Edexcel Maths M1

Mark Scheme Pack

2001-2013

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

FINAL

January 2001

HMK

Advanced Supplementary/Advanced Level

17-01-01

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
1.(0)	Resolving vertically e.g. $R_p + R_Q = 70$ $R_p = 20 \implies R_Q = 50$	M ₁ A ₁ (2)
(H)	A valid moments equation e.g. $R_{p} \times 0.5 + R_{Q} \times \times = 70 \times \frac{3}{2}$	M _I A _I ft
	$20 \times 0.5 + 50 \times 2 = 70 \times \frac{3}{2}$ Completing needed to find AQ $AQ = 1.9$	DM1 A1 cao (4)
a	T ISN	
(a)	ONE Hodution equation e.g. Tood = 15 08 Tsind = 29 are most likely but T= 15 cold + 29 sind, 29 cold = 15 sind also provide as is also hamis cheren.	Mi
	One equation correct; second independent equi, correct	AI +AI MIAIFE
	Answer for 4 as 53 OR 52.6	Ai (y
(4)	Using valid equition (live 1 M1 required) to extract value of T (or eliminating & from valid equi	M1 A1 (2)
	"Over accurate" answers in (a) or (b) or bot which round	

EDEXCEL - L'ONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
3.(0)	For particle A T-3mg = 3ma	MI
	Note T-ng=ma or T-m=ma etc score MI)	$A1 \rightarrow A1(3)$
(H)	T - 3 mg = 3m ($\frac{2}{5}$ g) \rightarrow T = $\frac{21}{5}$ mg String is inextensible	B ₁ (y)
(c)	For particle B $kmg - T = km a$ $(\sigma r system) kmg - 3mg = (km + 3m) a$	
	(or system) King - 3 mg = (Kin + 3 m) a]	Aift
	$kq - \frac{21}{5}q = \frac{2}{5}kq$ (or equivalent equation in k)	DMI
	Solving DMI dependent on first MI in (c)	A1 cas (4)
	Tension is of some magnitude throughout the strong	B1 (1)
	At $t=0$ $T_P = 2i-j$; At $t=2$, $T_P = 6i+j$	
	Velocity of P constant $\Rightarrow VP = \frac{(bi+j)-(2i-j)}{2}$	MIAI AIRE (3)
	Up = 2i+1 (one slip in i or j only)	A1 f.t. (3)
(4)	arctan 1/2 (or arctan 2 about for MI) 26.6° only	A1 (2)
(c)	$\vec{OC} = 2i - j + 5(2i + j)$ OR $6i + j + 3(2i + j)$	MI
	$\overrightarrow{OC} = 12i + 4j$	A(+t
	(oc) = 1(122 + 42)	AI Ft.
	OC = 12.6 only or equivalent fit. anner given to I decimal place also depends or MI+MI	(4)

EDEXCEL - Physics And Maths Tutor commendations

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks	
5.(a)	Before $\rightarrow 4.5$ $\leftarrow 3$ Momentum conserved on system A $\bigcirc 6$ $\bigcirc 0.2$ B O·b × 4.5 - 0.2×3 = 0.6×4.0.2×V Solving for $V \rightarrow V = 4.2$	MI AI	(4)
(h)	0.2(3+4.2) OR 0.6 (4.5-2.1) -> 1.44 units NS	MI AIFE BI	(3)
(6)	R = mg uR = mmg = retarding force or decelleration mg	BI -MI	
	$V^{2} = U + 2aS \text{ applied} 0 = 4.2 - 2\mu g \times 2$ $(or equivalent unt)$ $\mu = \frac{4.2^{2}}{4g} = 0.45$ $\mu = \frac{4.2^{2}}{4g} = 0.45$	MI AIFE DMI AI	(6)
6 (a)	GI 2 stayes V shope G1 2 stayes V shope G2 3 stayes V shope +G1 for 2,7,4 on ones.	G3, 2, 1, 0	(3)
(4)	Using V= u+at -> V= 9.8 x2 = 19.6	MIAI R. CL	(2)
(0)	Stage 1 distance $\frac{1}{2} \times 9.8 \times 4$ of $\frac{1}{2} \times 2 \times 19.6 = 19.6$ Stage 2 distance $\frac{1}{2} \left(\frac{19.6 + 4}{5} \right) \times 5 \left(\frac{9}{5} \times 2 \times 19.6 = 19.6 \right)$ $= 59 \left(\frac{19.6 + 4}{5} \times 3.12 \times 19.6 = 19.6 \right)$	BIFE MIAIFE Alcap	
	Minmin pringle for 14 = 24 + 14.0 = 18.0 m	A(4.t.	(5)
(a)	From a hight of 125m, the ore 46.4 to fell at 4 mg T stage 3 = 46.4 s -> (11.6 s) That for stage 3 = 46.4 s -> (11.6 s) Total that = 2+5+ (11.6) -> 18.65	MI MIAIFT AI COO	(4)
(e)	Air mistance in (a) or equipment sound reason	B1	(1)

EDEXCEL - EQNEON: EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

January 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme		Marks
7. (a)	a = are ian is	d 22.6 34 Sixt 923 , 38 4	MI AI
Ò	R = 78g and	T	BI
	F = 789 cyd (0.25) G = 789 sid	•	MI AI F.E.
	Newton II along slape attented with $T - F - G = 78 (0.5)$ Solving for T (dependent		-M1 -3M1
	T = 509.4 (accept this the 25.5. 35.5.	or 510 or 509 de nout only	A ₁ (9)
(4)	Accelerating force drum slage is G- for Fristian reversed and T no longer Newton II G-F = 78 a	- F s included)	M _I
	a = g sind - Mg cosd	· (J.	AI MM.
	$= 9.8 \left(\frac{5}{13} - \frac{3}{13} \right)$ $= 1.5, 1.50, 1.51 / scare$	t A2	A2,1,0 (6)
	oter answer which round to	1.5 Sunc Al	H.M.

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
1.	3 \rightarrow 2 Before 0.5 \rightarrow 0.2 After (a) 0.5 \times 3 - 0.2 \times 2 = 0.5 \times 1.5 +0.2 \times 0 \rightarrow $=$ $=$ 1.75 ms ⁻¹	M1 A1 A1 (3)
	(b) $T = 0.2(2 + 1.75)$	mi AI
•	= 0.75 Ns	A1 (3)
		(6)
	, st.	

EDEXCEL - LONDON EXAMINATIONS Physics And Maths Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

ubject M	ECHANICS	6677
----------	----------	------

Question number	Scheme	Marks
2	FITHER (a) F /3 Vector \(\Delta \) attempt Correev	M)
	$F^2 = 5^2 + 3^2 - 2.5.3 \text{ as 140}$ (cos m/e) $\rightarrow F \triangle 7.55 \text{ N}$	M1 A1 A1 (5)
\	(b) $\frac{F}{\sin 140} = \frac{3}{\sin 0} \Rightarrow \theta = 14.8^{\circ}$	M1 A1, A1
	$\frac{OR}{(a)}$ F $\frac{3}{3}\sin 40$ Vector Δ attempt $\frac{3}{5}\sin 40$ $\frac{3}{5}\sin 40$ $F^2 = (5+3\cos 40)^2 + (3\sin 40)^2$	MI AI MI AI
	$F = \frac{7.55 \text{N}}{1000}$ (b) $tan \theta = 3 \sin \theta = 0$	A1 (5)
	5+3cn40, V= 14.8	A1(3)
	$\frac{\partial R}{\partial x} (a) = \begin{pmatrix} 5 \\ 0 \end{pmatrix} \text{ or } 5i \qquad Q = \begin{pmatrix} 3 \cos 40 \\ 3 \sin 40 \end{pmatrix} \text{ or } 3 \sin 40i + 3 \sin 40i \end{pmatrix}$	Wj
	$\Rightarrow F = \begin{pmatrix} 5+3 & 40 \\ 3 & 40 \end{pmatrix}$	AI
	$ F = (5+3 cm +0)^2 + (3 sin +0)^2$	M(A)
,	(b) $Van \theta = \frac{3 \sin 40}{5 + 3 \cos 40}$	MI AI V
	<u>√ 14.8°</u>	A1 (3)

