\ & \text { Dist. }=18 \mathrm{~km} \\ & Q \text { north of } P \Rightarrow 6-8 t=0 \\ & t=3 / 4 \end{aligned}$	B1 M1 A1 (3) M1 A1 A1 (3) M1 A1 A1 M1 A1 (8 marks)
5.	$\mathrm{R}(7): T \cos 20^{\circ}=F+1.5 \mathrm{~g} \sin 30^{\circ}$ $\mathrm{R}(\mathrm{K}): T \sin 20^{\circ}+R=1.5 \mathrm{~g} \cos 30^{\circ}$ Using $F=\frac{1}{3} R$ Eliminating R, solve T $T=11$ or 11.0 N	$\begin{aligned} & \text { M1 A2,1,0 } \\ & \text { M1 A2,1,0 } \\ & \text { M1 } \\ & \text { M1, M1 } \\ & \text { A1 } \\ & \quad \text { (10 marks) } \end{aligned}$
6. (a) (b)	$\begin{array}{lc} \mathrm{M}(A): & W x+120 \times 1.5=R \times 2+2 R \times 1 \\ \mathrm{R}(\uparrow) & 3 R=W+120 \\ \text { Hence } & W x+180=3 R=W=120 \\ & W(1-x)=60 \\ & W=\frac{60}{1-x} \end{array}$ $W>0 \Rightarrow x<1$	M1 A2, 1, 0 M1 A1 M1 A1 M1 A1cso (8) M1 A1 (2) $\quad(10$ marks)

Question Number			Marks
8. (a)	$a=0.6 \mathrm{~g}=5.88$ Hence $0.6=1 / 2 \times 0.6 \mathrm{~g} \times t^{2}$ $t=0.45 \text { or } 0.452 \mathrm{~s}$ Solve: $a^{\prime}=0.52 \mathrm{~g}$ $\begin{gathered} 0.6=1 / 2 \times 0.52 \mathrm{~g} \times t^{2} \\ t=0.49 \text { or } 0.485 \mathrm{~s} \end{gathered}$	A: $T=0.8 a$	B1
		B: $1.2 \mathrm{~g}-T=1.2 a$	M1 A1
		Solve: $T=0.48 \mathrm{~g}=4.7 \mathrm{~N}$	M1 A1 (5)
			M1
			M1
			A1 (3)
		$F=\mu R=\frac{1}{5} \times 0.8 \mathrm{~g}$	B1
		5	M1 A1
		A: $T^{\prime}-F=0.8 a^{\prime}$	B1
			M1 A1
			M1
			A1 (8)
			(16 marks)

EDEXCEL MECHANICS M1 (6677)

PROVISIONAL MARK SCHEME NOVEMBER 2003

PROVISIONAL MARK SCHEME NOVEMBER 2003

EDEXCEL MECHANICS M1 (6677)

PROVISIONAL MARK SCHEME NOVEMBER 2003

EDEXCEL MECHANICS M1 (6677)

PROVISIONAL MARK SCHEME NOVEMBER 2003

$$
\text { (c) } \begin{gathered}
t=6 \quad \mathbf{v}=3 \mathbf{i}-5 \mathbf{j}+6(-2 \mathbf{i}+4 \mathbf{j}) \quad[=-9 \mathbf{i}+19 \mathbf{j}] \\
\text { At B }: \mathbf{r}=(6 \mathbf{i}-29 \mathbf{j})+3(-9 \mathbf{i}+19 \mathbf{j}) \quad[=-21 \mathbf{i}+28 \mathbf{j}] \\
\mathrm{OB}=\sqrt{\left(21^{2}+28^{2}\right)}=35 \mathrm{~m}
\end{gathered}
$$

M1 A1 $\sqrt{ }$
M1 A1 $\sqrt{ }$
M1 A1 $\sqrt{ }$ (6)
12

EDEXCEL MECHANICS M1 (6677)

PROVISIONAL MARK SCHEME NOVEMBER 2003

PhysicsAndMathsTutor.com

EDEXCEL MECHANICS M1 (6677)

PROVISIONAL MARK SCHEME NOVEMBER 2003
(f) $\mathrm{A}: \quad-\frac{1}{2} m g=m a \Rightarrow a=-\frac{1}{2} g$
$v^{2}=\frac{2 g}{5}-2 \times \frac{1}{2} g \times 0.4$
$\Rightarrow v=0$

Question Number	Scheme	Marks
1. (a) (b)	$\begin{aligned} & R(\uparrow): \quad 2 R=80 g+40 g \\ & R=60 g \text { or } 588 \mathrm{~N} \\ & \mathrm{M}(A): 80 g \times x+40 g \times 2=60 g \times 3 \\ & \Rightarrow x=1 \frac{1}{4} \mathrm{~m} \end{aligned}$	
2. (a) (b) (c)	$\begin{aligned} & I=0.12 \times 3=0.36, \mathrm{Ns} \\ & 0.12 \times 3=0.12 \times 1.2+0.08 v \\ & \quad \Rightarrow v=2.7 \mathrm{~m} \mathrm{~s}^{-1} \\ & I=0.12 \times(3-1.2) \text { or } 0.08 \times 2.7 \\ & =0.216 \mathrm{Ns} \end{aligned}$	B1, B1 (2) M1 A1 A1 (3) M1 A1 (2) (7 marks)
3. (a) (b) (c)	Air resistance; 'spin’; height of diver; hit board again; horizontal component of velocity (any two)	M1 A1 A1 (3) M1 A1 ft A1 (3) B1 B1 (2) (8 marks)
4.		M1 A1 M1 A1 B1 M1 M1 A1 (8 marks)

$(\mathrm{ft}=$ follow through mark; -1 eeoo $=$ minus one mark for each error or omission $)$

Question Number	Scheme	Marks
5. (a) (b) (c)	$\begin{aligned} & " v=u+a t ": \begin{array}{l} \mathbf{v}=(-2+2 t) \mathbf{i}+(7-3 t) \mathbf{j} \\ \mathbf{v} \text { parallel to } \mathbf{i} \Rightarrow 7-3 t=0 \Rightarrow t=2 \frac{1}{3} \mathrm{~s} \\ t=3, \mathbf{v}=4 \mathbf{i}-2 \mathbf{j} \\ \|\mathbf{v}\|=\sqrt{ } 20 \approx 4.47 \mathrm{~m} \mathrm{~s}^{-1} \end{array} \\ & \quad \text { Angle }=\left(\arctan \frac{2}{4}\right),+90^{\circ}=116.6^{\circ} \end{aligned}$ (accept 117°)	M1 A1M1 A1 (4)M1M1 A1 (3)M1, M1 A1 (3)[M1 M1 A1]\quad(10 marks).
6. (a) (b)		M1 A1M1 A1M1 A2(-1 eeoo) \quad M1 A1 M1 A1 (7) $\quad(11$ marks)
7. (a)	 Shape for A Shape for B with parallel slope Figures Distance moved by $A=\frac{1}{2} \times 12 \times 30,+30(T-12)$ B accelerates for 24 s Distance moved by $B=\frac{1}{2} \times 24 \times 60,+60(T-64)$ $\begin{gathered} \frac{1}{2} \times 12 \times 30,+30(T-12)=\frac{1}{2} \times 24 \times 60,+60(T-64) \\ \Rightarrow T=98 \mathrm{~s} \end{gathered}$	B1 B1 B1 B1, M1 A1 B1 B1, M1 A1 M1 A1 (9) (12 marks)

$(\mathrm{ft}=$ follow through mark; -1 eeoo $=$ minus one mark for each error or omission $)$

Question Number	Scheme	Marks
8. (a)	Car + truck: $\quad 2000 a=2400-600-400$	M1 A1
	$a=0.7 \mathrm{~m} \mathrm{~s}^{-2}$	A1 (3)
(b)	Car only: $\quad T-400=800 \times 0.7$	M1 A1 ft
	[or truck only: $2400-T-600=1200 \times 0.7]$	
	$T=960 \mathrm{~N}$	A1 (3)
(c)	New acceleration of truck a^{\prime} given by $1200 a^{\prime}=2400-600$	M1
	$a^{\prime}=2400-600=1.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1
	Time to reach $28 \mathrm{~m} \mathrm{~s}^{-1}=\frac{28-20}{1.5}=5.33 \mathrm{~s}$	M1 A1
	Time to reach $28 \mathrm{~m} \mathrm{~s}^{-1}$ if rope had not broken $=\frac{28-20}{0.7}=11.43 \mathrm{~s}$	M1 A1
	Difference $=6.1 \mathrm{~s} \approx 6 \mathrm{~s}(*)$	A1 (7)
		(13 marks)

$\left(\mathrm{ft}=\right.$ follow through mark; $\left(^{*}\right)$ indicates final line is given on the paper $)$

EDEXCEL 6677 MECHANICS M1 JANUARY 2004 MARK SCHEME

Question Number	Markscheme	Marks
1		M1 A1 M1 A1 (4) $\mathrm{M} 1 \rightarrow \mathrm{M} 1$ A1 (3)
2 (a)		M1 A2, 1,0 A1 (4) M1 A2, 1,0 \downarrow M1 A1

| Question |
| :--- | :--- | :--- | :--- |
| Number |

Question Number	Scheme Marks	
1	(a) $\mathrm{R}(\rightarrow)$: $T \cos 60=50 \cos 30$ M1 A1 $\begin{equation*} T=86.6 \mathrm{~N} \tag{A1} \end{equation*}$	
	(b) $\begin{align*} R(\uparrow): \quad W & =50 \sin 30+T \cos 30 \\ & =\underline{100 \mathrm{~N}} \tag{A1} \end{align*}$ M1 A1	
	or $\mathrm{R}(\\|$ to $B C):$ $W \cos 60=50$ $W=\underline{100 \mathrm{~N}}$ M 1 A 1 A1	
	(a) M1 for a valid equation in T only Treat use of $\tan 30 / 60$ (e.g. $\tan 30=T / 50$) as invalid equation unless there is a triangle of Forces (b) M1 for a valid equation involving W (and T if necessary) for first $A 1$ in (i), allow for using their T (i.e. effectively f.t.) Accept each answer as awrt.	

Question Number	Scheme Marks
2	(a) $\begin{align*} v=u+a t: & 9.5=5+1.5 a \Rightarrow a=3 \\ \text { Hence } & v^{2} \end{align*}=5^{2}+2 \times 3 \times 24 .$ (b) $\quad \quad I=m v-m u^{\prime}:-30=2(v-13) \Rightarrow v=(-) 2 \mathrm{~m} \mathrm{~s}^{-1}$ In direction of $C A$ (o.e.) (a) $2^{\text {nd }} \mathrm{M} 1$ for equation in v (and numbers) only Final A1 is cso (b) M1 for valid impulse = momentum change equn with 3 non-zero terms including ' 30 ' and ' 13 ' A1 for ' 30 ' and ' 13 ' with same sign A1 for direction as 'CB' or anything convincing! $N B$ both A's in (b) are cao $=c s o$!

Question Number	Scheme	Marks
3	(b) $\begin{aligned} & 10=2 a \Rightarrow a=5 \mathrm{~m} \mathrm{~s}^{-2} \\ & 0=\frac{1}{25} u^{2}-2 \times 5 \times 1.6 \\ & \rightarrow u=20 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$ (a) $1^{\text {st }}$ M1 for valid CLM equn $2^{\text {nd }} M 1$ for correct equn for ' v ' and ' w ' and solving for v or w. Final A1 is cso (dropping u and reinserting loses last A1) (b) Allow B1 for a $= \pm 5$ M1 for using ' $v^{2}=u^{2}+2$ as' with $v=0$ and with a value for a A1 f.t. on their a (provided this is not g), but signs must be correct SC For using u instead of $u / 5(\rightarrow u=4)$, allow M1 AO MO. Energy: $\begin{gathered} 1 / 2 \times 2 \times(u / 5)^{2}=10 \times 1.6 \\ \rightarrow u=20 \end{gathered}$ M1 A1 A1	A1 cso (4) B1 M1 A1 $\sqrt{ }$ \downarrow M1 A1 (5)

Question Number	Scheme Marks
4	(a) $\mathrm{M}(\mathrm{D}): 20 \mathrm{~g} \times 1.5+10 g \times 1=R_{B} \times 3$ $\begin{equation*} \Rightarrow \quad R_{B}=40 \mathrm{~g} / 3 \approx 131 \text { or } 130 \mathrm{~N} \tag{4} \end{equation*}$ [NB For moments about another point, allow M1 A1 for moments equation dimensionally correct and with correct number of terms; second M1 is for complete method to find R_{B}.] (b) $R(\uparrow)$: $\begin{align*} & R_{D}+40 \mathrm{~g} / 3=20 \mathrm{~g}+10 \mathrm{~g} \\ & \quad \Rightarrow R_{D}=\underline{50 g} / 3 \approx 163 \text { or } 160 \mathrm{~N} \tag{A1} \end{align*}$ $\text { or } \begin{align*} \mathrm{M}(B): \quad 20 \mathrm{~g} \times 1.5+10 \mathrm{~g} \times 2=R_{D} \times 3 \\ \Rightarrow \quad R_{D}=\underline{50 g} / 3 \approx 163 \text { or } 160 \mathrm{~N} \tag{3} \end{align*}$ [NB For moments about another point, allow M1 for a complete method to find R_{D}, A1 for a correct equation for R_{D}.] (c) $\begin{gather*} R_{B}=0 \\ M(D): \quad 20 \mathrm{~g} \times x=10 \mathrm{~g} \times 1 \\ x=D F=\underline{0.5 \mathrm{~m}} \tag{A1} \end{gather*}$ M1 For weight/mass confusion, AO AO in (a) but allow f.t. in (b) (ans 50/3 = 16.7) General rule of deducting max. 1 per question for >3 s.f (c) $2^{\text {nd }}$ M1: must have correct no. of non=zero terms, and equation in x only If use value(s) of R's from (a) or (b): M0.