EDEXCEL - LONDON EXAMINATIONSPhysics Andiviatins Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
3.	(a) Distance = $\frac{1}{2} \times (30+17) \times 3$, + 4×17	m (A), M)
	= 138.5 m.	A1 (4)
	$\int_{-\infty}^{\infty} \frac{1}{2} \times 3 \times (30-17) + 3 \times 17 + 4 \times 17$	m1 A1, m1
	(b) Str. line graph => const. decel ² "F=ma" => Foonst	Al cso
	(c) $2ecel^2 = 30-17$	mı
	Force = $1200 \times \left(\frac{30 - 17}{3}\right) = \frac{5200 \text{ N}}{}$	m1 A1
4:	(a) 30 R Diag. with 4 ferres marked (Allow For Combine)	B2 -1 e.e(2)
0	(b) R(1) R = 3g cm 30° + 30 sin 30° (3 rems) = 40.46 ~ 40.5 or 40 N.) m1 A2 -1 e.e. A1 (4)
	(c) R(d) F = 30 cm 30° - 39 sin 30° (37cm	(
	$F = \mu R$, $\Rightarrow \mu = \frac{F}{R} = \frac{11.28}{40.46}$ $\sim 0.28 \text{ (or } 0.279)$	m1, m1 A1 (5)
		(1)

EDEXCEL - LONDON EXAMINATIONS Physics And Maths Tutor.com

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
5.	(a) O	B1 (1)
	(b) $\frac{1}{1}$ $\frac{2}{2}$ $\frac{2}{1}$	mi Al
	$\Rightarrow W = \frac{3750}{100}$	A1 (3)
	Lif moments about another pr: MI for a complete method to get W, AI for a	
	moments agus correct.]	
	$\frac{(c)}{\Lambda} = \frac{\pi}{\Lambda} \qquad M(p) 1500.5 = W'(4-\pi)$	MIAI
	/w' M(c) 1000.5 = W'X	(A) AI
	Solve → W1 = 3125 N	(m) A1(6)
	$(d) \qquad \qquad x = 1.6 m$	m, A1(2)
	(e) AB remains straight line (o.e.)	B1 (1)
		13)

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2003

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
6.	(a) Car + Van: $3200a = 2320 - 800 - 240$ $a = 0.4 \text{ ms}^{-2}$	MI A1 A1 (3)
	(b) Car: $\frac{a}{\sqrt{1-2}}$ \rightarrow T = 720 N	m1 A2√ -1 e.e. Al (4)
Transition in the state of the	$ \begin{bmatrix} OR & Van - T & $	
	NB If use equ ² s fer car a van alone, allows MIA2 fer on equ ² involving T, then MIAI for a second equ ² provided it is part of a complete mattood to find a/T. Then AI AI for a a T.	
	(c) $a' = 2320$ 32000 a' = 2320 - 1040 - 3200g.1 $a' = -0.09 \text{ m s}^{-2}$ $\Rightarrow \text{ magn. } 0.09 \text{ m s}^{-2}$ speed decreasing	N
	8 pero decreasing	(13)

EDEXCEL - LONDON EXAMINATIONS

Stewart House 32 Russell Square London WC1B 5DN

June 2001

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
7.	Mass (a) $w_1 = 2j + bi + bj$ Pipe $= bi + 8j$ (b) $Ow_1 = \sqrt{(b^2 + 8^2)} = 10 \text{ km}$ w_2 $S_5 V^2 \text{ rine} = \frac{10}{5} = 2 \text{ hrs} - N$ (c) $w_2 = 2j + bi - bj$	BI BI (2) -MI (3)
	$= 6i - 4j$ $(d) \text{ R.v. of renane party after I hour} = R = 3i + 4j$ $RW_2 = 3i - 8j$ $\tan \theta = \frac{3}{8} = 20.6^{\circ}$ $=) \text{ Required bearing} = 180^{\circ} - 20.6^{\circ}$ $= 159.4^{\circ}$	B1, M1 A1 M1 A1 M1 A1 M1 A1 (7)

EDEXCELITOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
را ا	Impulse = change in month = 0.3(8+6)	MIAI
	= 4.2 Ns	A 1 3 3
R.	$ \begin{array}{cccc} (a) & & & \\ 1800 & & & \\ \hline & & & \\ $	m(A)
	(b) R.8 = 3000.2.4 R = 900	MA A1 \(v) A1 (3)
	(a) $v = u + at'' : 60 = 12 + 4a \rightarrow a = 12 m s^2$	m 1 A1 (2)
	(b) "s = $at + \frac{1}{2}at^2$ " OA = 12.4 + $\frac{1}{2}$.12.4 ² = 144m	M (3)
	(c) " $\sigma^2 = u^2 + 2\alpha s$ " $\sigma^2 = 12^2 + 2.12.72$ $\sigma \simeq 43.3 \text{ m s}^{-1}$	m 1 A1√(0A A 1 (3)
4.	One shape currect	ßı
÷	20 Ind shape currect rel. to first	BI
P	Figs (10, 20, 40)	B1 (3)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
4.	(6) Scooter: dist travelled = area under graph	
. –	$850 = \frac{1}{2}T.20 + 20.40$	mi Ai
	$\Rightarrow T = \underline{S_S}$	A1 (3)
	(c) $Van: 850 = \frac{1}{2}V.10 + V(40-5)$	mi AlV(t)
**************************************	⇒ V= 21.25 ms ⁻¹	A1 (3)
5.	(a) 150 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	B1 B1 (2)
	(b) M(d): 150.5 + 3T.2 = T.4 + 250.5	m 1 A2,1,0
	Solve $T = 250 \text{ N}$ [Allow MIA2,1,0 for moments equ ² able any pt. Then MIAI for complete $50^2 \rightarrow T=$).	M 1 A 1 (5)
	(c) $R(\uparrow)$ $4T = 450 + W \longrightarrow W = 600 N$ (M) needs complete $S\Lambda^2 \longrightarrow WR =)$.	m (2)
<u>~</u>	(d) By howing weight act at contre/mid-pt.	B1 (1)
6.	(a) $F = (bi + 2j) + (3i - 5j) = (9i - 3j) N$	B1 (1)
	$(b) = \frac{9}{3} \Rightarrow 0 = 71.6^{\circ}$	mi Alv(E)
	$\phi = \frac{108.4}{}$	A1 (3)
	(e) " $F = ma" \Rightarrow \alpha = (3i - j) ms^{-2}$	m1 A1 / (F)
	(d) $v = (-2i+j), +2(3i-j), = 4i-j$	m1, m1, A1
	Speed = V(42+12) = 4.12 ms-1	MIA1 (5)

EDEXCEL FOUNDATION

Stewart House 32 Russell Square London WC1B 5DN

January 2002

Advanced Supplementary/Advanced Level

General Certificate of Education

Subject MECHANICS 6677

Question number	Scheme	Marks
	(a) $F \cap N$ $R(T) N = 0.3 \times 9.8 + 2.5 \sin \alpha$ $(= 2.94 + 1.5 = 4.44 N)$ $O.39 R(\Rightarrow) F = 2.5 \cos \alpha (= 2 N)$ $F = \mu N \rightarrow M = \frac{2}{4.44} \stackrel{\triangle}{=} 0.45$ (b) $F' \stackrel{\triangle}{=} 2.5 N' = 0.3 \times 9.8 - 2.5 \sin \alpha = 1.44 N$ $Vo.39 F' \leq \mu N' N' < N \Rightarrow F' \cos \alpha \text{for equilib.}$ $Bar F' musr = 2.5 \cos \alpha \text{for equilib.}$ Hence equilib. $nut possible$	MI A2,1,0 MI A1 MI MI A1 (8) MI A1 (2) MI A1 CSO(2)
<u>8</u>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(m) A) (m) A) (m) A) (m) A) (m) A) (4)
	(c) Sub: $T = 3ma + F \text{ or } 5mg - 5ma$ $\longrightarrow T = 3mg$ (d) Speed when Q hits flowr: $V^2 = 2 \times 0.4g \times h$ $= \frac{4}{5}gh$ Pacel ² of P: $3mf = 1.8mg \Rightarrow f = 0.6g$ Dist moved by P: $\frac{4}{5}gh = 2.3g$. S	m 1 A1 (2)
	⇒ s = \frac{3}{3}h	m 1 A1 (6)

EDEXCEL MECHANICS M1 (6677) - JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Marks
1.	(a)	$s = ut + \frac{1}{2}at^2$: $50 = 5 \times 4 + \frac{1}{2} \times a \times 4^2$	M1 A1
		$\Rightarrow 30 = 8a \Rightarrow a = 3.75 \text{ m s}^{-1}$	A1 (3)
	(<i>b</i>)	$30^2 = 5^2 + 2 \times 3.75 \times s$	M1 A1 ft
		$\Rightarrow s = 116\frac{2}{3} \mathrm{m}$	A1 (3)
			(6 marks)
2.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	M1 A1 A1 (3) M1 A1 (one) M1 A1 (both) (4) (7 marks)
3.	(a)	4 20 G 20 F0 F	(7 marks)
	(")	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$M(C)$: $16 \times 30 = w \times 20 + 5 \times 70$ (3 terms)	M1 A1
	(b)	$\Rightarrow w = 6.5 \text{ N}$ $\longleftrightarrow d \longrightarrow D$ $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ 3.5 $6.5 \qquad \qquad 5$	A1 (3)
		M(D): 3.5d + 6.5(d - 50) = 5(100 - d)	M1 A2ft (-1 eeoo)
		$\Rightarrow d = 55 \text{ cm}$	A1 (4)
	(c)	Tension equal along string, i.e. tensions = weights throughout <i>or</i> no contributions from strings in moments equation	B1 (1)
		o. no conditions from sumps in moments equation	(8 marks)

(ft = follow through mark; -1eeoo = minus one mark for each error or omission)

EDEXCEL MECHANICS M1 (6677) - JUNE 2002

PROVISIONAL MARK SCHEME

Question Number		Scheme	Mark	S
4.	(a)	$F = \frac{2}{5}R$	B1	
		$R(\uparrow): R\cos 30^{\circ} - F\cos 60^{\circ} = 6g$	M1 A1	
		$R^{\frac{\sqrt{3}}{2}} - \frac{2}{5}R - \frac{1}{2} = 6g$		
		$ \frac{V}{6g} \Rightarrow R = 88.3 \text{ N (or 88 N)} $	A1	(4)
	(<i>b</i>)	$R(\leftarrow)$: $P = R \cos 60^{\circ} + F \cos 30^{\circ}$	M1 A1	
		= 74.7 N (or 75 N)	A1	(3)
	(c)	R' Component of weight $(\checkmark) = 6g \cos 60^{\circ}$		
		F' = 29.4 N	B1	
		$R' = 6g \cos 30^{\circ} = 50.9 \text{ N}$	M1 A1	
		$F_{\text{max}} = 0.4 R' = 20.36 \text{N}$	M1	
		6g Since 29.4 > 20.36, the box moves	A1 cso	(5)
			(12 ma	ırks)
5.	(a)	$\tan \theta = \frac{1}{2} \Rightarrow \theta = 26.6^{\circ}$	M1 A1	
		θ 2 angle required = 153.4°	A1	(3)
	(<i>b</i>)	$\mathbf{a} = \frac{1}{3} \left[(\mathbf{i} - 2\mathbf{j}) - (-5\mathbf{i} + 7\mathbf{j}) \right]$	M1	
		$= (2\mathbf{i} - 3\mathbf{j}) \text{ m s}^{-2}$	A1	(2)
	(c)	$\mathbf{F} = m\mathbf{a} = 4\mathbf{i} - 6\mathbf{j}$	M1	
		$ \mathbf{F} = \sqrt{(16 + 36)} = 7.21 \text{ N}$	M1 A1	(3)
		$\mathbf{v} = (-5 + 2t)\mathbf{i} + (7 - 3t)\mathbf{j}$	M1 A1ft	(2)
	(e)	v parallel to $\mathbf{i} + \mathbf{j} \Rightarrow \frac{-5 + 2t}{7 - 3t} = 1$	M1	
		$\Rightarrow t = 2.4 \text{ s}$	M1 A1	(3)
			(13 ma	ırks)

(cso = correct solution only)

Question Number	Scheme	Marks
6. (a)	<i>v</i>	
	3 shape	B1
	(3, 2.5)	B1 (2)
	[1.5] T 2.5	
(b)	Area = $27 = \frac{1}{2} \times 1.5 \times 3 + 3T + \frac{1}{2} \times 2.5 \times 3$	M1 A1
	$\Rightarrow T = 7 \text{ s}$	A1 (3)
(c)	shape $0 \le t \le 8.5$	B1
	shape $t > 8.5$	B1
	(-1.2) + 7	B1 (3)
(<i>d</i>)	ΛT (System)	
	$T - 200g = 200 \times 2$	M1 A1
	$\Rightarrow T = 2360 \text{ N}$	A1 (3)
(e)	(Man)	
		M1 A1
	$\Rightarrow R = 688 \text{ N}$	A1 (3)
		(14 marks)

Question Number	Scheme	Marks	
7. (a)	$ \begin{array}{ccc} & & & & & & & & & & & & & & & & & & & $		
	$R = 2mg \implies F = 2\mu mg$	B1	
	$A: T-2\mu mg=2ma$	M1 A1	
	$B: mg \times \frac{1}{2} - T = ma$	M1 A1	
	Eliminating T: $3ma = \frac{1}{2}mg - 2\mu mg$	M1	
	$a = \frac{1}{6}(1 - 4\mu)g(\clubsuit)$	A1 (7)	
(b)	$\mu = 0.2 \implies a = \frac{1}{30}g$	B1	
	when string breaks: $v^2 = 2 \times \frac{1}{30} g \times h = \frac{1}{15} gh$	M1 A1	
	A decelerating with deceleration $f \Rightarrow 2mf = 2\mu mg$		
	$f = \mu g = \frac{1}{5}g$	B1	
	Hence distance travelled during deceleration is given by $\frac{1}{15}gh = 2 \times \frac{1}{5}gd$	M1	
	$\Rightarrow d = \frac{1}{6}h$		
	$\therefore \text{ Total distance} = \frac{7}{6}h$	A1 cso (6)	
(c)	Any two from: weight of pulley; friction at pulley; friction on slope;	B1 B1 (2)	
	weight of string; string extensible; 'spin' of particle	(15 marks)	

((*) indicates final line is given on the paper; cso = correct solution only)

Question Number		Scheme	Mark	S
1.	(a)	$R(\uparrow)$: $T\cos 30^\circ = 6$	M1 A1	
		T $T = 6.93$	A1	(3)
	(<i>b</i>)	$R (\rightarrow): 'T' \sin 30^\circ = F$	M1 A1	
		$ \uparrow 6 $ $F = 3.46$	A1	(3)
			(6 ma	rks)
2.	(a)	$3\mathbf{i} - 7.5\mathbf{j} = 1.5\mathbf{a} \implies \mathbf{a} = 2\mathbf{i} - 5\mathbf{j}$	M1 A1	
		$ \mathbf{a} = \sqrt{(2^2 + 5^2)} = \sqrt{29} \approx 5.39 \text{ (awrt)}$	M1 A1	(4)
	<i>(b)</i>	$\mathbf{v} = (2\mathbf{i} + 3\mathbf{j}) + 4(2\mathbf{i} - 5\mathbf{j})$	M1, A1ft	
		$=10\mathbf{i}-17\mathbf{j}$	A1	(3)
			(7 ma	rks)
3.	(a)	v ↑ Shape	B1	
		Figs (20, 50, T, 4T/5T)	B1	
		20		
		T $4T$ 50		(2)
	(<i>b</i>)	$\frac{1}{2} \times T \times 20 + 4T \times 20 + \frac{1}{2} \times 50 \times 20 = 1220$	M1 A1	
		T = 8	A1	(3)
	(c)	Acceleration = $\frac{20}{8}$ = 2.5 m s ⁻²	M1 A1ft	(2)
			(8 ma	rks)

Question Number	Scheme	Marks
4. (a)	$M(A): 80 \times \frac{x}{2} + 20 \times x = 90 \times 2$	M1 A1
	80 Solve for x : $x = 3$	M1 A1 (4)
(b)	By having weight act at B.	B1 (1)
(c)	$ \begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & &$	B1
	$M(A)$: $25y + 75 \times 2 = 80 \times 1.5 + 20 \times 3$	M1 A1 ft
	Solve: $y = 1.2 \text{ m}$	A1 (4)
		(9 marks)
5. (a)	$8^2 = 10^2 + 2a \times 5 \rightarrow a = (-)3.6 \text{ m s}^{-2}$	M1 A1 (2)
(b)	R	B1
	$F = \mu R \text{ used}$	B1
	$10g \sin 20^{\circ} - \mu.10g \cos 20^{\circ} = 10 \ (-3.6)$	M1 A1
	Solve: μ . = 0.75 (or 0.755)	M1 A1 (6)
(c)		
	$\therefore 0^2 = 10^2 - 2 \times 3.6 \times s$	M1
	$s \approx 13.9 \text{ m} \text{ (awrt)}$	A1 (2)
		(10 marks)