Question Number	Scheme Marks
5	(a) $\begin{aligned} & R=400 \mathrm{~g} \cos 15^{\circ}(\approx 3786 \mathrm{~N}) \\ & F=0.2 R \text { used } \\ & T+0.2 R=400 \mathrm{~g} \sin 15^{\circ} \\ & T \approx \underline{257 \text { or } 260 \mathrm{~N}} \end{aligned}$ (b) $\quad 400 g \sin 15^{\circ}-0.2 \times 400 g \cos 15^{\circ}=400 a$ $\begin{gathered} a=0.643(\ldots) \\ 50=\frac{1}{2} \times 0.643 \times t^{2} \\ t=\frac{12.5 \text { or } 12 \mathrm{~s}}{} \end{gathered}$ General rule again about > 3 sf Weight/mass confusion: treat as MR [$\rightarrow T=26.3 / 26 ; a=0.0656 \ldots ; t=39(.0)]$ (b) Allow $a=0.64$ (Final M1 not dependent but requires an attempt to find an a which is not assumed to be g)

Question Number	Scheme	Marks
6	(a) Direction of $\mathbf{v}=(7 \mathbf{i}-7.5 \mathbf{j})-(4 \mathbf{i}-6 \mathbf{j})=3 \mathbf{i}-1.5 \mathbf{j}$ $\begin{array}{r} \tan \theta=\frac{1.5}{3}=0.5 \Rightarrow \theta=26.565 \ldots \\ \text { Bearing }=\underline{117} \text { (accept awrt) } \end{array}$ (b) $\begin{aligned} & \mathbf{v}=(3 \mathbf{i}-1.5 \mathbf{j}) \div \frac{3}{4}=4 \mathbf{i}-2 \mathbf{j} \\ & \mathbf{s}=(4 \mathbf{i}-6 \mathbf{j})+t(4 \mathbf{i}-2 \mathbf{j}) \end{aligned}$ (c) $\text { At } \begin{aligned} 1015 \mathbf{s} & =(4 \mathbf{i}-6 \mathbf{j})+\frac{5}{4}(4 \mathbf{i}-2 \mathbf{j})(=9 \mathbf{i}-8.5 \mathbf{j}) \\ \mathbf{m} & =0.25(p \mathbf{i}+q \mathbf{j}) \\ \mathbf{s} & =\mathbf{m} \Rightarrow p=36, q=-34 \end{aligned}$ (a) Forming direction for v can be either way round. $\text { M1 for } \tan =‘ i / j \text { ' or } \quad \text { j/i }{ }^{\prime}$ A1 for 26.6 or 63.4 (awrt) from a correct direction for \boldsymbol{v} A1 cao (b) Allow B1 for correct vector for \boldsymbol{v} wherever seen (e.g. in (a)) (c) line 1: or $(7 i-7.5 j)+1 / 2(4 i-2 j)=\ldots .$. $1^{\text {st }} \mathrm{M1}$ allow for a valid attempt with a value of t. $2^{\text {nd }} \mathrm{M} 1$ using $\mathbf{s}=\mathbf{m}$ and equating at least one coefficient	M1 A1 A1 (4) B1 M1 A1V (3) M1 A1 B1 \downarrow M1 A1, A1 (6)

Question Number	Scheme		Marks
2 (a)	$\begin{aligned} 3 \mathrm{~kg}: \quad & 3 g-T=3 \times \frac{3 g}{7} \\ \Rightarrow & T=\frac{12 g}{7} \text { or } 16.8 \mathrm{~N} \text { or } 17 \mathrm{~N} \end{aligned}$		M1 A1 A1 (3)
(b)	$m \mathrm{~kg}$: $\begin{aligned} & T-m g=m \cdot \frac{3 g}{7} \\ & \frac{12 g}{7}=m g+\frac{3 m g}{7} \\ & \Rightarrow m=\underline{1.2} \end{aligned}$	(Sub for T and solve)	M1 A1 \downarrow M1 A1 (4)

Final M1 needs a three term equation.

Question Number	Scheme	Marks
5 (a)	$\tan \theta=\frac{3}{2} \quad\left(\theta=56.3^{\circ}\right)$	M1
	angle between \mathbf{v} and $\mathbf{j}=90+56.3 \approx 146^{\circ}$	M1 A1 (3)
(b)	$\mathbf{v}=2 \mathbf{i}-3 \mathbf{j}+(-\mathbf{i}+2 \mathbf{j}) t$	M1
	$=(2-t) \mathbf{i}+(-3+2 t) \mathbf{j}$	A1 (2)
(c)	$t=3, \mathbf{v}=-\mathbf{i}+3 \mathbf{j}$	M1
	speed $=\sqrt{ }\left(1^{2}+3^{2}\right)=\underline{ل} 10$ or $3.16 \mathrm{~m} \mathrm{~s}^{-1}$	M1 A1 (3)
(d)	\mathbf{v} parallel to $\mathbf{i} \Rightarrow-3+2 t=0$	M1
	$\Rightarrow t=\underline{1.5 \mathrm{~s}}$	A1 (2)

Question Number	Scheme			Marks
7 (a)	$\begin{gather*} \mathrm{R}(\uparrow) \quad R+150 \sin 20=30 g \\ \Rightarrow R \approx \underline{243 \mathrm{~N}} \tag{3} \end{gather*}$ $\mathrm{R}(\rightarrow): \quad 150 \cos 20-0.2 R=30 a$ M1 A1 $\Rightarrow a \approx \underline{3.08 \mathrm{~m} \mathrm{~s}^{-2}}$ $\begin{aligned} & S=30 g \Rightarrow F=0.2 \times 30 g \\ & 30 a^{\prime}=(-) 0.2 \times 30 g \Rightarrow a^{\prime}=(-) 0.2 g(=1.96) \\ & 0=12^{2}-2 \times 0.2 g \times s \\ & \Rightarrow s \approx \underline{36.7 \mathrm{~m}} \end{aligned}$ M1 A1 (using new a^{\prime})			

6677 Mechanics M1
 Mark Scheme

6677 Mechanics 1
J anuary 2005 Advanced Subsidiary/ Advanced Level in GCE Mathematics

Question Number	Scheme	Marks
3	(a) $\begin{aligned} \text { Distance }= & 1 / 2 \times 4 \times 9+16 \times 9 \text { or } 1 / 2(20+16) \times 9 \\ & =162 \mathrm{~m} \end{aligned}$ (b) Distance over last $5 \mathrm{~s}=1 / 2(9+u) \times 5$ $\begin{gathered} 162+1 / 2(9+u) \times 5=200 \\ \Rightarrow u=\underline{6.2 \mathrm{~m} \mathrm{~s}^{-1}} \end{gathered}$ (c) $\begin{aligned} 6.2 & =9+5 a \\ a & =(-) \underline{0.56 \mathrm{~m} \mathrm{~s}^{-2}} \end{aligned}$	M1 A1 (2) M1 M1 A1 $\sqrt{ }$ A1 (4) M1 A1 $\sqrt{ }$ A1 (3)

Question Number	Scheme Marks
4	(a) $\begin{align*} R & =2.5 g \cos 20 \\ & \approx \underline{23.0} \text { or } 23 \mathrm{~N} \tag{2} \end{align*}$ A1 (b) $\begin{aligned} X & =0.4 \times 23.0+2.5 g \sin 20 \\ & \approx \underline{17.6 \text { or } 18 \mathrm{~N}} \end{aligned}$ (c) In equlib. $F=2.5 g \sin 20 \approx 8.38$ or 8.4 N $\mu R=0.4 \times 2.5 g \cos 20 \approx 9.21 \text { or } 9.2 \mathrm{~N}$ $8.4<9.2 \text { (using ' } F<\mu R^{\prime} \text { not } F=\mu R \text {) M1 }$ Since $F<\mu R$ remains in equilibrium

Question Number		Scheme	Marks
6	(a)	$16^{2}=20^{2}-2 \times a \times 24 \Rightarrow a=\underline{3 \mathrm{~m} \mathrm{~s}^{-2}}$	M1 A1 (2)
	(b)	$v^{2}=20^{2}-2 \times 3 \times 30$	M1 A1 V
		$v=\underline{\sqrt{ } 220 \text { or } 14.8 \mathrm{~m} \mathrm{~s}^{-1}}$	A1 (3)
	(c)	$0.3=m \times 3 \Rightarrow m=0.1 \mathrm{~kg} \mathrm{(*)}$	M1 A1 (2)
	(d)	$0.1(w+\sqrt{ } 220)=2.4$	M1 A1 V
		$\begin{gathered} w=9.17 \\ 0=9,17-3 \times t \end{gathered}$	
		$t \approx \underline{3.06 \mathrm{~s}}$	A1 (6)

Question Number		Scheme	Marks
7		$\begin{equation*} \mathbf{v}_{P}=\{(29 \mathbf{i}+34 \mathbf{j})-(20 \mathbf{i}+10 \mathbf{j})\} / 3=(3 \mathbf{i}+8 \mathbf{j}) \mathbf{k m ~ h}^{-1} \tag{2} \end{equation*}$	M1 A1
	(b)	$\mathbf{p}=(20 \mathbf{i}+10 \mathbf{j})+(3 \mathbf{i}+8 \mathbf{j}) t$	M1 A1V
		$\mathbf{q}=(14 \mathbf{i}-6 \mathbf{j})+12 t \mathbf{j}$	M1 A1 (4)
	(c)	$\begin{aligned} \mathbf{q}-\mathbf{p} & =(-6-3 t) \mathbf{i}+(-16+4 t) \mathbf{j} \\ d^{2} & =(-6-3 t)^{2}+(-16+4 t)^{2} \end{aligned}$	$\begin{gathered} \text { M1 A1 } \\ \downarrow \\ \text { M1 } \\ \downarrow \\ \text { M1 } \end{gathered}$
		$\begin{equation*} =25 t^{2}-92 t+292 \tag{*} \end{equation*}$	A1 (cso) (5)
	(d)	$25 t^{2}-92 t+292=225$	M1
		$\begin{aligned} & 25 t^{2}-92 t+67=0 \\ & (t-1)(25 t-67)=0 \end{aligned}$	$\stackrel{\mathrm{A} 1}{\downarrow} \mathrm{M} 1$
		time ≈ 161 mins, or 2 hrs 41 mins, or 2.41 am , or 0241	A1 (5)

GCE

Edexcel GCE

Mechanics M1 (6677)

Summer 2005

Mark Scheme (Results)

J une 2005 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1	(a) ' $v=u+a t ': \quad 74=2+a \times 20 \Rightarrow a=\underline{3.6} \mathrm{~m} \mathrm{~s}^{-2}$ (b) ' $v^{2}=u^{2}+2 a s ': 74^{2}=2^{2}+2 \times 3.6 \times A C$ or ' $s=u t+1 / 2 a t^{2}$ ': $A C=2 \times 20+1 / 2 \times 3.6 \times 20^{2}$ $\Rightarrow A C=760 \mathrm{~m}$ Hence $B C=1200-760=\underline{440 \mathrm{~m}}$	M1 A1 (2) M1 A1V A1 B $1 \sqrt{ }$ (4)
2	Solve to get $v=\underline{4.4 \mathrm{~m} \mathrm{~s}^{-1}}$ (b) Impulse on $B=0.2(2+8.8)$ $=\underline{2.16 \mathrm{Ns}}$	(5) M1 A1 $\sqrt{ }$ A1 (3)
3	(a) $\mathrm{R}(\rightarrow)$ $T \cos \alpha=6$ $\rightarrow T=\underline{7.5 \mathrm{~N}}$ (b) $\mathrm{R}(\uparrow) \quad T+T \sin \alpha=W$ Using same T's and solving $\rightarrow W=\underline{12 \mathrm{~N}}$	M1 A1 A1 (3) A1 (4)

Question Number	Scheme	Marks
4	(a) R (perp to plane): $\begin{aligned} R & =2 g \cos 20 \\ & \approx \underline{18.4 \text { or } 18 \mathrm{~N}} \end{aligned}$ (b) $\quad \mathrm{R}$ (// to plane): $18-2 g \sin 20-F=2 a$ $F=0.6 R \text { used }$ Sub and solve: $a=\underline{0.123}$ or $0.12 \mathrm{~m} \mathrm{~s}^{-2}$	$\begin{array}{cc} \text { M1 } & \text { A1 } \\ & \\ & \text { A1 } \\ \text { M1 } & \text { A1 } \end{array}$
5	(a) Figures (b) Distance in $1^{\text {st }} 12 \mathrm{~s}=1 / 2 \times(10+3) \times 12$ or $(3 \times 12)+1 / 2 \times 3 \times 7$ $=78 \mathrm{~m}$ (c) either distance from $t=12$ to $t=27=15 \times 3=45$ \therefore distance in last section $=135-45=12 \mathrm{~m}$ $\begin{array}{r} 1 / 2 \times 3 \times t=12, \\ \Rightarrow t=8 \mathrm{~s} \end{array}$ $\text { hence total time }=27+8=\underline{35 \mathrm{~s}}$ or Distance remaining after $12 \mathrm{~s}=135-78=57 \mathrm{~m}$ $\begin{gathered} 1 / 2 \times(15+15+t) \times 3=57 \\ \Rightarrow t=8 \end{gathered}$ Hence total time $=27+8=\underline{35 \mathrm{~s}}$	B1 B1 B1 (3) M1 A1 (2) B1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ A1 A1 (5) B1 $\sqrt{ }$ M1 A1 $\sqrt{ }$ A1

Question Number	Scheme	Marks
6	(a) $\mathrm{M}(A): 12 g \times 1.5=R \times 2$ $R=\underline{9 g} \text { or } 88.2 \mathrm{~N}$ (b) Sub for S and solve for $x: x=7 / 8$ or 0.875 or 0.88 m	$\begin{array}{cc} \text { M1 } & \text { A1 } \\ & \text { A1 } \\ & \\ \text { M1 } & \\ \text { M1 } & \text { A1 } \\ & \\ \text { M1 A2,1,0 } \\ \downarrow \downarrow \\ \text { M1 A1 } \end{array}$ (7)
7	(a) Lorry + Car: $\begin{aligned} 2500 a & =1500-300-600 \\ a & =\underline{0.24 \mathrm{~m} \mathrm{~s}^{-2}} \end{aligned}$ (b) Car: $T \cos 15-300=900 a$ OR Lorry: $1500-T \cos 15-600=1600 a$ Sub and solve: $\quad T \approx \underline{534 N}$ (c) Deceleration of car $=300 / 900=1 / 3 \mathrm{~m} \mathrm{~s}^{-1}$ Hence $6^{2}=2 \times 1 / 3 \times s \Rightarrow s=\underline{54 \mathrm{~m}}$ (d) Vertical component of T now removed Hence normal reaction is increased	M1 A1 A1 (3) M1 A1 $\downarrow \downarrow$ M1 A1 (4) M1 A1 M1 A1 (4) M1 A1 cso (2)