_	stion nber	Scheme	Marks	
6.	(<i>a</i>)	$1500 \times 10 + 2500 \times 5 = 1500 \times 4 + 2500 \times v$	M1 A1	
		$\rightarrow v = 8.6 \text{ m s}^{-1} (*)$	A1	(3)
	(<i>b</i>)	P: $1500a = -500$ ($\Rightarrow a = -\frac{1}{3}$ m s ⁻²)	M1	
		$0^2 = 4^2 - 2 \times \frac{1}{3} \times s \qquad \Rightarrow s = 24 \text{ m}$	M1 A1	(3)
	(c)	$P: 0 = 4 - \frac{1}{3}t \Rightarrow t - 12 \text{ s}$	M1	
		$Q: s = 8.6 \times 12 = 103.2 \text{ m}$	M1 A1	
		Distance apart = $103.2 - 24 = 79.2 \text{ m}$	M1 A1	(5)
			(11 mai	rks)
7.	(a)	$v_P = \frac{(50\mathbf{i} - 25\mathbf{j}) - (20\mathbf{i} + 35\mathbf{j})}{\frac{1}{2}} = 60\mathbf{i} - 120\mathbf{j}$	M1 A1	
	(<i>b</i>)	$\mathbf{p} = 20\mathbf{i} + 35\mathbf{j} + (60\mathbf{i} - 120\mathbf{j})\mathbf{t}$	M1 A1 ft	(2)
	(c)	$v_{\mathcal{Q}} = \frac{120}{5} (4\mathbf{i} - 3\mathbf{j}) \qquad (= 96\mathbf{i} - 72\mathbf{j})$ $\mathbf{q} = 96\mathbf{i} - 72t\mathbf{j}$	M1	
		$\mathbf{q} = 96t\mathbf{i} - 72t\mathbf{j}$	M1 A1	(3)
	(<i>d</i>)	$t = 2$: $\mathbf{p} = 140\mathbf{i} - 205\mathbf{j}$, $\mathbf{q} = 192\mathbf{i} - 144\mathbf{j}$	M1	
		Use of $(PQ =) \mathbf{q} - \mathbf{p}$ or $\mathbf{p} - \mathbf{q} (= QP)$ $(=52\mathbf{i} + 61\mathbf{j})$	M1	
		$PQ = \sqrt{(52^2 + 61^2)} \approx 80 \text{ km}$	M1 A1	(4)
			(11 mai	rks)

Question Number		Scheme	Marks
8.	(a)	B: $3g - T = 3 \times \frac{2}{5}g$	M1 A1
		$A \downarrow Mg \qquad \qquad T \downarrow \frac{2}{5}g \qquad \qquad \rightarrow T = \frac{9}{5}g = 17.6 \text{ N}$	A1 (3)
	(<i>b</i>)	A: $17.6 - mg \sin 30^\circ = m \times \frac{2}{5}g$	M1, A1 ft
		Solve: $\rightarrow m = 2$	M1 A1 (4)
	(c)	Speed of B at ground: $v^2 = 2 \times \frac{2}{5} g \times 0.25$ (=1.4)	M1
		$I = 3 \times v = 4.2 \text{ Ns}$	M1 A1 (3)
	(<i>d</i>)	A: $-mg \sin 30^\circ = ma \Rightarrow a = -\frac{1}{2}g = -4.9$	M1 A1
		0 = 1.4 - 4.9t	M1
		T = 0.29 s (or 0.286 s)	A1 (4) (14 marks)

	uestion umber	Scheme	Mark	S
1.	(a)	CLM: $2000 \times 10 = 2000v + 3000 \times 5$	M1, A1	
		$v = 2.5 \text{ m s}^{-1}$	B1	(3)
	(<i>b</i>)	$I = 3000 \times 5 (\text{or } 2000(10 - 2.5))$	M1	
		= 15 000 Ns	A1	(2)
			(5 m	narks)
2.	(a)	$R(\uparrow) 8 = 12 \cos \beta \text{ or } 12 \sin \alpha$ $\Rightarrow \beta = 41.8^{\circ} \text{ or } \alpha = 48.2^{\circ}$ $\Rightarrow \theta = 138.2^{\circ}$	M1 A1 A1	(3)
	(<i>b</i>)	$R(\rightarrow)$ $X = 12 \cos 41.8^{\circ}$ (or $12 \sin 48.2^{\circ}$)	M1 A1ft	
		= 8.94	A1	(3)
			(6 m	narks)
3.		$\mathbf{a} = [-14\mathbf{i} + 21\mathbf{j} - (6\mathbf{i} - 27\mathbf{j})] \div 4$ $= (-5\mathbf{i} + 12\mathbf{j}) \text{ m s}^{-2}$ $ \mathbf{a} = \sqrt{(5^2 + 12^2)} = 13$	M1 A1 A1 M1	(3)
		$ \mathbf{F} = m \mathbf{a} = 0.4 \times 13 = 5.2 \text{ N}$	M1 A1	(3)
			(6 m	narks)
	Alt (b)	$\mathbf{F} = 0.4(5\mathbf{i} + 12\mathbf{j}) = 2\mathbf{i} + 4.8\mathbf{j}$	M1	
		$ \mathbf{F} = \sqrt{(2^2 + 4.8^2)} = 5.2 \text{ N}$	M1 A1	(3)

Question Number	Sch	eme	Mark	S
4 . (a)	$\mathbf{p} = 10t\mathbf{j}$		B1	
	$\mathbf{q} = (6\mathbf{i} + 12\mathbf{j}) + (-8\mathbf{i} + 6\mathbf{j})t$		M1 A1	(3)
(b)	$t = 3$: $\mathbf{p} = 30\mathbf{j}$, $\mathbf{q} = -18\mathbf{i} + 30\mathbf{j}$		M1 A1	
	\Rightarrow dist. apart = 18 km		A1	(3)
Alt. (<i>b</i>)	$\mathbf{PQ} = \mathbf{q} - \mathbf{p} = (6 - 8t)\mathbf{i} + (12 - 4t)\mathbf{j}$		M1	
	$t = 3: \mathbf{PQ} = -18\mathbf{i} + 0\mathbf{j}$	or $ \mathbf{PQ} ^2 = (6 - 8t)^2 + (12 - 4t)^2$ $t = 3 \rightarrow \mathbf{PQ} = 18$	A1	
	Dist. = 18 km	$t = 3 \rightarrow \mathbf{PQ} = 18$	A1	
(c)	Q north of $P \Rightarrow 6 - 8t = 0$	l	M1	
	$t=\frac{3}{4}$		A1	(2)
			(8 m	arks)
5.	R T	R(7): $T \cos 20^{\circ} = F + 1.5g \sin 30^{\circ}$	M1 A2,1,0	
		$R(\mathbf{R}): T\sin 20^{\circ} + R = 1.5g\cos 30^{\circ}$	M1 A2,1,0	
		Using $F = \frac{1}{3}R$	M1	
		Eliminating R , solve T	M1, M1	
	\downarrow 1.5g	T = 11 or 11.0 N	A1	
			(10 m	arks)
6.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
(a)	$M(A)$: $Wx + 120 \times 1.5 = R \times 2 + 2R$	2×1	M1 A2, 1,	0
	R(\uparrow) 3R = W + 120 Hence Wx + 180 = 3R = W = 120		M1 A1 M1	
	W(1-x)=60		A1	
	$W = \frac{60}{1 - x}$		M1 A1cso	(8)
(<i>b</i>)	$W > 0 \Rightarrow x < 1$		M1 A1	(2)
			(10 m	arks)

Question Number	Scheme	Marks
7. (a)	$v^2 = u^2 + 2as$: $0 = u^2 - 2 \times 9.8 \times 25.6$	M1 A1
	$u^2 = 501.76 \Rightarrow u = 22.4 \ (*)$	A1cso (3)
(b)	$-1.5 = 22.4T - 4.9T^2$	M1 A1
	$4.9T^2 - 22.4T - 1.5 = 0$	
	$T = \frac{22.4 \pm \sqrt{22.4^2 + 4 \times 1. \times 4.9)}}{9.8}$	M1
	= 4.64 s	A1 (4)
(c)	Speed at ground $v = 22.4 - 9.8 \times 4.64$	M1
	v = -23.07	A1
	(or $v^2 = 22.4^2 + 2 \times 9.8 \times 1.5$, $v = 23.05$)	
	$v^2 = u^2 + 2as$: $0 = 23.07^2 + 2 \times a \times 0.025$	M1 A1ft
	$(\rightarrow a = -10644.5)$	
	F - 0.6g = 0.6a	M1
	F = 6390 N (3 sf)	A1 (6)
(d)	Air resistance; variable F ;	B1 (1)
		(14 marks)

Question Number	Scheme	Marks
_	$ \begin{array}{cccc} R & \longrightarrow & a & A: & T = 0.8a \\ A & & & B: & 1.2g - T = 1.2a \\ \hline 0.8g & & & B & Solve: T = 0.48g = 4.7 N \end{array} $ $ \begin{array}{ccccc} & & & & & & & & & & & & & & & & & \\ & & & & $	Marks B1 M1 A1 M1 A1 (5) M1 A1 A1 A1 B1
	1.2g Solve: $a' = 0.52g$ $0.6 = \frac{1}{2} \times 0.52g \times t^2$ t = 0.49 or 0.485 s	M1 A1 M1 A1 (8) (16 marks)

Question Number	Scheme	Marks
1.	(a) $0^2 = u^2 - 2 \times 9.8 \times 40$ $\Rightarrow u = 28 \text{ ms}^{-1}$ (b) $-28 = 28 - 9.8 \times t$ $\Rightarrow t = 5.7 \text{ or } 5.71 \text{ s}$	M1 A1 A1 (3) M1 A1 √ A1 (3) 6
2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(a) $28800 = 2000 (12 - v)$ $v = -2.4 \text{ms}^{-1}$ Speed = 2.4 ms^{-1} (b) due west / \leftarrow /reversed direction (o.e.) (c) T: $28800 = m(6 + 3.6)$ $\Rightarrow m = 3000 \text{ kg}$ OR $2000 \times 12 - 6 \times m = -2000 \times 2.4 + m \times 3.6$ $\Rightarrow m = 3000 \text{ kg}$	M1 A1 A1 (3) A1√ (1) M1 A1 M1 A1 (4) M1 A1√ M1 A1√ M1 A1√

Question Number		Scheme		Marks	5
4.	(a)				
		Shape	B1		
		Figs	B1		
					(2)
		v \			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	(b)	$\frac{1}{2}(T+120)\times 25 = 4000$	M1	A1	
		or $\frac{1}{2}$. 20. 25, +120.25 + $\frac{1}{2}$ (T -140).25 = 4000			
		$\rightarrow T = \underline{200 \text{ s}}$	A1		(3)
	(c)	Car: $\frac{1}{2}$. 20. 25, + 25 $(t-20)$ = 1500	M1	A1,	A1
		$\rightarrow t = 70 \mathrm{s}$ Hence motorcycle travels for 60s	M1 A1		
					(5)
	(d)	$1500 = \left(\frac{0+v}{2}\right).60$	M1		
		$v = 50 \mathrm{ms^{-1}}$	A1		(2)
					12
5.	(a)	$a = \frac{1}{4} [(5\mathbf{i} + 11\mathbf{j}) - (3\mathbf{i} - 5\mathbf{j})] = -2\mathbf{i} + 4\mathbf{j}$	M1	A1	(2)
	(b)	$\mathbf{F} = m\mathbf{a} = -6\mathbf{i} + 12\mathbf{j}$	M1	A 1	
		$ \mathbf{F} = \sqrt{180} \simeq 13.4 \mathrm{N} (\mathrm{AWRT})$	M1	A1	(4)
		[OR $ \mathbf{a} = \sqrt{20} \simeq 4.47 \Rightarrow \mathbf{F} = 3 \times 4.47 \simeq 13.4 \text{ N}]$			

PhysicsAndMathsTutor.com

(c) $t = 6$ $\mathbf{v} = 3\mathbf{i} - 5\mathbf{j} + 6(-2\mathbf{i} + 4\mathbf{j})$ $[= -9\mathbf{i} + 19\mathbf{j}]$	M1	$A1\sqrt{}$	
At B: $\mathbf{r} = (6\mathbf{i} - 29\mathbf{j}) + 3(-9\mathbf{i} + 19\mathbf{j}) = [= -21\mathbf{i} + 28\mathbf{j}]$	M1	$A1\sqrt{}$	
$OB = \sqrt{(21^2 + 28^2)} = 35 \mathrm{m}$	M1	$A1\sqrt{}$	(6)
			12

Question Number	Scheme	Marks
6.	(a) M(D): $160 \times 2.5 = W \times 4 + 200(4 - x)$ 400 = 4W + 800 - 200x	M1 A2, 1, 0
	$200x - 4W = 400 \implies 50x - W = 100 *$	M1 A1 (5)
	(b) M(D): $50 \times 2.5 + W \times 1 = 200 (4 - x)$	M1 A2, 1, 0
	200x + W = 675	(3)
	(c) Solving $\rightarrow x = 3.1 \text{ m}$	M1 A1
	$: W = 55 \mathrm{N}$	M1 A1 (4)
		12
7.	(a) $\bigvee \bigcap_{\mathbf{B}} T$	
	(a) $\bigvee_{0.2g} \bigvee_{0.4g} B$ $0.4g - T = 0.4 \times \frac{1}{5}g$	M1 A1 (2)
	(b) $T = \frac{8}{25}g$ or 3.14 or 3.1 N	M1 A1 (2)
	(c)	
	$T - mg \sin 30^\circ = m \times \frac{1}{5}g$	M1 A1
	$\rightarrow m = \frac{16}{35} *$	M1 A1 (4)
	A • mg	
	(d) Same T for A & B	B1 (1)
	(e) $v^2 = 2 \times \frac{1}{5} g \times 1$ $v = \sqrt{\frac{2g}{5}} \simeq 1.98 \text{ or } 2 \text{ ms}^{-1}$	M1
	$v = \sqrt{\frac{2g}{5}} \simeq 1.98 \text{ or } 2 \text{ ms}^{-1}$	A1
	<u>v 3</u>	(2)

(f) A: $-\frac{1}{2}mg = ma \Rightarrow a = -\frac{1}{2}g$	M1 A1	
$v^2 = \frac{2g}{5} - 2 \times \frac{1}{2}g \times 0.4$	M1 A1∨	(5)
$\Rightarrow v = 0$	A1	16

Ques Nun	stion nber	Scheme	Marks	5
1.	(a)	$A \xrightarrow{R} X \longrightarrow A \xrightarrow{R} A \xrightarrow$		
		$R(\uparrow)$: $2R = 80g + 40g$	M1	
		R = 60g or 588 N	A1	(2)
	(<i>b</i>)	M(A): $80g \times x + 40g \times 2 = 60g \times 3$	M1 A2 ft (-1 eeoo)	
		$\Rightarrow x = 1\frac{1}{4}$ m	A1	(4)
			(6 ma	rks)
2.	(a)	$I = 0.12 \times 3 = 0.36$, Ns	B1, B1	(2)
	(<i>b</i>)	$0.12 \times 3 = 0.12 \times 1.2 + 0.08v$	M1 A1	
		$\Rightarrow v = 2.7 \text{ m s}^{-1}$	A1	(3)
	(c)	$I = 0.12 \times (3 - 1.2)$ or 0.08×2.7	M1	
		= 0.216 Ns	A1	(2)
			(7 ma	rks)
3.	(a)	" $v^2 = u^2 + 2as$ ": $v^2 = 4^2 + 2 \times g \times 5$	M1 A1	
		$v \approx 10.7 \text{ m s}^{-1}$ (accept 11 m s ⁻¹)	A1	(3)
	(<i>b</i>)	" $v = u + at$ ": $-10.7 = 4 - gt$	M1 A1 ft	
		$t = \frac{14.7}{g} = 1.5 \text{ s}$	A1	(3)
	(c)	Air resistance; 'spin'; height of diver; hit board again; horizontal component of velocity (any two)	B1 B1	(2)
		n	(8 ma	irks)
4.		$R = Sg \cos \alpha + 20 \sin \alpha$	M1 A1	
		$R(\nearrow): F + 20 \cos \alpha = 5g \sin \alpha$	M1 A1	
		Using $\cos \alpha = \frac{4}{5}$ or $\sin \alpha = \frac{3}{5}$	B1	
		$[\Rightarrow R = 51.2 \text{ N}; \text{ F} = 13.4 \text{ N}]$		
		Using $F = \mu R$	M1	
		Solving: $\mu = 0.262$ (accept 0.26)	M1 A1	(8)
			(8 ma	rks)