Question Number	Scheme	Marks
8	(a) Speed of ball $=\sqrt{ }\left(5^{2}+8^{2}\right) \approx \underline{9.43 \mathrm{~m} \mathrm{~s}^{-1}}$ (b) p.v. of ball $=(2 \mathbf{i}+\mathbf{j})+(5 \mathbf{i}+8 \mathbf{j}) t$ (c) North of B when \mathbf{i} components same, i.e. $2+5 t=10$ $t=\underline{1.6 \mathrm{~s}}$ (d) When $t=1.6$, p.v. of ball $=10 \mathbf{i}+13.8 \mathbf{j}($ or \mathbf{j} component $=13.8)$ Distance travelled by $2^{\text {nd }}$ player $=13.8-6=6.8$ $\text { Speed }=6.8 \div 1.6=\underline{4.25 \mathrm{~m} \mathrm{~s}^{-1}}$ or $\quad[(2+5 t) \mathbf{i}+](1+8 t) \mathbf{j}=[10 \mathbf{i}+](7+v t) \mathbf{j} \quad(p v$'s or \mathbf{j} components same) Using $t=1.6: 1+12.8=7+1.6 v$ (equn in v only) $v=\underline{4.25 \mathrm{~m} \mathrm{~s}^{-1}}$ (e) Allow for friction on field (i.e. velocity of ball not constant) or allow for vertical component of motion of ball (a) M1 Valid attempt at speed (square, add and squ. root cpts) (b) M1 needs non-zero p.v. + (attempt at veloc vector) $\mathrm{x} t$. Must be vector (d) $2^{\text {nd }} \mathrm{M} 1-$ allow if finding displacement vector (e.g. if using wrong time) $3^{\text {rd }} \mathrm{M} 1$ for getting speed as a scalar (and final answer must be as a scalar). But if they get e.g. ' $4.25 \mathbf{j}$ ', allow M1 A0 (e) Allow 'wind', 'spin', 'time for player to accelerate', size of ball Do not allow on their own 'swerve', 'weight of ball'.	M1 A1 (2) M1 A1 (2) M1 A1 (2) $\begin{array}{cc} \text { M1 A1 } \\ \downarrow & \\ \text { M1 } & \text { A1 } \\ \downarrow & \\ \text { M1 } & \text { A1 } \end{array}$ (6) $\begin{gathered} \text { M1 A1 } \\ \downarrow \\ \text { M1 A1 } \\ \downarrow \\ \text { M1 A1 } \end{gathered}$ B1 (1)

Question Number	Scheme	Marks
7.	(a)	M1 A1 A1 (3)
	(b) $\begin{array}{ll} \mathrm{R}(\text { perp }): & R=m g \cos 30 \\ \mathrm{R}(/ /): & T-m g \sin 30-F=m \cdot \frac{1}{10} g \end{array}$ Using $F=\mu R$	M1 A1
		M1 A2, 1, 0
		M1
	$\frac{6}{5} m g-\frac{1}{2} m g-\mu m g \frac{\sqrt{3}}{2}=\frac{1}{10} m g$	$\begin{aligned} & \downarrow \downarrow \downarrow \\ & \text { M1 } \end{aligned}$
	$\begin{equation*} \rightarrow \quad \mu=\underline{0.693 \text { or } 0.69 \text { or }} \frac{2 \sqrt{3}}{5} \tag{8} \end{equation*}$	A1
		M1 A1 V
	Direction is vertically downwards	B1 (cso)
		14

GCE

Edexcel GCE
Mechanics M1 (6677)

J une 2006

Mark Scheme
(Results)

J une 2006
6677 Mechanics M1
Mark Scheme

Question Number	Scheme	Marks
Qu 1	(a) Constant acceleration (b) Constant speed/velocity (c) \quad Distance $=1 / 2(2+5) \times 3,+(4 \times 5)$ $=30.5 \mathrm{~m}$ (a) and (b) Accept 'steady' instead of 'constant. Allow 'o.e.' (= 'or equivalent') within reason! But must have idea of constant. 'constant speed and constant acceleration' for (a) or (b) is B0 (c) M1 for valid attempt at area of this trap. as area of a trap. Or this trap. as = triangle + rectangle, i.e. correct formula used with at most a slip in numbers. B1 for area of rectangle as 5×4 Treating whole as a single const acceln situation, or whole as a single trapezium, is M0. If assume that top speed is 5.1 or 5.2, allow full marks on f.t. basis (but must be consistent)	B1 (1) M1 A1, B1 A1 (4)

Qu 2	- (a) CLM: $\quad 0.4 \times 6-0.3 \times 2=0.4 \times v+0.3 \times 3$ $\Rightarrow v=(+) \underline{2.25 \mathrm{~m} \mathrm{~s}^{-1}}$ (${ }^{\prime}+$ ' \Rightarrow) direction unchanged (b) $I=0.3 \times(2+3)=1.5, \mathrm{Ns}(\text { o.e. })$ (a) M1 for 4 term equation dimensionally correct $(\pm g)$. A1 correct A1 answer must be positive A1 f.t. - accept correct answer from correct working without justification; if working is incorrect allow f.t. from a clear diagram with answer consistent with their statement; also allow A1 if their ans is +ve and they say direction unchanged. (b) M1 - need (one mass) x (sum or difference of the two speeds associated with the mass chosen) A1 - answer must be positive B1 allow o.e. e.g. $\mathrm{kg} \mathrm{m} \mathrm{s}^{-1}$	M1 A1 A1 A1 $\sqrt{ }$ (4) M1 A1, B1 (3)

Question Number	Scheme	Marks
Qu 3	(a) $A B: 50=2 \times 22.5+1 / 2 a .4$ $\Rightarrow a=\underline{2.5 \mathrm{~m} \mathrm{~s}^{-2}}$ (b) $\begin{aligned} v^{2} & =22.5^{2}+2 \times 2.5 \times 100 \\ & \Rightarrow v \approx \underline{31.7(2) \mathrm{m} \mathrm{~s}^{-1}} \end{aligned}$ (c) $\begin{aligned} & v_{B}=22.5+2 \times 2.5=27.5 \quad(\text { must be used }) \\ & 31.72=27.5+2.5 t \quad \text { OR } 50=27.5 t+1 / 2 \times 2.5 t^{2} \\ & \quad \Rightarrow t \approx \underline{1.69 \mathrm{~s}} 50=1 / 2(27.5+31.72) t \end{aligned}$ OR $\begin{aligned} 31.72 & =22.5+2.5 T \quad \text { OR } \quad 100=22.5 t+1 / 2 \times 2.5 T^{2} \\ & \Rightarrow T \approx 3.69 \\ & \Rightarrow t \approx 3.69-2=\underline{1.69 \mathrm{~s}} \end{aligned}$ OR $50=31.7 t-1 / 2 \times 2.5 t^{2}$ Solve quadratic to get $t=\underline{1.69 \mathrm{~s}}$ NB note slight changes to scheme: dependency now in (c) and new rule on accuracy of answers. (b) M1 for valid use of data (e.g. finding speed at B by spurious means and using this to get v at C is M0. Accept answer as AWRT 31.7 In (b) and (c), f.t. A marks are for f.t. on wrong a and/or answer from (b). (c) $\mathrm{M} 1+\mathrm{M} 1$ to get to an equation in the required t (normally two stages, but they can do it in one via $3^{\text {rd }}$ alternative above) Ans is cao. Hence premature approx (-> e.g. 1.68) is A0. But if they use a 3 sf answer from (b) and then give answer to (c) as 1.7, allow full marks. And accept 2 or 3 s.f. answer or better to (c).	M1 A1 A1 (3) M1 A1V A1 M1 M1 A1V A1 (4) M1 A1V \downarrow M1 A1 (4) M2 A1V A1 (4)

Qu 4	(a) $\begin{gathered} R=0.5 g \cos \alpha=0.4 g \\ 4=F+0.5 g \sin \alpha \\ F=\mu R \text { used } \end{gathered}$ $4=0.4 g \cdot \mu+0.3 g$ $\Rightarrow \mu \approx \underline{0.27(0)}$ (b) (a) $1^{\text {st }}$ two M1's require correct number of the correct terms, with valid attempt to resolve the correct relevant term (valid 'resolve' $=\mathrm{x} \sin / \cos$). $4^{\text {th }}$ M1 (dept) for forming equn in $\mu+$ numbers only (b) In first equn, allow their R or F in the equation for full marks. A marks: f.t. on their R, F etc. Deduct one A mark (up to 2) for each wrong term. (Note slight change from original scheme)	M1 A1 M1 A1 (7) M1 A2,1,0V A1

Qu 5	(a) (b) $\text { e.g. } \begin{aligned} \mathrm{M}(A): \quad 140 \times 90 & =210 \times d \\ \Rightarrow d & =60 \Rightarrow A B=\underline{120 \mathrm{~cm}} \end{aligned}$ (c) Solve $\rightarrow(S=60$ and $) W=\underline{30}$ Note that they can take moments legitimately about many points (a) M1 for a valid method to get R (almost always resolving!) (b) $1^{\text {st }} \mathrm{M} 1$ for a valid moments equation $2^{\text {nd }} \mathrm{M} 1$ for complete solution to find $A B$ (or verification) Allow 'verification', e.g. showing $140 \times 90=210 \times 60 \mathrm{M} 1 \mathrm{~A} 1$ $1260=1260 \text { QED M1 A1 }$ (c) In both equations, allow whatever they think S is in their equations for full marks (e.g. if using $S=70$). $2^{\text {nd }}$ M1 A2 is for a moments equation (which may be about any one of $4+$ points!) $1^{\text {st }}$ M1 A1 is for a second equation (resolving or moments) If they have two moments equations, given M1 A2 if possible for the best one 2 M marks only available without using $S=70$. If take mass as 210 (hence use 210 g) consistently: treat as MR, i.e. deduct up to two A marks and treat rest as f.t. (Answers all as given $=9.8$). But allow full marks in (b) (g 's should all cancel and give correct result).	M1 A1 (2) (4) $\begin{aligned} & \text { M1 A1 } \\ & \left\lvert\, \begin{array}{l} \text { M1 A2, } 1,0 \\ \downarrow \\ \text { M1 A1 } \end{array}\right. \end{aligned}$ (7)

Qu 7	(a) Speed $=\sqrt{ }\left(2.5^{2}+6^{2}\right)=6.5 \mathrm{~km} \mathrm{~h}^{-1}$	M1 A1 (2)
	(b) Bearing $=360-\arctan (2.5 / 6) \approx \underline{337}$	M1 A1 (2)
	(c) $\mathbf{R}=(16-3 \times 2.5) \mathbf{i}+(5+3 \times 6) \mathbf{j}$	M1
	$=8.5 \mathbf{i}+23 \mathbf{j}$	A1 (2)
	(d) At $1400 \quad \mathbf{s}=11 \mathbf{i}+17 \mathbf{j}$ At time $t, \quad \mathbf{s}=\underline{11 \mathbf{i}+(17+5 t) \mathbf{j}}$	 (4)
	(e) East of $R \Rightarrow 17+5 t=23$	M1
	$\Rightarrow t=6 / 5 \Rightarrow 1512 \text { hours }$	A1 (2)
	(f) At $1600 \quad \mathbf{s}=11 \mathbf{i}+27 \mathbf{j}$	
	$\mathbf{s}-\mathbf{r}=2.5 \mathbf{i}+4 \mathbf{j}$	M1
	Distance $=\sqrt{ }\left(2.5^{2}+4^{2}\right) \approx \underline{4.72 \mathrm{~km}}$	M1 A1 (3)
	(a) M1 needs square, add and $\sqrt{ }$ correct components	
	(b) M1 for finding acute angle $=\arctan (2.5 / 6)$ or $\arctan (6 / 2.5)\left(\right.$ i.e. $\left.67^{\circ} / 23^{\circ}\right)$. Accept answer as AWRT 337.	
	(c) M1 needs non-zero initial p.v. used + 'their 3' x velocity vector	
	(d) Allow $1^{\text {st }}$ M1 even if non-zero initial p.v. not used here	
	(e) A 1 is for answer as a time of the day	
	(f) $1^{\text {st }} \mathrm{M} 1$ for using $t=2$ or 4 (but not 200, 400, 6, 16 etc) and forming s-r or $\mathbf{r}-\mathbf{s}$	

Mark Scheme (Results) J anuary 2007

GCE

GCE Mathematics

Mechanics M1 (6677)

J anuary 2007
 6677 Mechanics M1
 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\quad P \sin 30^{\circ}=24$ $P=48$ (b) $\begin{aligned} Q= & P \cos 30^{\circ} \\ & \approx 41.6 \quad \text { accept } 24 \sqrt{ } 3, \text { awrt } 42 \end{aligned}$	$\begin{array}{lll} \text { M1 A1 } & & \\ \text { A1 } & \underline{3} & \\ & & \\ \text { M1 A1 } & \\ \text { A1 } & \underline{3} & 6 \end{array}$
2.	(a) $\mathrm{M}(C) \quad 80 \times x=120 \times 0.5$ $x=0.75 *$ cso (b) Using reaction at $C=0$ $\begin{aligned} \mathrm{M}(D) \quad 120 \times 0.25 & =W \times 1.25 \\ W & =24 \quad(\mathrm{~N}) \end{aligned}$ ft their x (c) i $X=24+120=144$ (N) ft their W (d) The weight of the rock acts precisely at B.	M1 A1 A1 $\quad \underline{3}$ B1 M1 A1 A1 $\quad 4$ M1 A1ft $\begin{array}{lll} & & \underline{2} \\ \text { B1 } & \underline{1} & \mathbf{1 0}\end{array}$
3.	(a) $\mathbf{a}=\frac{(15 \mathbf{i}-4 \mathbf{j})-(3 \mathbf{i}+2 \mathbf{j})}{4}=3 \mathbf{i}-1.5 \mathbf{j}$ (b) $\begin{array}{rlr} \text { N2L } \quad \mathbf{F}=m \mathbf{a}=6 \mathbf{i}-3 \mathbf{j} & \text { ft their } \mathbf{a} \\ \|\mathbf{F}\|=\sqrt{ }\left(6^{2}+3^{2}\right) \approx 6.71 \quad(\mathrm{~N}) & \text { accept } \sqrt{ } 45, \text { awrt } 6.7 \end{array}$ (c) $\begin{array}{rlr} \mathbf{v}_{6} & =(3 \mathbf{i}+2 \mathbf{j})+(3 \mathbf{i}-1.5 \mathbf{j}) 6 & \text { ft their } \mathbf{a} \\ & =21 \mathbf{i}-7 \mathbf{j} \quad\left(\mathrm{~ms}^{-1}\right) & \end{array}$	M1 A1 $\underline{2}$ M1 A1 M1 A1 4 M1 A1ft A1 1 9

advancing learning, changing lives

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M1 6677

J une 2007
 6677 Mechanics M1
 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\rightarrow T \sin 20^{\circ}=12$ (b) $\quad \uparrow W=T \cos 20^{\circ}$ $\approx 33.0 \quad(\mathrm{~N})$ awrt 33	M1 A1 A1 M1 A1 DM1 A1
2.	(a) $\begin{aligned} A: \quad I & =0.3(8+2) \\ & =3(\mathrm{Ns}) \end{aligned}$ (b) $\text { LM } \quad \begin{aligned} 0.3 \times 8-4 m & =0.3 \times(-2)+2 m \\ m & =0.5 \end{aligned}$ Alternative to (b) B : $\begin{aligned} m(4+2) & =3 \\ m & =0.5 \end{aligned}$ The two parts of this question may be done in either order.	M1 A1 A1 M1 A1 DM1 A1 (4) $[7]$ M1 A1 DM1 A1 (4)