(ft = follow through mark; -1eeoo = minus one mark for each error or omission)

_	stion nber	Scheme	Marks
5.	(a)	" $v = u + at$ ": $\mathbf{v} = (-2 + 2t)\mathbf{i} + (7 - 3t)\mathbf{j}$	M1 A1
		v parallel to $\mathbf{i} \implies 7 - 3t = 0 \implies t = 2\frac{1}{3}$ s	M1 A1 (4)
	(<i>b</i>)	$t=3, \ \mathbf{v}=4\mathbf{i}-2\mathbf{j}$	M1
		$ \mathbf{v} = \sqrt{20} \approx 4.47 \text{ m s}^{-1}$	M1 A1 (3)
	(c)	Angle = $(\arctan \frac{2}{4})$, + 90° = 116.6° (accept 117°)	M1, M1 A1 (3)
		$2 \left[\text{or } 180^{\circ} - \left(\arctan \frac{4}{2} \right) \right]$	[M1 M1 A1]
			(10 marks)
6.	(a)	$R(\): R = 3g \cos 30^{\circ} (= 25.46 \text{ N})$	M1 A1
		$R ightharpoonup F = 0.4R \approx 10.2 \text{ N}$ (accept 10 N)	M1 A1 (4)
	(<i>b</i>)	$R(\nearrow): -F + 3g \sin 30^\circ = 3a$	M1 A2 (-1 eeoo)
		$\Rightarrow a \approx 8.3 \text{ m s}^{-2}$	M1 A1
		" $v^2 = u^2 + 2as$ ": $6^2 = 2 \times a \times s$	M1
		$3g$ ⇒ $s \approx 2.17 \text{ m}$ (accept 2.2 m)	A1 (7)
			(11 marks)
7.	(a)	Shape for A	B1
		$\begin{array}{c c} \hline & B \\ \hline & Shape for B with \\ \hline & parallel slope \end{array}$	B1
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 (3)
	(<i>b</i>)	Distance moved by $A = \frac{1}{2} \times 12 \times 30, +30(T-12)$	B1, M1 A1
	` /	B accelerates for 24 s	B1
		Distance moved by $B = \frac{1}{2} \times 24 \times 60, +60(T - 64)$	B1, M1 A1
		$\frac{1}{2} \times 12 \times 30, +30(T-12) = \frac{1}{2} \times 24 \times 60, +60(T-64)$	M1
		$\Rightarrow T = 98 \text{ s}$	A1 (9)
			(12 marks)

(ft = follow through mark; -1 eeoo = minus one mark for each error or omission)

Question Number	Scheme	Marks
8. (a)	Car + truck: $2000a = 2400 - 600 - 400$	M1 A1
	$a = 0.7 \text{ m s}^{-2}$	A1 (3)
(b)	Car only: $T - 400 = 800 \times 0.7$	M1 A1 ft
	[or truck only: $2400 - T - 600 = 1200 \times 0.7$]	
	T = 960 N	A1 (3)
(c)	New acceleration of truck a' given by $1200 \ a' = 2400 - 600$	M1
	$a' = 2400 - 600 = 1.5 \text{ m s}^{-1}$	A1
	Time to reach 28 m s ⁻¹ = $\frac{28-20}{1.5}$ = 5.33 s	M1 A1
	Time to reach 28 m s ⁻¹ if rope had not broken = $\frac{28-20}{0.7}$ = 11.43 s	M1 A1
	Difference = $6.1 \text{ s} \approx 6 \text{ s}$ (*)	A1 (7)
		(13 marks)

(ft = follow through mark; (*) indicates final line is given on the paper)

Physics And Maths Tutor.com

EDEXCEL 6677 MECHANICS M1 JANUARY 2004 MARK SCHEME

Question Number	Markscheme	Marks
1	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(a)	CLM: $600 \times 4 - m \times 2 = (600 + m) \times 0.5$	M1 A1 ↓
	$\Rightarrow m = 840 \text{kg}$	M1 A1 (4)
(b)	I = 600 (4 - 0.5)	$M1 \rightarrow M1$
	$= \underline{2100 \text{ Ns}}$	A1 (3)
2 (a)	0.8 \$\overline{\phi}\$ 0.2 \\ \partial 2200	
	M(C): $P \times 1.8 + 100 \times 0.8 = 2200 \times 0.2$	M1 A2, 1, 0
	$\Rightarrow P = \underline{200 \text{ N}}$	A1 (4)
(b)	$ \begin{array}{c c} 120 & $	
	M(C): $120(2-x)+100(1-x)=2200 x$	M1 A2, 1, 0 ↓
	$\Rightarrow 340 = 2420x \Rightarrow x \approx \underline{14 \text{ cm}} \qquad \text{(Solve x)}$	M1 A1 (5)

EDEXCEL 6677 MECHANICS M1 JANUARY 2004 MARK SCHEME

Question Number	Markscheme	Marks
3 (a)	R F R	
	a mg	
	$\mathbf{R}(): R = mg\cos 30$	B1
	R (): $ma = mg \sin 30 - F$	M1 A1
	F = 0.4 R used	B1
	Eliminate R $ma = mg \sin 30 - 0.4$. $mg \cos 30$	↓ M1 ↓
	Solve: $a = 4.9 - 0.4 \times 9.8 \times \sqrt{3}/2$	M1
	$\approx 1.5 \text{ or } 1.51 \text{ m s}^{-2}$	A1 (7)
(b)	$v^2 = 2 \times 1.51 \times 3 \Rightarrow v = 3 \text{ or } 3.01 \text{ m s}^{-1}$	M1 A1 (2)
(c)	$1.5/1.51 \mathrm{ms^{-2}}$ (same as (a))	B∕Î (1)
4 (a)	μR $2mg$ T $3mg$	
	$\mathbf{R} \uparrow \text{ for } C : 2T \sin \theta = 3 mg$	M1 A1
	$\sin\theta = \frac{3}{5} \implies T = \frac{5}{2} mg (*)$	A1 (3)
(b)	$R \uparrow \text{ for } A \text{ or } B$: $R = 2mg + T \sin \theta$	M1 A1 ↓
	$=2mg+\frac{5}{2}mg.\frac{3}{5}=\frac{7}{2}mg$	M1 A1
	$R \rightarrow \text{for } A \text{ or } B : T \cos \theta = \mu R$	M1
	Solve to get μ as number: $\frac{5}{2} mg.\frac{4}{5} = \mu.\frac{7}{2} mg \Rightarrow \mu = \frac{4}{7}$ (Accept 0.57 awrt)	↓ ↓ M1 A1 (7)

EDEXCEL 6677 MECHANICS M1 JANUARY 2004 MARK SCHEME

Question Number	Markscheme	Marks
5 (a)	$A: T - 4g \sin 30 = 4a$	M1 A1
	$A: T - 4g \sin 30 = 4a$ $A: 3g - T = 3a$	M1 A1
	$3mg \checkmark \qquad \Rightarrow T = \frac{18g}{7} = \underline{25.2 \text{ N}}$	M1 A1 (6)
(b)	$R = 2T\cos 30$	M1 A1
	$\approx 44 \text{ or } 43.6 \text{ N}$	A1
		(3)
(c)	(i) String has no weight/mass	B1
	(ii) Tension in string constant, i.e. same at A and B	B1 (2)
6 (a)	After 10 s, speed = $1.2 \times 10 = 12 \text{ m s}^{-1}$	B1
	After next 24 s, $v = "u + at" = 12 + 0.75 \times 24 = 30 \text{ m s}^{-1}$	M1 A1 (3)
(b)	Shape $0 \le t \le 34$	B1
	Shape $t \ge 34$	B1
	300 Figures	В1
	10 34 t	
(c)	Distance = $\frac{1}{2} \times 10 \times 12$, $+\frac{1}{2} (30+12) 24$ = $60 + 504 = \underline{564 \text{ m}}$	B1, M1 A1 A1
(d)	Distance travelled decelerating = $\frac{1}{2} \times 30 \times 10$	(4) B1
	$564 + 30T + \frac{1}{2} \times 30 \times 10 = 3000$	M1 A1√
	$\Rightarrow T = \underline{76.2 \text{ s}}$	A1 (4)

EDEXCEL 6677 MECHANICS M1 JANUARY 2004 MARK SCHEME

Question Number	Markscheme	Marks
7 (a)	$\tan \theta = \frac{3}{5} \Rightarrow \theta = 031^{\circ}$	M1 A1
(b)	$\mathbf{a} = 9t \; \mathbf{j}$	(2) B1
	$\mathbf{b} = (-10 + 3t)\mathbf{i} + 5t \mathbf{j}$	M1 A1
(c)	B south of A \Rightarrow $-10 + 3t = 0$	(3) M1
	$t = 3\frac{1}{3} \Rightarrow \underline{1520 \text{ hours}}$	A1
		(2)
(d)	$AB = \mathbf{b} - \mathbf{a} = (3t - 10)\mathbf{i} + 5t \mathbf{j}$	M1 A1
	$d^2 = \left \mathbf{b} - \mathbf{a} \right ^2 = (3t - 10)^2 + 16t^2$	↓ M1
	$=25t^2-60t+100 (*)$	A1
(a)	$d = 10 \implies d^2 = 100 \implies 25t^2 - 60 t = 0$	(4)
(e)	$a = 10 \implies a = 100 \implies 25i - 60i = 0$	M1
	$\Rightarrow t = (0 \text{ or}) 2.4$	A1
	\Rightarrow time <u>1424 hours</u>	A1
		(3)

Question Number	Scheme	М	arks
1	(a) R (\rightarrow): $T \cos 60 = 50 \cos 30$	M1	A1
	$T = 86.6 \mathrm{N}$		A1 (3)
	(b) $R(\uparrow)$: $W = 50 \sin 30 + T \cos 30$	M1	A1
	= <u>100 N</u>		A1 (3)
	or R (to BC): $W \cos 60 = 50$	M1	A1
	$W = 100 \mathrm{N}$		A1 (3)
	 (a) M1 for a valid equation in T only Treat use of tan 30/60 (e.g. tan 30 = T/50) as invalid equation unless there is a trial Forces (b) M1 for a valid equation involving W (and T if necessary) for first A1 in (i), allow for using their T (i.e. effectively f.t.) Accept each answer as awrt. 	ngle o	f

Question Number	Scheme	Marks
2	(a) $v = u + at'$: $9.5 = 5 + 1.5a \implies a = 3$	M1 A1 ↓
	Hence $v^2 = 5^2 + 2 \times 3 \times 24$	M1
	$= 169 \implies v = 13 \text{ m s}^{-1} \text{ (*)}$	A1 (4)
	(b) $I = mv - mu' : -30 = 2(v - 13) \Rightarrow v = (-) 2 \text{ m s}^{-1}$	M1 A1
	In direction of CA (o.e.)	A1 (3)
	(a) 2 nd M1 for equation in v (and numbers) only Final A1 is cso	
	(b) M1 for valid impulse = momentum change equn with 3 non-zero terms inclu A1 for '30' and '13' with same sign A1 for direction as 'CB' or anything convincing!	ding '30' and '13'
	NB both A's in (b) are cao = cso!	

Question Number	Scheme	Marks
3	2 kg	M1 A1 ↓
	W Using $w = 3v$ ($\Rightarrow 2u = -2v + 12v$) and solve $\Rightarrow v = \frac{1}{5}u$ (*)	M1 A1 cso (4)
	(b) $10 = 2a \implies a = 5 \text{ m s}^{-2}$	B1
	$0 = \frac{1}{25}u^2 - 2 \times 5 \times 1.6$	M1 A1√ ↓
	$\rightarrow u = 20 \text{ m s}^{-1}$	M1 A1 (5)
	(a) 1 st M1 for valid CLM equn 2 nd M1 for correct equn for 'v' and 'w' and solving for v or w. Final A1 is cso (dropping u and reinserting loses last A1)	
	(b) Allow B1 for $a = \pm 5$ M1 for using ' $v^2 = u^2 + 2as$ ' with $v = 0$ and with a value for a A1 f.t. on their a (provided this is not g), but signs must be correct	
	SC For using u instead of $u/5$ ($\rightarrow u = 4$), allow M1 A0 M0.	
	Energy: $\frac{1}{2} \times 2 \times (u/5)^2 = 10 \times 1.6$ M1 A1 A1	
	$\rightarrow u = 20$ dep M1 A1	

Question Number	Scheme	Marks
4	(a) $M(D)$: $20g \times 1.5 + 10g \times 1 = R_B \times 3$	M1 A1 ↓
	\Rightarrow $R_B = 40g/3 \approx 131 \text{ or } 130 \text{ N}$	M1 A1 (4)
	[NB For moments about another point, allow M1 A1 for moments equation dim- correct and with correct number of terms; second M1 is for complete method to fin	-
	(b) $R(\uparrow)$: $R_D + 40g/3 = 20g + 10g$	M1 A1√
	\Rightarrow $R_D = 50g/3 \approx 163 \text{ or } 160 \text{ N}$	A1 (3)
	or M(B): $20g \times 1.5 + 10g \times 2 = R_D \times 3$	M1 A1
	\Rightarrow $R_D = 50g/3 \approx 163 \text{ or } 160 \text{ N}$	A1 (3)
	[NB For moments about another point, allow M1 for a complete method to find R_D equation for R_D .]	, A1 for a correct
	(c) $R_B = 0$	M1
	$M(D)$: $20g \times x = 10g \times 1$	M1 A1
	x = DF = 0.5 m	A1 (4)
	For weight/mass confusion, A0 A0 in (a) but allow f.t. in (b) (ans 50/3 = 16.7)	
	General rule of deducting max. 1 per question for > 3 s.f	
	(c) 2 nd M1: must have correct no. of non=zero terms, and equation in x only If use value(s) of R's from (a) or (b): M0.	

Question Number	Scheme	Ma	arks
5	(a) $R = 400g \cos 15^{\circ} (\approx 3786 \text{ N})$	E	31
	F = 0.2R used	F	31
	$7 + 0.2R = 400g \sin 15^{\circ}$	M1	A1
	T ≈ 257 or 260 N	↓ M1	A1 (6)
	(b) $400g \sin 15^{\circ} - 0.2 \times 400g \cos 15^{\circ} = 400a$	M1	A1
	a = 0.643()		A1
	$50 = \frac{1}{2} \times 0.643 \times t^2$	M1	A 1√
	t = <u>12.5 or 12 s</u>		A1 (6)
	General rule again about > 3 sf		
	Weight/mass confusion: treat as MR [\rightarrow T = 26.3/26; a = 0.0656; t = 39(.0)]		
	(b) Allow $a = 0.64$		
	(Final M1 not dependent but requires an attempt to find an a which is not assumed to be	; g)	

Question Number	Scheme	Marks
6	(a) Direction of $\mathbf{v} = (7\mathbf{i} - 7.5\mathbf{j}) - (4\mathbf{i} - 6\mathbf{j}) = 3\mathbf{i} - 1.5\mathbf{j}$	M1 ↓
	$\tan \theta = \frac{1.5}{3} = 0.5 \Rightarrow \theta = 26.565$	M1 A1
	Bearing = <u>117</u> (accept awrt)	A1 (4)
	(b) $\mathbf{v} = (3\mathbf{i} - 1.5\mathbf{j}) \div \frac{3}{4} = 4\mathbf{i} - 2\mathbf{j}$	В1
	s = (4i - 6j) + t(4i - 2j)	M1 A1√ (3)
	(c) At 1015 $\mathbf{s} = (4\mathbf{i} - 6\mathbf{j}) + \frac{5}{4} (4\mathbf{i} - 2\mathbf{j}) \ (= 9\mathbf{i} - 8.5\mathbf{j})$	M1 A1
	$\mathbf{m} = 0.25 (p\mathbf{i} + q\mathbf{j})$	B1 ↓
	$s = m \Rightarrow p = 36, q = -34$	M1 A1, A1 (6)
	(a) Forming direction for v can be either way round. M1 for tan = 'i/j' or 'j/i' A1 for 26.6 or 63.4 (awrt) from a correct direction for v A1 cao	
	(b) Allow B1 for correct vector for v wherever seen (e.g. in (a))	
	(c) line 1: or $(7\mathbf{i} - 7.5\mathbf{j}) + \frac{1}{2}(4\mathbf{i} - 2\mathbf{j}) = \dots$ 1^{st} M1 allow for a valid attempt with a value of t. 2^{nd} M1 using $\mathbf{s} = \mathbf{m}$ and equating at least one coefficient	