Mark Scheme (Results) J anuary 2008

GCE

GCE Mathematics (6677/ 01)

J anuary 2008 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
5.(a)	$\begin{aligned} \mathrm{M}(A): T \times 4 & =12 g \times 2.5 \\ T & =7.5 g \text { or } 73.5 \mathrm{~N} \end{aligned}$ $\begin{aligned} & \mathrm{R}(\uparrow) S+T=12 \mathrm{~g} \\ & \Rightarrow S=\underline{4.5 \mathrm{~g} \text { or } 44.1 \mathrm{~N}} \end{aligned}$	M1 A1 A1 M1 A1 (5)
(b)	$\begin{aligned} \mathrm{M}(A) \quad V \times 4 & =16 g \mathrm{x} y+12 g \times 2.5 \\ V & =\underline{4 g y+}+7.5 g \text { or } 39.2 y+73.5 \mathrm{~N} \end{aligned}$	M1 A1 A1 (3)
(c)	$\begin{aligned} & V \leq 98 \Rightarrow 39.2 y+73.5 \leq 98 \\ & \Rightarrow y \leq 0.625=5 / 8 \end{aligned}$ Hence "load must be no more than $5 / 8 \mathrm{~m}$ from A " (o.e.)	M1 DM1 A1
		11
6.(a) (b)	$\text { Speed }=\sqrt{ }\left(5^{2}+8^{2}\right) \approx \underline{9.43 \mathrm{~m} \mathrm{~s}^{-1}}$	M1 A1 (2)
	Forming arctan $8 / 5$ or $\arctan 5 / 8$ oe Bearing $=360-\arctan 5 / 8$ or $270+\arctan 8 / 5=\underline{328}$	M1 DM1 A1 (3)
(d)	$\begin{aligned} & \text { At } t=3 \text {, p.v. of } P=(7-15) \mathbf{i}+(-10+24) \mathbf{j}=-8 \mathbf{i}+14 \mathbf{j} \\ & \text { Hence } \quad-8 \mathbf{i}+14 \mathbf{j}+4(u \mathbf{i}+v \mathbf{j})=\mathbf{0} \\ & \Rightarrow \underline{u=2, \quad v=-3.5} \end{aligned}$	M1 A1 M1 DM1 A1 (5)
	$\begin{aligned} \text { p.v. of } P t \text { secs after changing course } & =(-8 \mathbf{i}+14 \mathbf{j})+t(2 \mathbf{i}-3.5 \mathbf{j}) \\ & =7 \mathbf{i}+\ldots \ldots \\ \text { Hence total time } & =\underline{10.5 \mathrm{~s}} \end{aligned}$	M1 DM1
		13

Mark Scheme (Results)

 Summer 2008

 Summer 2008}

GCE

GCE Mathematics (6677/ 01)

J une 2008

6677 Mechanics M1 Final Mark Scheme

Question Number	Scheme	Marks
1.	(a) $\begin{aligned} I=m v \Rightarrow \quad 3 & =0.4 \times v \\ v & =7.5\left(\mathrm{~ms}^{-1}\right) \end{aligned}$ (b) LM $\begin{aligned} 0.4 \times 7.5 & =0.4 v+0.6 \times 5 \\ 0 & =0.4 v \quad \Rightarrow \quad v=0 \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) [6]
2.	(a) $v^{2}=u^{2}+2 a s \Rightarrow 17.5^{2}=u^{2}+2 \times 9.8 \times 10$ Leading to $u=10.5$ (b) $\begin{align*} v=u+a t \Rightarrow \quad 17.5 & =-10.5+9.8 T \\ T & =2 \frac{6}{7} \tag{s} \end{align*}$ Alternatives for (b) $\begin{aligned} s=\left(\frac{u+v}{2}\right) T \Rightarrow 10 & =\left(\frac{17.5+-10.5}{2}\right) T \\ \frac{20}{7} & =T \end{aligned}$ OR $\quad s=u t+\frac{1}{2} a t^{2} \Rightarrow-10=10.5 t-4.9 t^{2}$ Leading to $T=2 \frac{6}{7},\left(-\frac{5}{7}\right)$ Rejecting negative (b) can be done independently of (a) $s=v t-\frac{1}{2} a t^{2} \quad \Rightarrow \quad-10=-17.5 t+4.9 t^{2}$ Leading to $T=2 \frac{6}{7}, \frac{5}{7}$ For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u.	M1 A1 A1 (3) M1 A1 f.t. DM1 A1 (4) [7] M1A1 f.t. DM1A1 (4) M1 A1 f.t. DM1 A1 (4) M1 A1 DM1 A1 (4)

Question Number	Scheme	Marks
3.	(a) $\begin{aligned} \tan \theta & =\frac{8}{6} \\ \theta & \approx 53^{\circ} \end{aligned}$ (b) $\begin{aligned} \mathbf{F} & =0.4(6 \mathbf{i}+8 \mathbf{j})(=2.4 \mathbf{i}+3.2 \mathbf{j}) \\ \|\mathbf{F}\| & =\sqrt{ }\left(2.4^{2}+3.2^{2}\right)=4 \end{aligned}$ The method marks can be gained in either order. (c) $\begin{aligned} \mathbf{v} & =9 \mathbf{i}-10 \mathbf{j}+5(6 \mathbf{i}+8 \mathbf{j}) \\ & =39 \mathbf{i}+30 \mathbf{j}\left(\mathrm{~ms}^{-1}\right) \end{aligned}$	M1 A1 (2) M1 M1 A1 (3) M1 A1 A1 (3) $[8]$
4.	(a) $\begin{array}{r} \text { shape } \\ 25,10,30,90 \end{array}$ (b) $\begin{aligned} 30 \times 25+\frac{1}{2}(25+10) t+10(60-t) & =1410 \\ 7.5 t & =60 \\ t & =8(\mathrm{~s}) \\ a & =\frac{25-10}{8}=1.875\left(\mathrm{~ms}^{-2}\right) \quad 1 \frac{7}{8} \end{aligned}$	$\mathrm{M} 1 \underline{\mathrm{~A} 1} \mathrm{~A} 1$ DM1 A1 M1 A1 (7)

Question Number		Scheme		Marks
7.	(a) (b)	$\begin{aligned} & R=45 \cos 40^{\circ}+4 g \cos 30^{\circ} \\ & R \approx 68 \end{aligned}$ Use of $F=\mu R$ $F+4 g \sin 30=45 \cos 50^{\circ}$ Leading to $\mu \approx 0.14$	accept 68.4 accept 0.136	$\begin{aligned} & \text { M1 A2 }(1,0) \\ & \text { DM1 A1 (5) } \\ & \text { M1 } \\ & \text { M1 A2 } \\ & \text { (1, 0) } \\ & \text { DM1 A1 } \\ & \hline \end{aligned}$

advancing learning, changing lives

Mark Scheme (Results) J anuary 2009

GCE

GCE Mathematics (6677/ 01)

J anuary 2009
6677 Mechanics M1
Mark Scheme

Question Number	Scheme	Marks
1	$\begin{aligned} -6 \mathbf{i}+\mathbf{j} & =\mathbf{u}+3(2 \mathbf{i}-5 \mathbf{j}) \\ \Rightarrow \mathbf{u} & =-12 \mathbf{i}+16 \mathbf{j} \\ \Rightarrow u & =\sqrt{(-12)^{2}+16^{2}}=20 \end{aligned}$	M1 A1 A1 cso M1 A1
2 (a) (b)	 shape or values $\begin{aligned} & 19.6=\frac{1}{2} \times 2 \times u \\ & u=19.6 \end{aligned}$	B1 B1 (2) M1 A1 A1 (3) [5]
(a) (b) (c)	$k>2 \Rightarrow v>0 \Rightarrow \operatorname{dir}^{\mathrm{n}}$ of motion reversed For $B, \quad m(u(3 k-4)--4 u)$ $=7 \mathrm{mu}$	M1 A1 M1A1A1 cso (3) M1 A1 f.t. A1 (3) [9]

Question Number	Scheme	Marks
4 (a) (b)	$\begin{aligned} & C+D=120 g \\ & M(Q), 80 g \cdot 0.8-40 g \cdot 0.4=D .1 .6 \\ & \text { solving } \\ & C=90 g ; D=30 g \end{aligned}$	M1 A1 M1 A1 M1 A1 A1 (7)
(b)	$\begin{aligned} & \quad 2 F+F=40 g+20 g+60 g \\ & M(Q), 60 g x+20 g \cdot 0.8=40 g \cdot 0.4+F \cdot 1.6 \\ & \text { solving } \\ & Q X=x=\frac{16}{15} \mathrm{~m}=1.07 \mathrm{~m} \end{aligned}$	M1 A1 M1 A1 M1 A1 (6) [13]

Question Number	Scheme	Marks
5 (a)		B2 -1 e.e.o.o. (labels not needed)
(b)	$F=\frac{1}{2} R$ (\uparrow), $R \cos \alpha+F \sin \alpha=m g$ $R=\frac{1.1 \mathrm{~g}}{\left(\cos \alpha+\frac{1}{2} \sin \alpha\right)}=9.8 \mathrm{~N}$	B1
		M1 A2
	$\begin{align*} (\rightarrow), P & +\frac{1}{2} R \cos \alpha=R \sin \alpha \\ P & =R\left(\sin \alpha-\frac{1}{2} \cos \alpha\right) \\ & =1.96 \tag{5} \end{align*}$	M1 A2 M1 A1
		[13]

Question Number	Scheme	Marks
6 (a)	$\tan \theta=\frac{2}{1} \Rightarrow \theta=63.4^{\mathrm{o}}$ angle is 153.4°	M1 A1 A1 (3)
	$\begin{aligned} & (4+p) \mathbf{i}+(q-5) \mathbf{j} \\ & (q-5)=-2(4+p) \\ & 2 p+q+3=0 * \end{aligned}$	B1 M1 A1 A1 (4)
	$\begin{aligned} q=1 & \Rightarrow p=-2 \\ & \Rightarrow \mathbf{R}=2 \mathbf{i}-4 \mathbf{j} \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \end{aligned}$
	$\begin{aligned} \Rightarrow\|\mathbf{R}\| & =\sqrt{2^{2}+(-4)^{2}}=\sqrt{20} \\ \sqrt{20} & =m 8 \sqrt{5} \\ \Rightarrow m & =\frac{1}{4} \end{aligned}$	M1 A1 f.t. M1 A1 f.t. Al cao (7)
		[14]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6677/ 01)

J une 2009
6677 Mechanics M1
Mark Scheme

Question Number	Scheme	Marks
Q1	$\begin{aligned} 45=2 u+\frac{1}{2} a 2^{2} & \Rightarrow 45=2 u+2 a \\ 165 & =6 u+\frac{1}{2} a 6^{2} \end{aligned} \quad \Rightarrow \quad 165=6 u+18 a$ eliminating either u or a $u=20 \text { and } a=2.5$	M1 A1 M1 A1 M1 A1 A1
Q2 (a) (b)	$\begin{aligned} \tan \theta=\frac{p}{2 p} & \Rightarrow \theta=26.6^{\circ} \\ & \mathbf{R}=(\mathbf{i}-3 \mathbf{j})+(p \mathbf{i}+2 p \mathbf{j})=(1+p) \mathbf{i}+(-3+2 p) \mathbf{j} \end{aligned}$ \mathbf{R} is parallel to $\mathbf{i} \Rightarrow(-3+2 p)=0$ $\Rightarrow p=\frac{3}{2}$	M1 A1 (2) M1 A1 DM1 (4) [6]
Q3 (a) (b)	For A : For B : $\begin{aligned} -\frac{7 m u}{2} & =2 m\left(v_{A}-2 u\right) \\ v_{A} & =\frac{u}{4} \\ \frac{7 m u}{2} & =m\left(v_{B}--3 u\right) \end{aligned}$ $v_{B}=\frac{u}{2}$ OR CLM: $\begin{aligned} 4 m u-3 m u & =2 m \frac{u}{4}+m v_{B} \\ v_{B} & =\frac{u}{2} \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) OR M1 A1 A1 (3) [6]

Question Number	Scheme	Marks
Q4	$\begin{aligned} & 0.5 g \sin \theta-F=0.5 a \\ & F=\frac{1}{3} R \text { seen } \\ & \qquad R=0.5 g \cos \theta \end{aligned}$ Use of $\sin \theta=\frac{4}{5}$ or $\cos \theta=\frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53° $a=\frac{3 g}{5} \text { or } 5.88 \mathrm{~m} \mathrm{~s}^{-2} \text { or } 5.9 \mathrm{~m} \mathrm{~s}^{-2}$	M1 A1 A1 B1 M1 A1 B1 DM1 A1 [9]
Q5	$F=P \cos 50^{\circ}$ $F=0.2 R$ seen or implied. $P \sin 50^{\circ}+R=15 g$ Eliminating R; Solving for P; $P=37(2 \mathrm{SF})$	M1 A1 B1 M1 A1 A1 DM1; D M1; A1 [9]
(a) (b) (c)	For whole system: $1200-400-200=1000 a$ $a=0.6 \mathrm{~m} \mathrm{~s}^{-2}$ For trailer: $T-200=200 \times 0.6$ $T=320 \mathrm{~N}$ OR: For car: $1200-400-T=800 \times 0.6$ $T=320 \mathrm{~N}$ For trailer: $200+100=200 f$ or $-200 f$ $f=1.5 \mathrm{~m} \mathrm{~s}^{-2}(-1.5)$ For car: $400+F-100=800 f$ or $-800 f$ $F=900$ (N.B. For both: $400+200+F=1000 f$)	M1 A1 A1 (3) M1 A1 ft A1 OR: M1 A1 ft A1 (3) M1 A1 A1 M1 A2 A1 (7)

Question Number	Scheme	Marks
(a) (b) (c) (d)	$M(Q), \quad 50 g(1.4-x)+20 g \times 0.7=T_{P} \times 1.4$ $T_{P}=588-350 x$ Printed answer $M(P), \quad 50 g x+20 g \times 0.7=T_{Q} \times 1.4 \quad \text { or } \quad \mathrm{R}(\uparrow), T_{P}+T_{Q}=70 g$ $T_{Q}=98+350 x$ Since $0<x<1.4, \quad 98<T_{P}<588$ and $98<T_{Q}<588$ $\begin{aligned} 98+350 x & =3(588-350 x) \\ x & =1.19 \end{aligned}$	M1 A1 A1 (3) M1 A1 A1 (3) M1 A1 A1 (3) M1 DM1 A1 (3) [12]
Q8 (a) (b) (c) (d)	$\begin{gathered} \|\mathbf{v}\|=\sqrt{1.2^{2}+(-0.9)^{2}}=1.5 \mathrm{~m} \mathrm{~s}^{-1} \\ \left(\mathbf{r}_{H}=\right) 100 \mathbf{j}+t(1.2 \mathbf{i}-0.9 \mathbf{j}) \mathrm{m} \\ \left(\mathbf{r}_{K}=\right) 9 \mathbf{i}+46 \mathbf{j}+t(0.75 \mathbf{i}+1.8 \mathbf{j}) \mathrm{m} \\ \overrightarrow{H K}=\mathbf{r}_{K}-\mathbf{r}_{H}=(9-0.45 t) \mathbf{i}+(2.7 t-54) \mathbf{j} \text { m Printed Answer } \\ \overrightarrow{H K}=\mathbf{0} \\ \text { Meet when } \\ (9-0.45 t)=0 \text { and }(2.7 t-54)=0 \\ t=20 \text { from both equations } \\ \mathbf{r}_{K}=\mathbf{r}_{H}=(24 \mathbf{i}+82 \mathbf{j}) \mathrm{m} \end{gathered}$	M1 A1 (2) M1 A1 (2) M1 A1 M1 A1 (4) M1 A1 A1 DM1 A1 cso (5) [13]

advancing learning, changing lives

Mark Scheme (Results) J anuary 2010

GCE

Mechanics M1 (6677)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 08445760027 , or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2010
Publications Code UA023034
All the material in this publication is copyright
© Edexcel Ltd 2010

J anuary 2010

6677 Mechanics M1

Mark Scheme

Question Number	Scheme	Marks
Q3.	(a) $\begin{aligned} \mathrm{R}(\rightarrow) \quad 20 \cos 30^{\circ} & =T \cos 60^{\circ} \\ T & =20 \sqrt{3}, 34.6,34.64, \ldots \end{aligned}$ (b) $\begin{array}{r} \mathrm{R}(\uparrow) \quad m g=20 \sin 30^{\circ}+T \sin 60^{\circ} \\ m=\frac{40}{g}(\approx 4.1), 4.08 \end{array}$	M1 A2 $(1,0)$ (4) M1 A2 $(1,0)$ A1 (4) [8]
Q4.	(a) $\mathrm{M}(A) \quad W \times 1.5+20 \times 3=Y \times 1.8$ $Y=\frac{5}{6} W+\frac{100}{3}$ cso (b) $\quad \uparrow$ (c) $\begin{aligned} \frac{5}{6} W+\frac{100}{3} & =8\left(\frac{1}{6} W-\frac{40}{3}\right) \\ W & =280 \end{aligned}$ Alternative to (b) M (C) $\quad X \times 1.8+20 \times 1.2=W \times 0.3$ $X=\frac{1}{6} W-\frac{40}{3}$	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481

Email publications@linneydirect.com
Order Code UA023034 J anuary 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M1 (6677/ 01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http://www.edexcel.com/ Aboutus/ contact-us/

Summer 2010
Publications Code UA024469
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010

Mechanics M1 6677

Mark Scheme

Question Number	Scheme	Marks
Q4	($\downarrow) R+S=500+500+200=1200$ (or a moments equation) solving for $x ; x=1.2 \mathrm{~m}$	M1 A1 A1 M1 A1 M1 A1 cso [7]
Q5 (a) (b)	 Shape (both) Cross Meet on t-axis Figures 25,20,T,25 For $Q: 20\left(\frac{t+25}{2}\right)=800$ $t=55$ For $P: 25\left(\frac{T+55}{2}\right)=800$ solving for $T: \quad T=9$	B1 B1 B1 B1 (4) M1 A1 DM1 A1 M1 A1 DM1 A1 (8) [12]

Question Number	Scheme	Marks
Q6 (a) (b) (c)	$\begin{aligned} (\uparrow) v^{2} & =u^{2}+2 a s \\ 0 & =14.7^{2}-2 \times 9.8 \times s \\ s & =11.025(\text { or } 11 \text { or } 11.0 \text { or } 11.03) \mathrm{m} \end{aligned}$ Height is 60 m or 60.0 m ft	M1A1 A1 Alft (4) M1 A1 A1 (3) M1 A1 A1 (3) [10]
(a) (b)	$F=\frac{1}{3} R$ $\begin{aligned} & (\uparrow) R \cos \alpha-F \sin \alpha=0.4 g \\ & \qquad R=\frac{2}{3} g=6.53 \text { or } 6.5 \\ & (\rightarrow) P-F \cos \alpha-R \sin \alpha=0 \\ & \quad P=\frac{26}{45} g=5.66 \text { or } 5.7 \end{aligned}$	B1 M1 A1 M1 A1 (5) M1 A2 M1 A1 (5) [10]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA024469 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WC1V 7BH
advancing learning, changing lives

Mark Scheme (Results) J anuary 2011

GCE

GCE Mechanics M1 (6677) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code UA026577
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- Mmarks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

J anuary 2011
Mechanics M1 6677
Mark Scheme

Question Number	Scheme	Marks	
1.	(a)Conservation of momentum: $4 m-6=m+9$ $m=5$	M1 A1 A1	
	(b)Impulse $=$ change in momentum $=3 \times 3-(3 \times-2)=15$	M1 A1	

PhysicsAndMathsTutor.com

Question Number	Scheme	Marks
3. (a)	Taking moments about B: $5 \times \mathrm{R}_{C}=20 \mathrm{~g} \mathrm{x} 3$ $R_{C}=12 \mathrm{~g}$ or $60 \mathrm{~g} / 5$ or 118 or 120 Resolving vertically: $\begin{aligned} R_{C}+R_{B} & =20 \mathrm{~g} \\ R_{B} & =8 \mathrm{~g} \text { or } 78.4 \text { or } 78 \end{aligned}$	M1A1 A1 M1 A1 (5)
(b)	Resolving vertically: $50 \mathrm{~g}=\mathrm{R}+\mathrm{R}$ Taking moments about B : $\begin{aligned} 5 \times 25 g & =3 \times 20 g+(6-x) \times 30 g \\ 30 x & =115 \\ x & =3.8 \text { or better or } 23 / 6 \mathrm{oe} \end{aligned}$	B1 M1 A1 A1 A1 (5) [10]

Question Number	Scheme	Marks
4. (a)	$\begin{aligned} \text { speed } & =\sqrt{2^{2}+(-5)^{2}} \\ & =\sqrt{29}=5.4 \text { or better } \end{aligned}$	M1 A1 (2)
(b)	$\begin{gathered} ((7 \mathbf{i}+10 \mathbf{j})-(2 \mathbf{i}-5 \mathrm{j})) / 5 \\ \quad=(5 \mathbf{i}+15 \mathbf{j}) / 5=\mathbf{i}+3 \mathbf{j} \\ \mathbf{F}=m \mathbf{a}=2(\mathbf{i}+3 \mathbf{j})=2 \mathbf{i}+6 \mathbf{j} \end{gathered}$	M1 A1 A1 DM1 A1ft (5)
(c)	$\begin{aligned} & \mathbf{v}=\mathbf{u}+\mathbf{a} t=(2 \mathbf{i}-5 \mathbf{j})+(\mathbf{i}+3 \mathbf{j}) t \\ & \quad(-5+3 t) \mathbf{j} \end{aligned}$ Parallel to $\mathrm{i} \Rightarrow-5+3 \mathrm{t}=0$ $t=5 / 3$	M1 A1 M1 A1 (4) [11]

Question Number	Scheme	Marks
6. (a)	Resolving perpendicular to the plane: $\begin{aligned} S & =120 \cos \alpha+30 \sin \alpha \\ & =114 * \end{aligned}$	M1 A1 A1 A1 (4)
(b)	Resolving perpendicular to the plane: $\begin{aligned} R & =120 \cos \alpha \\ & =96 \\ F_{\max } & =\frac{1}{2} R \end{aligned}$ Resolving parallel to the plane: In equilibrium: $P_{\text {max }}=F_{\text {max }}+120 \sin \alpha$ $=48+72=120$	M1 A1 A1 M1 M1 A $(2,1,0)$ A1 (8)
(c)	$30+F=120 \sin \alpha \text { OR } 30-F=120 \sin \alpha$ So $F=42 \mathrm{~N}$ acting up the plane.	M1 A1 A1 (3) [15]

Question Number	Marks	
(a)		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code UA026577 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Mark Scheme (Results)

June 2011

GCE Mechanics M1 (6677) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028437
All the material in this publication is copyright
© Edexcel Ltd 2011
advancing learning, changing lives

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol wifl be used for correct ft
- cao - correct answer only
- CSO - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \quad The second mark is dependent on gaining the first mark

J une 2011
 Mechanics M1 6677

Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\begin{aligned} 0^{2}= & u^{2}-2 \times 9.8 \times 40 \\ & u=28 \mathrm{~m} \mathrm{~s}^{-1} \quad * * \text { GIVEN ANSWER } \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$ (3)
(b)	$\begin{aligned} & 33.6=28 t-\frac{1}{2} 9.8 t^{2} \\ & 4.9 t^{2}-28 t+33.6=0 \\ & t=\frac{28 \pm \sqrt{28^{2}-4 \times 4.9 \times 33.6}}{9.8} \\ & \quad=4 \mathrm{~s} \text { or }(1.7 \mathrm{~s} \text { or } 1.71 \mathrm{~s}) \end{aligned}$	M1 A1 M1 A1 A1 (5)
2. (a)		M1 A1 M1A1 (A1 ft) (5)
(b)	$\begin{array}{rlcc} & 3(v-3) & \text { OR } & 2(v+1--2) \\ = & 7.2 \mathrm{Ns} & & =7.2 \mathrm{Ns} \end{array}$	M1 A1 ft A1 (3) 8

Question Number	Scheme	Marks
5. (a) (i) (ii) (i) (ii)	EITHER $\quad \mathrm{M}(R), 8 X+2 X=40 \mathrm{~g} \mathrm{x} 6+20 \mathrm{~g} \mathrm{x} 4$ solving for $X, X=32 \mathrm{~g}=314$ or 310 N (\uparrow) $X+X=40 \mathrm{~g}+20 \mathrm{~g}+M \mathrm{~g}$ (or another moments equation) solving for $M, M=4$ OR $\quad \mathrm{M}(P), 6 X=40 \mathrm{~g} \times 2+20 \mathrm{gx} 4+M \mathrm{gx} 8$ solving for $X, X=32 \mathrm{~g}=314$ or 310 N (\uparrow) $X+X=40 \mathrm{~g}+20 \mathrm{~g}+M \mathrm{~g}$ (or another moments equation) solving for $M, M=4$	M1 A2 M1 A1 (10)
(b)	Masses concentrated at a point or weights act at a point	B1 $\begin{equation*} 11 \tag{1} \end{equation*}$
6. (a)	$\begin{aligned} R & =0.3 g \cos \alpha \\ & =0.24 g=2.35(3 \mathrm{sf})=2.4(2 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \end{aligned}$ (2)
(b)	$\begin{aligned} & m g-T=1.4 m \\ & T-0.3 g \sin \alpha-F=0.3 \times 1.4 \\ & F=0.5 R \\ & \text { Eliminating } R \text { and } T \\ & m=0.4 \end{aligned}$	M1 A1 M1 A2 M1 DM1 A1 (8)
(c)	$\begin{aligned} v & =1.4 \times 0.5 \\ -0.3 g \sin \alpha-F & =0.3 a \\ a & =-9.8 \\ 0 & =0.7-9.8 t \\ t & =0.071 \mathrm{~s} \text { or } 0.0714 \mathrm{~s}(1 / 14 \mathrm{~A} 0) \end{aligned}$	B1 M1 A1 A1 M1 A1 (6)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA028437 J une 2011

For more information on Edexcel qualifications, please visit
 www.edexcel.com/quals

Mark Scheme (Results)

January 2012

GCE Mechanics M1 (6677) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030770
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$
\begin{aligned}
\left(x^{2}+b x+c\right) & =(x+p)(x+q), \text { where }|p q|=|c|, \text { leading to } x=\ldots \\
\left(a x^{2}+b x+c\right) & =(m x+p)(n x+q), \text { where }|p q|=|c| \text { and }|m n|=|a|, \text { leading to } x=\ldots
\end{aligned}
$$

2. Formula

Attempt to use correct formula (with values for a, b and c), leading to $x=\ldots$
3. Completing the square

Solving $x^{2}+b x+c=0: \quad\left(x \pm \frac{b}{2}\right)^{2} \pm q \pm c, \quad q \neq 0, \quad$ leading to $x=\ldots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by $1 .\left(x^{n} \rightarrow x^{n-1}\right)$
2. Integration

Power of at least one term increased by $1 .\left(x^{n} \rightarrow x^{n+1}\right)$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.
Normal marking procedure is as follows:
Method mark for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.
Where the formula is not quoted, the method mark can be gained by implication from correct working with values, but may be lost if there is any mistake in the working.

January 2012
6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1 (a)	For Q $I=3000 \times 9=27000(\mathrm{~N} \mathrm{~s})$	M1 A1
(b)	Conservation of linear momentum Leading to $\begin{aligned} 15 m & =-3 m+3000 \times 9 \\ m & =1500 \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
		$\begin{array}{r} (3) \\ \quad 5 \\ \hline-\quad-\quad . \end{array}$
	Alternative to (b) For P $27000=m(15-(-3))$ $\text { Leading to } \quad m=1500$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$

Question Number	Scheme	Marks
3 (a)	$\begin{array}{ccc} 7+5+p=0 & \text { or } & -9+6+q=0 \\ & p=-12 \\ \\ q=3 \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$
(b)	$\begin{aligned} \mathbf{R} & =12 \mathbf{i}-3 \mathbf{j} \\ \|\mathbf{R}\| & =\sqrt{ }\left(12^{2}+(-3)^{2}\right)=\sqrt{ } 153 \text { or } 3 \sqrt{ } 17 \text { or } 12.4 \text { or better }(\mathrm{N}) \end{aligned}$	M1 A1
(c)		(2)
	$\tan \theta=\frac{3}{12}$	M1
	$\theta=14.03^{0} \ldots$ Angle with \mathbf{j} is 104°, to the nearest degree cao	$\begin{aligned} & \mathrm{A} 1 \\ & \mathrm{~A} 1 \end{aligned}$
	\bigcirc	(3) 8

Question Number	Scheme	Marks
4 (a)		M1 A1 DM1 A1
(b)		M1 A2 $(1,0)$ DM1 A1
		(5) 9

Question Number	Scheme	Marks
7 (a)	$\sqrt{ }\left((-4)^{2}+8^{2}\right)=\sqrt{ } 80 \quad\left(\mathrm{~km} \mathrm{~h}^{-1}\right) \quad$ accept exact equivalents or 8.9 or better	M1 A1
(b)	$\mathbf{p}=(2 \mathbf{i}-8 \mathbf{j})+t(-4 \mathbf{i}+8 \mathbf{j})$	B1
(c)	Equating \mathbf{j} components	
	$-8+8 t=12-8 t$	M1 A1
	$t=\frac{5}{4} \mathrm{oe}$	
(d)	Using their t from (c) to find the \mathbf{i}-cpts of \mathbf{p} and \mathbf{q} and subtract them	M1
	$10 \frac{1}{2}-(-3)=13 \frac{1}{2} \quad(\mathrm{~km})$	A1 ft A1

Question Number	Scheme	Marks
8 (a)	$\begin{aligned} R+36 \sin 30^{\circ} & =4 g \cos 30^{\circ} \\ R & \approx 15.9,16 \end{aligned}$	$\begin{aligned} & \text { M1 A1 } \\ & \text { M1 A1 } \end{aligned}$
(b)	Use of $F_{r}=\mu R$ $\begin{aligned} 36 \cos 30^{\circ} & =F+4 g \sin 30^{\circ} \\ \mu & =\frac{36 \cos 30^{\circ}-4 g \sin 30^{\circ}}{R} \approx 0.726 \end{aligned}$ 0.73	B1 M1 A1 M1 A1 (5)
(c)	After force is removed $\begin{gathered} R=4 g \cos 30^{\circ} \\ -\mu 4 g \cos 30^{\circ}-4 g \sin 30^{\circ}=4 a \\ a=(-) 11.06 \ldots \\ v^{2}=u^{2}+2 a s \Rightarrow 0^{2}=16^{2}-2 \times 11.06 \ldots \times s \\ s=\frac{16^{2}}{2 \times 11.06 \ldots} \approx 11.6 \end{gathered}$	B1 M1 A1 M1 A1
		$\begin{array}{r} (5) \\ 14 \end{array}$

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA030770 January 2012
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Mark Scheme (Results)

Summer 2012

GCE Mechanics M1
(6677) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032675
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012

6677 Mechanics 1

Mark Scheme

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
-There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
Omission or extra g in a resolution is accuracy error not method error.
Omission of mass from a resolution is method error.
Omission of a length from a moments equation is a method error.
Omission of units or incorrect units is not (usually) counted as an accuracy error.
DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
Any numerical answer which comes from use of $\mathrm{g}=9.8$ should be given to 2 or 3 SF . Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
However, premature approximation should be penalised every time it occurs. MARKS MUST BE ENTERED IN THE SAME ORDER AS THEY APPEAR ON THE MARK SCHEME.

In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),......then that working can only score marks for that part of the question.

Accept column vectors in all cases.

June 2012
 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1.	(a) CLM $\begin{aligned} 5 m \times 3-2 m \times 4 & =5 m \times 0.8+2 m v \\ \text { Leading to } v & =1.5 \quad\left(\text { Speed is } 1.5 \mathrm{~m} \mathrm{~s}^{-1}\right)\end{aligned}$ (b) Impulse for $A \quad 5 m(0.8-3)=-3.3$ Leading to $m=0.3$	M1 A1 A1 (3) M1 A1 A1 (3) $[\mathbf{6}]$
	Alternative for (b) Impulse for $B \quad 2 m(1.5--4)=3.3$ Leading to $m=0.3$	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$

Question 1(a)

M1 for attempt at CLM equation, with correct no.of terms, correct masses and
dimensionally consistent. Allow consistent extra g's , consistent missing m 's and sign errors. However, M0 if masses are not paired with the correct speeds.
First A1 for a correct equation.
Second A1 for $v=1.5$. (-1.5 A0)
N.B. Allow M1 for an attempt to equate the impulses on the particles but must have $5 m(0.8-3$) or $5 m$ ($3-$ $0.8)$ on one side of the equation and $2 m\left(\pm_{\mathrm{V}} \pm 4\right)$ on the other.

Question 1(b)

M1 for attempt at impulse $=$ difference in momenta, for either particle, (must be considering one particle) (M0 if g's are included or if mass omitted or if just m used) Allow Initial Momentum - Final Momentum.
A1 cao (i.e. no ft on their v) for a correct equation in m only.
A1 for $m=0.3$

Question 2(a)

First M1 for a complete method for finding R_{Q}, either by resolving vertically, or taking moments twice, with usual criteria (allow M1 even if $R_{P}=2 R_{Q}$ not substituted)
First A1 for a correct equation in either R_{Q} or R_{P} ONLY.
Second A1 for 1.5 g or 14.7 or 15 (A0 for a negative answer)

Question 2(b)

First M1 for taking moments about any point, with usual criteria.
A 2 ft for a correct equation (A1A0 one error, A0A0 for two or more errors, ignoring consistent omission of g 's) in terms of X and their x (which may not be $A G$ at this stage)
Third A1 for $A G=4 / 3,1.3,1.33, \ldots$. (any number of decimal places, since g cancels) need ' $A G=$ ' or x marked on diagram
N.B. if $R_{Q}=2 R_{P}$ throughout, mark as a misread as follows:
(a) M1A1A0 (resolution method) (b) M1A0A1A1, assuming all work follows through correctly..

Question 3(a)

First M1 for resolving perpendicular to plane with usual criteria
First A2 for a correct equation (A1A0 one error, A0A0 for two or more errors)
Second A1 for either 52 or 52.4
N.B. In part (a), the M1 is for a complete method, so they must have sufficient equations to be able to solve for R. The A2 marks are then for all the equations.

Question 3(b)

B1 for use of $F=\mu R$ (could just be on diagram)
First M1 (allow if F is used rather than μR) for resolving parallel to the plane with usual criteria
First A2 for a correct equation (A1A0 one error, A0A0 for two or more errors)
Second A1 for either 0.14 or 0.137
N.B. If they resolve vertically AND horizontally, there are max 6 marks available (M1A2, M1A2) for the TWO equations, but if they only have one equation, there are no marks available for that equation.
The marks for the horizontal resolution should be entered first on ePen.

Question 4(a)

First B1 for $1^{\text {st }}$ section of graph
Second B1 for $2^{\text {nd }}$ section
Third B1 for the figures 20, 8 and 25

Question 4(b)

M1 for a complete method to produce an equation in t only; allow $(20-8) / 0.4$
A1 for 30 N.B.
Give A0 for $t=-30$, even if changed to 30 , but then allow use of 30 in part (c), where full marks could then be scored.

Question 4(c)

First M1 (generous) for clear attempt to find whole area under their graph (must include at least one " $1 / 2$ "), in terms of a single unknown time (t say), and equate it to 1960.
First A3, ft on their (b), for a correct equation.
Deduct 1 mark for each numerical error, or omission, in each of the 4 sections of the area corresponding to each stage of the motion. (they may 'slice' it, horizontally into 3 sections, or a combination of the two)
Second DM1, dependent on first M1, for simplifying to produce an equation with all their t terms collected.
Fourth A1 for a correct equation for t or T
Third DM1, dependent on second M1. for solving for T
Fifth A1 155
Please note that any incorrect answer to (b) will lead to an answer of 155 in (c) and can score max 6/8;

Solutions with the correct answer of 155 will need to be checked carefully.

Solutions to 4 (c) N.B. $t=T-115$
A.
A. $1960=(25 \times 20)+(30 \times 8)+(1 / 2 \times 30 \times 12)+(60 \times 8)+8 \times t+1 / 2 \times t \times 12$ $1960=500+240+180+480+14 t$
M1 A3 ft
$T=115+40$ M1 A1

$$
=155
$$

B. $1960=(25 \times 20)+1 / 2 \times 30 \times(20+8)+(60 \times 8)+1 / 2 \times t \times(20+8)$

M1 A3 ft
$1960=500+420+480+14 t$
M1 A1
$T=115+40$

$$
=155
$$

C. $1960=8 T+1 / 2 \times 12 \times(55+25)+1 / 2 \times 12 \times(T-115)$

M1 A3 ft
$1960=8 T+480+6 T-690$
$1960=14 T-210 \quad$ M1 A1
$155=T \quad$ M1 A1
D. $1960=20 T-1 / 2 \times 12 \times(60+T-25)$

M1 A3 ft
$1960=20 T-6 T-210$
$1960=14 T-210 \quad$ M1 A1
$155=T \quad$ M1 A1
E. $1960=(55 \times 20)-1 / 2 \times 30 \times 12+(60 \times 8)+1 / 2 \times t \times(20+8)$

M1 A3 ft
$1960=1100-180+480+14 t$
M1 A1
$T=115+40$
M1
$=155$
A1
F. $1960=(8 \times 115)+1 / 2 \times 12 \times(55+25)+1 / 2 \times 28 \times(T-115)$

M1 A3 ft
$1960=920+480+14 T-1610$
$1960=14 T-210 \quad$ M1 A1
$155=T$
M1 A1

Question Number	Scheme		Marks
5.	(a) $\begin{gather*} v^{2}=u^{2}+2 a s \Rightarrow 28^{2}=u^{2}+2 \times 9.8 \times 17.5 \\ \text { Leading to } u=21 \quad * \tag{3} \end{gather*}$	cso	$\begin{aligned} & \text { M1 A1 } \\ & \text { A1 } \end{aligned}$
	(b) $\begin{aligned} & s=u t+\frac{1}{2} a t^{2} \Rightarrow 19=21 t-4.9 t^{2} \\ & 4.9 t^{2}-21 t+19=0 \\ & t=\frac{21 \pm \sqrt{21^{2}-4 \times 4.9 \times 19}}{9.8} \end{aligned}$		M1 A1
	$\begin{aligned} & t=2.99 \text { or } 3.0 \\ & t=1.30 \text { or } 1.3 \end{aligned}$	\square	DM1 A1 A1
	(c) $\begin{array}{cc} \text { N2L } \quad 4 g-5000=4 a \\ & (a=-1240.2) \\ v^{2}=u^{2}+2 a s \Rightarrow 0^{2}=28^{2}-2 \times 1240.2 \times s \end{array}$		M1 A1
	Leading to $s=0.316(\mathrm{~m})$	or 0.32	$\begin{array}{\|lr} \text { M1 A1 } & \text { (4) } \\ & {[\mathbf{1 2}]} \end{array}$
	OR $\frac{1}{2} \times 4 \times 28^{2}+4 g s=5000 s$ Work-Energy: $s=0.316 \text { or } 0.32$		M1 A1 M1 A1

Question 5(a)

First M1 for a complete method for finding u e.g.

$$
28^{2}=u^{2}+2 g \times 17.5
$$

or $28^{2}=u^{2}+2(-g) \times(-17.5)$
or $28^{2}=2 g s \Rightarrow s=40$ then $0^{2}=u^{2}+2(-g) \times(22.5)$
condone sign errors
First A1 for a correct equation(s) with $g=9.8$
Second A1 for " $u=21$ " PRINTED ANSWER
N.B. Allow a verification method, but they must state, as a conclusion, that " $u=21$ ", to score the final A1.

Question 5(b)

First M1 for a complete method for finding at least one t value i.e. for producing an equation in t only. (condone sign errors but not missing terms)
First A1 for a correct quadratic equation in t only or TWO correct linear equations in t only.
Second DM1, dependent on first M1, for attempt to solve the quadratic or one of the linear equations.
Second A1 for 3.0 or 3 or 2.99
Third A1 for 1.3 or 1.30

Question 5(c)

First M1 for resolving vertically with usual rules.
First A1 for a correct equation
Second M1 for use of $v^{2}=u^{2}+2 a s$, with $v=0, u=28$ or $u=0$ and $v=28$ and their a, (or any other complete method which produces an equation in s, which could be negative)
M0 if they haven't calculated a value of a.
Second A1 for 0.32 or 0.316 . (must be positive since it's a distance)

Question 6(a)

First M1 for $\arctan \left(\frac{ \pm 7.5}{ \pm 12}\right)$ either way up
First A1 for a correct value from their expression, usually 32° or 58°
Second A1 for 302 (allow more accurate answers)

Question 6(b)

M1 for a clear attempt at $(40 \mathbf{i}-6 \mathbf{j})+t(-12 \mathbf{i}+7.5 \mathbf{j})$
A1 for any correct expression

Question 6(c)

First M1 is really B1 for $4 \mathbf{i}+16.5 \mathbf{j}$ (seen or implied but can be in unsimplified form)
Second M1 is for a subtraction, $\mathbf{s}-\mathbf{b}$ or $\mathbf{b}-\mathbf{s}$.
Third DM1, dependent on second M1, for finding magnitude of their $\mathbf{s}-\mathbf{b}$ or $\mathbf{b}-\mathbf{s}$
A1 for 5

Question 6(d)

First M1 for equating \mathbf{i}-component of their answer in part (b) to 7 or the i-component of their $\mathbf{s}-\mathbf{b}$ or $\mathbf{b}-\mathbf{s}$ to zero

First A1 for 2.75 cao
Second M1 (independent) for attempt to find \mathbf{j}-component of their \mathbf{s} at their
$t=2.75$
Second A1 2.125 or 2.13 cao

Question 7(a)(In parts (a), (c), (d) and (e) use the value of the mass being used to guide you as to which part of the system is being considered, and mark equation(s) accordingly)
M1 for resolving horizontally to produce an equation in a ONLY.
First A1 for a correct equation
Second A1 for 1.25

Question 7(b)

M1 for a complete method to find the speed
A1 cao 7.5

Question 7(c)

M1 for resolving horizontally, for either P or Q, to produce an equation in T only.
First A1ft for a correct equation,ft on their a
Second A1 cao for 1.38 (N) or 1.375 (N)

Question 7(d)

First M1 for resolving horizontally to produce an equation in a ONLY.
First A1cao for -3.75 (or 3.75)
Second M1 for use of $v^{2}=u^{2}+2 a s$, with $v=0, u=$ their (b) and their a, (or any other complete method which produces an equation in s only)
M0 if they haven't calculated a value of a.
Second A1 for 7.5 m

Question 7(e)

M1 for resolving horizontally, for either P or Q, to produce an equation in T only.
M0 if they haven't calculated a value of a
First A1cao for a correct equation
Second A1 cao for 0.125 or 0.13 (N) (must be positive)

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA032675 Summer 2012

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

Mark Scheme (Results)

January 2013

GCE Mechanics M1 (6677/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.
Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034762
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATI CS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.
3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as Al ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. I gnore wrong working or incorrect statements following a correct answer.
8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of ' 0 ' or ' 1 ' for each mark, or "trait", as shown:

	0	1
$a M$		\bullet
aA	\bullet	
bM1		\bullet
bA1	\bullet	
bB	\bullet	
bM2		\bullet
bA2		\bullet

J an 2013
 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$\begin{aligned} 4 m .2 u-m .5 u & =-4 m \cdot \frac{1}{2} u+m v \\ 3 m u & =-2 m u+m v \\ v & =5 u, \text { opposite direction } \end{aligned}$	M1 A1 A1, A1 cso (4)
(b)	$\begin{aligned} I & =4 m\left(\frac{1}{2} u--2 u\right) & \text { OR } & I & =m(5 u--5 u) \\ & =10 m u & & & =10 m u \end{aligned}$	M1 A1 A1 (3)
2.(a)	$\begin{aligned} M(D), \quad 8 R & =(80 g \times 6)+(200 g \times 4) \\ R & =160 g, 1600,1570 \end{aligned}$	$\begin{array}{r} \text { M1 A1 } \\ \text { A1 (3) } \end{array}$
(b)	$\begin{aligned} (\uparrow), \quad 2 S & =80 g+200 g \\ S & =140 g, 1400,1370 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \\ & \text { A1 (2) } \end{aligned}$
(c)	$\begin{gathered} M(B), \quad S x+(S \times 10)=(80 g \times 8)+(200 g \times 6) \\ 140 x+1400=640+1200 \\ 140 x=440 \end{gathered}$	M1 A2
3.	$\begin{aligned} (\uparrow), \quad T \cos 30+F \cos 60 & =2 g \\ (\rightarrow), \quad T \cos 60-F \cos 30 & =0 \\ F & =g=9.8 \\ T & =\sqrt{3} g=17 \text { or } 17.0 \end{aligned}$	M1 A1 M1 A1 M1 A1 M1 A1 8
	$\begin{array}{ll} (\square), & F=2 g \cos 60 \\ (\square), & T=2 g \cos 30 \\ & F=g=9.8 \\ & T=\sqrt{3} g=17 \text { or } 17.0 \end{array}$	M1 A1 M1 A1 M1 A1 M1 A1 8

4.	$\begin{aligned} 12.6^{2} & =2 a .50 \quad(\Rightarrow a=1.5876) \\ 800 g \sin 15-F & =800 a \\ R & =800 g \cos 15 \\ F & =\mu R \\ 800 g \sin 15-\mu 800 g \cos 15 & =800 \times 1.5876 \\ \mu & =0.1,0.10,0.100 \end{aligned}$	M1 A1 M1 A1 M1 A1 B1 M1 A1 $\mathbf{9}$
5. (a)	$\begin{aligned} 30^{2} & =2 a .300 \\ a & =1.5 \end{aligned}$	M1
(b)	$\begin{array}{rlrl} 0^{2}=30^{2}-2 \times 1.25 s \\ s & =360 & \text { OR } & 0=30-1.25 t_{2} \\ & & \begin{array}{l} t_{2}=24 \\ 300+30 T+360 \end{array} & =1500 \\ T & & \frac{(20+T+24+T)}{2} \times 30 & =1500 \\ & & T & =28 \end{array}$	M1 A1 M1 A1 A1
(c)	triangle, drawn on the diagram, with base coinciding with base of trapezium, top vertex above line $v=30$ and meeting trapezium at least once V marked correctly	B1 DB1 (2)
	$\begin{aligned} 30=1.5 t_{1} \Rightarrow t_{1} & =20 \\ 30=1.25 t_{2} \Rightarrow t_{2} & =24 \\ \frac{1}{2}(20+28+24) V & =1500 \\ V & =\frac{750}{18}=41.67 \\ & =\frac{125}{3} \text { (oe) Or } 42 \text { (or better) } \end{aligned}$	M1 A1 A1 M1 A1 A1 (6) 15

\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{6.(a)

(b)} \& $$
\begin{gather*}
\frac{(\mathbf{i}-4 \mathbf{j})-(4 \mathbf{i}-8 \mathbf{j})}{0.5} ;(\pm 6 \mathbf{i} \pm 8 \mathbf{j}) \\
\sqrt{(\pm 6)^{2}+(\pm 8)^{2}}=10 \tag{4}
\end{gather*}
$$ \& M1 A1

M1 A1

\hline \& \[
$$
\begin{aligned}
\mathbf{r} & =(4 \mathbf{i}-8 \mathbf{j})+t(-6 \mathbf{i}+8 \mathbf{j}) \\
& =(4 \mathbf{i}-8 \mathbf{j})-6 t \mathbf{i}+8 t \mathbf{j} \\
& =(4-6 t) \mathbf{i}+(8 t-8) \mathbf{j}
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| (2) |

\hline (c) \& $$
\begin{aligned}
\text { At } 10 \mathrm{am}, \quad \mathbf{r} & =-2 \mathbf{i} \\
\text { At } 10.30 \mathrm{am}, \mathbf{r} & =-5 \mathbf{i}+4 \mathbf{j} \\
\mathbf{l} & =k \mathbf{i}, k<-2 \\
k & =-5-4=-9 \\
\mathbf{l} & =-9 \mathbf{i}
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
\text { M1 A1 } \\
\text { A1 } \\
\text { DM1 }
\end{array}
$$
\]

\hline 7.(a) \& Inextensible string \& B1 (1)

\hline (b) \& $$
\begin{align*}
4 m g-T & =4 m a \\
T-2 m g \sin \alpha-F & =2 m a \tag{4}
\end{align*}
$$ \& \[

$$
\begin{aligned}
& \text { M1A1 } \\
& \text { M1A1 }
\end{aligned}
$$
\]

\hline (c) \& | $\begin{aligned} F & =0.25 R \\ R & =2 m g \cos \alpha \\ \cos \alpha=0.8 \text { or } \sin \alpha & =0.6 \end{aligned}$ |
| :--- |
| Eliminating R, F and T $\begin{equation*} a=0.4 g=3.92 \tag{5} \end{equation*}$ | \& \[

$$
\begin{aligned}
& \text { B1 } \\
& \text { B1 } \\
& \text { B1 } \\
& \text { M1 } \\
& \text { A1 }
\end{aligned}
$$
\]

\hline \multirow[t]{2}{*}{(d)} \& $$
\begin{aligned}
v^{2}=2 \times 0.4 g h & \\
-2 m g \sin \alpha-F & =2 m a^{\prime} \\
a^{\prime} & =-0.8 g \\
0^{2} & =0.8 g h-2 \times 0.8 g \times s \\
s & =0.5 h \\
X Y & =0.5 h+h=1.5 h
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \text { M1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { M1 } \\
& \text { A1 } \\
& \text { A1 }
\end{aligned}
$$
\]

\hline \& \& (6)
16

\hline
\end{tabular}

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA034762 January 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

Mark Scheme (Results)

Summer 2013

GCE Mechanics 1 (6677/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036418
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com

 EDEXCEL GCE MATHEMATICS

 EDEXCEL GCE MATHEMATICS}

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by \cos or \sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $g=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

\begin{tabular}{|c|c|c|}
\hline Question Number \& Scheme \& Marks

\hline 1(a)

(b) \& \& | M1A1 | |
| :--- | :--- |
| A1 | |
| | |
| M1A1 | |
| A1 | |
| | (3) |
| | $[6]$ |

\hline \multicolumn{3}{|c|}{Notes for Question 1}

\hline Q1(a) \& | M1 for attempt at Impulse $=$ difference in momenta for particle A, (must be considering one particle) (M 0 if g is included or if mass omitted). |
| :--- |
| First A1 for $-14=2(\pm v-5)$ |
| Second A1 for 2 (Must be positive). Allow change of sign at end to obtain speed. | \&

\hline Q1(b) \& | EITHER |
| :--- |
| M1 for attempt at Impulse = difference in momenta for particle B, (must be considering one particle) (M 0 if g is included or if mass omitted). |
| First A1 $14=3(\pm w--6)$ |
| Second A1 for 4/3, 1.3 or better (Must be positive). Allow change of sign at end to obtain speed. |
| OR |
| M1 for attempt at CLM equation, with correct no. of terms, dimensionally correct. Allow consistent extra g's and sign errors. |
| First A1 (Not f.t.) for a correct equation e.g. $2 \times 5-3 \times 6=-2 \times 2+3 w$ |
| Second A1 for speed is 4/3; 1.3 or better |
| N.B. They may find the speed of B first and then use CLM to find the speed of A. |
| It must be clear which speed is which, in order to gain the A marks for the answers | \&

\hline
\end{tabular}

Notes for Question 2		
$\mathbf{2}$	First M1 for resolving horizontally with correct no. of terms and both T_{A} and T_{B} terms resolved. First A1 for a correct equation. Second M1 for resolving vertically with correct no. of terms and both T_{A} and T_{B} terms resolved. Second A1 for a correct equation. Third M1, dependent on first two M marks, for eliminating T_{A} or T_{B} Third A1 for a correct equation in one unknown Fourth A1 for $T_{A}=8.4$ (N) or better. Fifth A1 for $T_{B}=7.6$ (N) or better. N.B. The first two M marks can be for two resolutions in any two directions. N.B. If the two tensions are taken to be equal, can score max M1A0 for vertical resolution.	
$\mathbf{2}$ alt 1	See Alternative 1 using a Triangle of Forces and the Sine Rule.	
$\mathbf{2}$ alt 2	Alternative 2 is to resolve perpendicular to each string: The scheme is similar to Alt 1 and gives the same expressions for T_{A} and T_{B} M1A1 resolving perp to both strings as a complete method. M1A1A1 for finding T_{A} M1A1A1 for finding T_{B}	

Question Number	Scheme	Marks
3.	Equation of motion of $B: 4 g-T=4 a$ Equation of motion of $A: T-F-2 g \sin 30=2 a$ OR: $4 g-F-2 g \sin 30=6 a$ Resolve perpendicular to the plane at $A: R=2 g \cos 30$ Use of $F=\mu R \quad: \quad F=\frac{1}{\sqrt{3}} \times 2 g \cos 30(=g)$ $\begin{aligned} & T-g-g=T-2 g=2 a \\ & 2 T-4 g=4 g-T, \quad 3 T=8 g, \quad T=\frac{8 g}{3}(\approx 26) 26.1(\mathrm{~N}) \end{aligned}$	M1A1 M1A2 B1 M1 DM1A1 (9)
Notes for Question 3		
3	First M1 for resolving vertically (up or down) for B, with correct no. of terms. First A1 for a correct equation. Second M1 for resolving parallel to the plane (up or down) for A, with correct no. of terms. A2 for a correct equation (-1 each error) OR: M2 A3 for the whole system equation - any method error loses all the marks. B1 for perpendicular resolution Third M1 for sub for R in $F=\mu R$ Fourth DM1, dependent on first and second M marks, for eliminating a. Fourth A1 for $8 \mathrm{~g} / 3,26.1$ or $26(\mathrm{~N})$. (392/15 oe is A0)	

Question Number	Scheme	Marks
5. (a)	$\begin{aligned} s=\frac{u+v}{2} t \quad 10= & \frac{2+v}{2} \times 3.5 \\ & v=\frac{20}{3.5}-2=\frac{26}{7}=3.71 \quad\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	M1A1 A1 (3)
(b)	$a=\frac{v-u}{t}=\frac{\frac{26}{7}-2}{3.5}=\frac{24}{49}=0.490\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	M1A1 (2)
(c)	Normal reaction : $R=0.6 \mathrm{~g} \cos 25^{\circ}$ Resolve parallel to the slope : $0.6 \mathrm{~g} \sin 25^{\circ}-\mu \times R=0.6 \times a$ $\mu=0.41$ or 0.411	$\begin{array}{\|l} \mathrm{B} 1 \\ \text { M1A2 } \\ \text { A1 } \end{array}$
		$\begin{array}{r} \text { (5) } \\ {[10]} \end{array}$
Notes for Question 5		
Q5(a)	First M1 for producing an equation in v only. First A1 for a correct equation Second A1 for $26 / 7 \mathrm{oe}, 3.7$ or better $\left(\mathrm{ms}^{-1}\right)$	
Q5(b)	M1 for producing an equation in a only. A1 for $24 / 49,0.49$ or better $\left(\mathrm{ms}^{-2}\right)$	
Q5(c)	B1 for $R=0.6 \mathrm{~g} \cos 25^{\circ}$ M1 for resolving along the plane, correct no. of terms etc. A2 (-1 each error) R and a do not need to be substituted Third A1 for 0.41 or 0.411	

Question Number	Scheme	Marks
6. (a)	Use of $r=r_{0}+v t$ $(-4 \mathrm{i}+2 \mathrm{j})+(3 \mathrm{i}+3 \mathrm{j}) t=(-4+3 t) \mathrm{i}+(2+3 t) \mathrm{j}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ (2)
(b)	$(6 \mathrm{i}+\mathrm{j})+(-2 \mathrm{i}+n \mathrm{j}) t=(6-2 t) \mathrm{i}+(1+n t) \mathrm{j}$ Position vectors identical $\Rightarrow-4+3 t=6-2 t$ AND $5 t=10$, Either equation $\begin{aligned} 2+3 \times 2 & =1+2 n, \\ n & =3.5 \end{aligned}$	B1 M1 A1 DM1 A1 (5)
(c)	Position vector of P is $(-4+6) i+(2+6) j=2 i+8 j$ Distance OP $=\sqrt{2^{2}+8^{2}}=\sqrt{68}=8.25(\mathrm{~km})$	M1A1 M1A1
		(4) [11]
Notes for Question 6		
Q6(a)	M1 for clear attempt to use $\mathbf{r}_{0}+t \mathbf{v}$ (M0 if \mathbf{r}_{0} and \mathbf{v} reversed) A1 for answer in any form.	
Q6(b)	B1 for $(6 \mathbf{i}+\mathbf{j})+(-2 \mathbf{i}+n \mathbf{j}) t$ seen or implied First M1 for equating their \mathbf{i} - cpts and their \mathbf{j} - cpts. (must have both equations in terms of same t) First A1 for a correct equation (either) Second M1 dependent on first M1 for producing an equation in n only. Second A1 for $n=3.5$ oe	
Q6(c)	First M1 for clear attempt to find pv of P, using their t and/or n value(s) First A1 for $2 \mathbf{i}+8 \mathbf{j}$ Second M1 for attempt to find magnitude of their \mathbf{p} Second A1 for $\sqrt{ } 68$, $2 \sqrt{ } 17$, 8.2 or better (km)	

Question Number	Scheme	Marks
7 (a)	Use of $v^{2}=u^{2}+2 a s$ $14^{2}=20^{2}-2 a \times 100$ Deceleration is $1.02\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$	$\begin{align*} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \tag{3} \end{align*}$
(b)	Horizontal forces on the car: $\begin{gathered} \pm T \cos \theta-300=750 \times-1.02=-765 \\ T=-1550 / 3 \end{gathered}$ The force in the tow-bar is $1550 / 3,520(\mathrm{~N})$ or better (allow -ve answer)	M1A2 f.t. A1 (4)
(c)	Horizontal forces on the truck: $\pm T \cos \theta-500-R=1750 \times-1.02$ Braking force $R=1750(\mathrm{~N})$	$\begin{aligned} & \text { M1A2 f.t. } \\ & \text { A1 } \end{aligned}$
		$\begin{gathered} \text { (4) } \\ {[11]} \end{gathered}$
	ALT: Whole system: $\begin{aligned} 800+R & =2500 \times 1.02 \\ R & =1750 \end{aligned}$	$\begin{aligned} & \text { M1A2 f.t. } \\ & \text { A1 } \end{aligned}$
Notes for Question 7		
Q7(a)	M1 for a complete method to produce an equation in a only. First A1 for a correct equation. Second A1 for $1.02\left(\mathrm{~ms}^{-2}\right)$ oe. must be POSITIVE.	
Q7(b)	M1 for considering the car ONLY horizontally to produce an equation in T only, with usual rules. i.e. correct no. of terms AND T resolved: $\pm T \cos \theta-300=750 \times-1.02$ A2 $\mathbf{f t}$ on their a for a correct equation (300 and a must have same sign); -1 each error (treat cos 0.9 as an A error) A1 for $1550 / 3$ oe, 520 or better (N) N.B. Allow a negative answer.	
Q7(c)	M1 for considering the truck ONLY horizontally to produce an equation, with usual rules. i.e. correct no. of terms AND T resolved: $\pm T \cos \theta-500-R=1750 \times-1.02$ A2 $\mathbf{f t}$ on their T and a for a correct equation (500, a and R must have same sign); -1 each error (treat $\cos 0.9$ as an A error) A1 for 1750 (N). OR M1 for considering the whole system to produce an equation in R only, with usual rules. i.e. correct no. of terms. A2 $\mathbf{f t}$ on their a for a correct equation (a and R must have same sign) -1 each error A1 for 1750 (N). N.B. If 300 and 500 are given separately, penalise any sign errors only ONCE.	

Notes for Question 8			
Q8(a)	In both parts consistent omission of g's can score all the marks. First M1 for vertical resolution or a moments equation, with usual rules. (allow R and N at this stage) First A1 for a correct equation (with $N=2 R$ substituted) Second M1 for a moments equation in R and one unknown length with usual rules. Second A1 for a correct equation. Third M1, dependent on first and second M marks, for solving for x Third A1 for $x=0.6$. S.C. Moments about centre of rod: $R \times 0.8=2 R(1-x) \quad$ M2 A2		
	B1 for S and 4S placed correctly. First M1 for vertical resolution or a moments equation, with usual rules. (allow S and 4S reversed)		
Qirst A1 for a correct equation.			
Second M1 for a moments equation in S (and m) with usual rules.			
Second A1 for a correct equation.			
Third M1, dependent on first and second M marks, for eliminating S to			
give an equation in m only.			
Third A1 for $m=$ 400/17 oe or 24 or better.			
N.B. SC If they use the reaction(s) found in part (a) in their equations, can			
score max B1M1A0M1A0DM0A0.			

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036418 Summer 2013

For more information on Edexcel qualifications, please visit our website www.edexcel.com

edexcel "

Mark Scheme (Results)

Summer 2013

GCE Mechanics 1 (6677/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.
Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036415
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- \quad There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com

 EDEXCEL GCE MATHEMATICS

 EDEXCEL GCE MATHEMATICS}

General I nstructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- - The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

7. Ignore wrong working or incorrect statements following a correct answer.
8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or \sin) are resolved.
- Omission or extra g in a resolution is accuracy error not method error.
- Omission of mass from a resolution is method error.
- Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
- DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
- Any numerical answer which comes from use of $\mathrm{g}=9.8$ should be given to 2 or 3 SF.
- Use of $\mathrm{g}=9.81$ should be penalised once per (complete) question.
- N.B. Over-accuracy or under-accuracy of correct answers should only be penalised ONCE per complete question.
- In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
- Accept column vectors in all cases.
- Misreads - if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks
1.		
(a)	For $P, \quad-I=3(1-4)$	M1 A1
	$I=9 \mathrm{Ns}$	A1
		(3)
(b)	For $Q, \quad 9=m(1.5--3)$	M1 A1
	$m=2$	A1
	OR	
	$12-3 m=3+1.5 m$	M1 A1
	$m=2$	A1
		(3)
		[6]
Notes for Question 1		
Q1(a)	M1 for attempt at Impulse = difference in momenta for particle P, (must be considering one particle i.e. have same mass in both terms) (M0 if g is included or if mass omitted). First A1 for $\pm 3(1-4)$ Second A1 for 9 (Must be positive). Allow change of sign at end to obtain magnitude. N.B. For M1 they may use CLM to find a value for m first and then use it when considering the change in momentum of Q to find the impulse.	
Q1(b)	EITHER M1 for attempt at: their Impulse from (a) = difference in momenta for particle Q, (must be considering one particle) (M 0 if g is included or if mass omitted). First A1 for $9=m(1.5--3)$ oe. Second A1 for $m=2$. OR M1 for attempt at CLM equation, with correct no. of terms, dimensionally correct. Allow consistent extra g's and sign errors. First A1 for a correct equation i.e. $12-3 m=3+1.5 m$ oe. Second A1 for $m=2$.	

Question Number	Scheme	Marks
2.		
(a)	For system, $\quad(\uparrow), T-950 g-50 g=1000 \times-2$	M1 A1
	$T=7800 \mathrm{~N}$	A1
		(3)
(b)	For woman, $\quad(\uparrow), \quad R-50 g=50 \times-2$	M1 A1
	$R=390 \mathrm{~N}$	A1
		(3)
		[6]
Notes for Question 2		
Q2(a)	(In both parts, use the mass to decide which part of the system is being considered and M marks can only be scored if an equation contains only forces acting on that part of the system) M1 is for a complete method for finding T i.e. for an equation in T only, dimensionally correct, with the correct number of terms. First A1 for a correct equation. Second A1 for 7800 (N).	
Q2(b)	M1 is for a complete method for finding R i.e. for an equation in R only, dimensionally correct, with the correct number of terms. First A1 for a correct equation. Second A1 for 390 (N). N.B. Equation for lift only is: $\quad T-950 \mathrm{~g}-R=950 \times(-2)$	

Question Number	Scheme	Marks
3.	$T \cos \alpha-F=2 g \cos 60^{\circ}$	M1 A1
	$T \sin \alpha+R=2 g \cos 30^{\circ}$	M1 A1
	$F=\frac{1}{3} R$	B1
	eliminating F and R	DM1
	$T=g\left(1+\frac{1}{\sqrt{3}}\right), 1.6 \mathrm{~g}$ (or better), 15.5, 15 (N)	DM1 A1
		(8)
		[8]
Notes for Question 3		
Q3	First M1 for resolving parallel to the plane with correct no. of terms and both T and $2 g$ terms resolved. First A1 for a correct equation. (use of α instead of 30° or 60° or vice versa is an A error not M error, similarly if they use $\sin (3 / 5)$ or $\cos (4 / 5)$ when resolving, this can score M1A0) Second M1 for resolving perpendicular to the plane with correct no. of terms and both T and $2 g$ terms resolved. Second A1 for a correct equation (use of α instead of 30° or 60° or vice versa is an A error not M error; similarly if they use $\sin (3 / 5)$ or $\cos (4 / 5)$ when resolving, this can score M1A0) B1 for $F=1 / 3 R$ seen or implied. Third M1, dependent on first two M marks and appropriate angles used when resolving in both equations, for eliminating F and R. Fourth M1 dependent on third M1, for solving for T Third A1 for $15(\mathrm{~N})$ or $15.5(\mathrm{~N})$. N.B. The first two M marks can be for two resolutions in any directions. Use of $\tan \alpha=4 / 3$ leads to an answer of 17.83...and can score max 7/8.	

Question Number	Scheme	Marks
5.		
(a)	Speed 4 Shape	B1
	Figures	B1
	22 >	(2)
(b)	$\frac{(120+T) 22}{2}=2145$	M1 A1
	$T=75$	A1
		(3)
(c)	$\frac{(t+t-30) 22}{2}=990$	M1 A1
	$t=60$	A1
	Answer $=60-10=50$	A1
		(4)
(d)	$990=0.5 a 50^{2}$	M1
	$a=0.79,0.792,99 / 125$ oe	A1
		(2)
		[11]
Notes for Question 5		
Q5(a)	First B1 for a trapezium starting at the origin and ending on the t-axis. Second B1 for the figures marked (allow missing 0 and a delineator oe for T) (allow if they have used $T=75$ correctly on their graph)	
Q5(b)	First M1 for producing an equation in their T only by equating the area of the trapezium to 2145 , with the correct no. of terms. If using a single trapezium, we need to see evidence of using $1 / 2$ the sum of the two parallel sides or if using triangle(s), need to see $1 / 2$ base x height. Second A1 cao for a correct equation in T (This is not f.t. on their T) Third A1 for $T=75$. N.B. Use of a single suvat equation for the whole motion of the car e.g. $s=t(u+v) / 2$ is M0	
Q5(c)	First M1 for producing an equation in tonly (they may use ($t-30$) oe as their variable) by equating the area of the trapezium to 990 , with the correct no. of terms. If using a trapezium, we need to see evidence of using $1 / 2$ the sum of the two parallel sides or if using triangle(s), need to see $1 / 2$ base x height. First A1 for a correct equation. Second A1 for $t=60$ (Allow $30+30$). Third A1 for answer of 50 . N.B. Use of a single suvat equation for the whole motion of the car e.g. $s=t(u+v) / 2$ is M0. Use of the motion of the motorcycle is M0 (insufficient information). Use of $v=22$ for the motorcycle is M0.	
Q5(d)	First M1 for an equation in a only. First A1 for $a=0.79,0.792,99 / 125$ oe N.B. Use of $v=22$ for the motorcycle is M0.	

Notes for Question 6					
	Q6(a) Qirst M1 for moments about P equation with usual rules (or moments about a different point AND vertical resolution and R then eliminated) (M0 if non-zero reaction at Q)	Second M1 for moments about Q equation with usual rules (or moments about a different point AND vertical resolution) (M0 if non-zero reaction at P) Second A1 for a correct equation in M and same unknown. Third M1, dependent on first and second M marks, for solving for M Third A1 for 25 (kg) Fourth M1, dependent on first and second M marks, for solving for x Fourth A1 for 6 (m) N.B. No marks available if rod is assumed to be uniform but can score			
max 5/6 in part (b), provided they have found values for M and x to f.t. on. If they have just invented values for M and x in part (a), they can score the M marks in part (b) but not the A marks.	First M1 for vertical resolution or a moments equation, with usual rules. First A1 ft on their M and x from part (a), for a correct equation. (must have equal reactions in vertical resolution to earn this mark) Second M1 for a moments equation with usual rules. Second A1 ft on their M and x from part (a), for a correct equation in R and same unknown length. Third M1, dependent on first and second M marks, for solving for $A X$ (not their unknown length) with $A X \leq 15$ Third A1 for $A X=7.5$ (m) N.B. If a single equation is used (see below), equating the sum of the moments of the child and the weight about P to the sum of the moments of the child and the weight about Q, this can score M2 A2 ft on their M and x from part (a), provided the equation is in one unknown. Any method error, loses both M marks. e.g. 25g.4 + 50 $g(x-2)=25 g .6+50 g(12-x)$ oe.				

Question Number	Scheme	Marks
7.		
(a)	$t=0$ gives $\mathbf{v}=\mathbf{i}-3 \mathbf{j}$	B1
	speed $=\sqrt{1^{2}+(-3)^{2}}$	M1
	$=\sqrt{10}=3.2$ or better	A1
		(3)
(b)	$t=2$ gives $\mathbf{v}=(-3 \mathbf{i}+3 \mathbf{j})$	M1
	Bearing is 315°	A1
		(2)
(c)(i)	$1-2 t=0 \Rightarrow t=0.5$	M1 A1
(ii)	$-(3 t-3)=-3(1-2 t)$	M1 A1
	Solving for t	DM1
	$\mathrm{t}=2 / 3,0.67$ or better	A1
		(6)
		[11]
Notes for Question 7		
Q7(a)	$\begin{aligned} & \text { B1 for } \mathbf{i}-3 \mathbf{j} . \\ & \text { M1 for } \sqrt{ } \text { (sum of squares of cpt.s) } \\ & \text { A1 for } \sqrt{ } 10,3.2 \text { or better } \end{aligned}$	
Q7(b)	M1 for clear attempt to sub $t=2$ into given expression. A1 for 315 .	
Q7(c)	(i) First M1 for $1-2 t=0$. First A1 for $t=0.5$. N.B. If they offer two solutions, by equating both the \mathbf{i} and \mathbf{j} components to zero, give M0. (ii) First M1 for $\frac{1-2 t}{3 t-3}= \pm\left(\frac{-1}{-3}\right)$ o.e. (Must be an equation in t only) First A1 for a correct equation (the + sign) Second M1, dependent on first M1, for solving for t. Second A1 for $2 / 3,0.67$ or better.	

Question Number	Scheme	Marks
8.		
(a)	For $A, \quad T=2 m a$	B1
	For $B, \quad 3 m g-T=3 m a$	M1 A1
	$3 m g=5 m a$	DM1
	$\frac{3 g}{5}=a \quad\left(5.9\right.$ or $\left.5.88 \mathrm{~m} \mathrm{~s}^{-2}\right)$	A1
		(5)
(b)	$T=6 \mathrm{mg} / 5 ; 12 \mathrm{~m} ; 11.8 \mathrm{~m}$	B1
		(1)
(c)	$F=\sqrt{T^{2}+T^{2}}$	M1 A1 ft
	$F=\frac{6 m g \sqrt{2}}{5} ; 1.7 \mathrm{mg}$ (or better); $16.6 \mathrm{~m} ; 17 \mathrm{~m}$	A1
	Direction clearly marked on a diagram, with an arrow, and 45° (oe) marked	B1
		(4)
		[10]
Notes for Question 8		
Q8(a)	B1 for $T=2 m a$ First M1 for resolving vertically (up or down) for B, with correct no. of terms. (allow omission of m, provided 3 is there) First A1 for a correct equation. Second M1, dependent on first M1, for eliminating T, to give an equation in a only. Second A1 for $0.6 \mathrm{~g}, 5.88$ or 5.9. N.B. 'Whole system' equation: $3 m g=5 m a$ earns first 4 marks but any error loses all 4.	
Q8(b)	B1 for $\frac{6 m g}{5}, 11.8 m, 12 m$	
Q8(c)	M1 $\sqrt{\left(T^{2}+T^{2}\right)}$ or $\frac{T}{\sin 45^{\circ}}$ or $\frac{T}{\cos 45^{\circ}}$ or $2 T \cos 45^{\circ}$ or $2 T \sin 45^{\circ}$ (allow if m omitted) (M0 for $T \sin 45^{\circ}$) First A1 ft on their T. Second A1 cao for $\frac{6 m g \sqrt{2}}{5}$ oe, $1.7 m g$ (or better), $16.6 m, 17 m$ B1 for the direction clearly shown on a diagram with an arrow and 45° marked.	

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA036415 Summer 2013

Llywodraeth Cynulliad Cymru
For more information on Edexcel qualifications, please visit our website www.edexcel.com

Rewarding Learning