Question Number	Scheme	Marks
7	$ \begin{array}{c c} & F_1 \\ & \downarrow \\ & \downarrow$	
	(a) $F_1 = \frac{2}{7} \times 4g$ (= 11.2) or $F_2 = \frac{2}{7} \times 6g$ (= 16.8)	B1
	System: $40 - \frac{2}{7} \times 4g - \frac{2}{7} \times 6g = 10a$ (equn in <i>a</i> and not <i>T</i>)	M1 A1
	$\Rightarrow a = 1.2 \text{ m s}^{-2} \qquad (*)$	A1 (4)
	(b) P: $T - \frac{8}{7}g = 4 \times 1.2$ or Q: $40 - T - \frac{12}{7}g = 6 \times 1.2$	M1 A1
	$\Rightarrow T = \underline{16 \text{ N}}$	A1
	(c) Accelerations of P and Q are same	(3) B1
	(d) $v = 1.2 \times 7 = 8.4$	(1) B1
	P: (-) $\frac{8}{7}g = 4a \implies a = (-) \frac{2}{7}g = 2.8$	M1 A1 ↓
	$0 = 8.4 - 2.8t \Rightarrow \underline{t = 3 \text{ s}} (*)$	M1 A1
	(e) Q: $40 - \frac{12}{7}g = 6a$ ($\Rightarrow a \approx 3.867$)	(5) M1 A1
	$v = 8.4 + 3.867 \times 3 = 20 \text{ m s}^{-1}$	↓ M1 A1
	(a) 1 st A1 requires values for the F's. (Allow M1 with just 'F''s) (b) Allow M1 A1 for one of these equations wherever seen (e.g. in (a))	(4)
	(c) extra statement about tensions being equal (with the correct ans): B0	
	(d) allow verification	
	No g: allow 1 st M1 in each of parts (a), (b), (d), (e) as f.t. but other A's are cao	

Question Number	Scheme		Marks
1 (a)	<i>v</i> ♠		
	30	Shape	B1
		Figs (2, 30)	B1 (2)
	$O = \frac{1}{2}$ $T = t$		
(b)	$300 = \frac{1}{2}(2 + T) \times 30$		M1 A1
	$\Rightarrow T = 18 \text{ s}$		A1 (3)
	Or If <i>t</i> is time decelerating (and clear from working):		
	$300 = 30 \times 2 + \frac{1}{2} \cdot 30.t$	M	I1 A1
	$\Rightarrow t = 16 \text{ s} \Rightarrow \text{ total time} = 18 \text{ s}$		A1 (3)

uestion umber		Scheme		Marks
2 (a)	3 kg:	$3g - T = 3 \times \frac{3g}{7}$		M1 A1
		$\Rightarrow T = \frac{12g}{7} \text{ or } 16.8 \text{ N or } 17 \text{ N}$		A1
(b)		2.		(3)
(6)	m kg:	$T - mg = m.\frac{3g}{7}$		M1 A1
		$\frac{12g}{7} = mg + \frac{3mg}{7}$	(Sub for <i>T</i> and solve)	↓ M1
		$\Rightarrow m = \underline{1.2}$		A1 (4)

Question Number	Scheme	Marks
3 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	M(C): $R \times 3.6 + 30g \times 0.4 = 10g \times 1.6$ $\Rightarrow R = \underline{10.9 \text{ or } 11 \text{ or } 98/9 \text{ N}}$	M1 A1 ↓ M1 A1
(b)	$A \downarrow mg \qquad 2 \qquad 1.6 \qquad C \qquad 0.4 \downarrow 80g$	(4)
	Tilting about $C \implies$ reaction at $A = 0$	M1
	$M(C)$: $mg \times 3.6 + 10g \times 1.6 = 80g \times 0.4$	M1 A1
	$\Rightarrow m = 4.44 \text{ or } 4.4 \text{ or } 40/9 \text{ kg}$	A1 (4)

Question Number 4 (a) (b)	Scheme $ \begin{array}{c} 16 \\ \hline \end{array} $ $ \begin{array}{c} 3 \text{ kg} \\ \hline \end{array} $ $ \begin{array}{c} v \\ \hline \end{array} $ CLM: $3 \times 16 = 3.2 \times v$ $ \Rightarrow v = \underline{15 \text{ m s}^{-1}} $	Marks M1 A1 A1 (3)
	CLM: $3 \times 16 = 3.2 \times v$ $\Rightarrow v = 15 \text{ m s}^{-1}$	A1
(b)	$0.2 \text{ kg} \qquad \Rightarrow v = \underline{15 \text{ m s}^{-1}}$	
(b)		(3)
	Impulse-momentum: $(R - 3.2g)0.05 = 3.2 \times 15$	M1 A1 A1√ ↓
	$\Rightarrow R = 960 + 3.2g \approx 991$	M1 A1 (5)
	Or : deceleration: $0 = 15 + 0.05a \implies a = -300 \text{ m s}^{-2}$	
	Hence $3.2g - R = 3.2 \text{ x} - 300$	M1 A1 A1√ ↓
	$\Rightarrow R = 960 + 3.2g \approx 991$	M1 A1 (5)
	Final M1 needs a three term equation.	

MARK SCHEME

Question Number	Scheme	Marks
5 (a)	$\tan \theta = \frac{3}{2} \ (\theta = 56.3^{\circ})$	M1
	angle between \mathbf{v} and $\mathbf{j} = 90 + 56.3 \approx 146^{\circ}$	M1 A1 (3)
(b)	$\mathbf{v} = 2\mathbf{i} - 3\mathbf{j} + (-\mathbf{i} + 2\mathbf{j})t$	M1
	$= (2-t)\mathbf{i} + (-3+2t)\mathbf{j}$	A1 (2)
(c)	$t=3, \mathbf{v} = -\mathbf{i} + 3\mathbf{j}$	M1
	speed = $\sqrt{(1^2 + 3^2)}$ = $\sqrt{10 \text{ or } 3.16 \text{ m s}^{-1}}$	M1 A1 (3)
(d)	v parallel to $\mathbf{i} \implies -3 + 2t = 0$	M1
	$\Rightarrow t = \underline{1.5 \text{ s}}$	A1 (2)

Question Number	Scheme	Marks
6 (a)	$v^2 = 20^2 + 2 \times 4 \times 78 \implies v = 32 \text{ m s}^{-1}$	M1 A1 (2)
(b)	B: $32 = 20 + 4t \implies t = 3 \text{ s}$	M1 A1√ ↓
	A: Distance = $30 \times t = 90 \text{ m}$	M1 A1 (4)
(c)	$30T = 20T + \frac{1}{2}.4.T^2$	M1
	$2T^2 - 10T = 0$	↓ M1 A1
	$\Rightarrow t = (0 \text{ or}) \underline{5 \text{ s}}$	↓ M1 A1 (5)

Question Number		Scheme	Marks
7 (a)	0.2R	$R(\uparrow)$ $R + 150 \sin 20 = 30g$	M1 A1
	30 <i>g</i> ★	$\Rightarrow R \approx 243 \text{ N}$	A1 (3)
	R(→):	$150\cos 20 - 0.2R = 30a$	M1 A1
	F . \longrightarrow S	$\Rightarrow a \approx 3.08 \text{ m s}^{-2}$	A1 (3)
	F ← → → 20 ~	$S = 30g \implies F = 0.2 \times 30g$	M1 A1
	▼ 30 <i>g</i>	$30a' = (-) 0.2 \times 30g \implies a' = (-) 0.2g = (-) 0.2g$	M1 A1
		$0 = 12^2 - 2 \times 0.2g \times s $ (using	ng new a') M1
		$\Rightarrow s \approx 36.7 \text{ m}$	A1 (6)

Question Number	Scheme	Marks
8 (a)	R $R \text{ (perp. to slope): } R = 20g \cos 60 \text{ (= } 10g = 98 \text{ N)}$	M1 A1
	F = 0.4R (used)	B1
	$20g \qquad \qquad R(\text{parallel to slope}): T + F = 20g \cos 30$	M1 A2, 1, 0
(b)	$T = 10\sqrt{3} g - 4g \approx \underline{131 \text{ or } 130 \text{ N}}$	↓ M1 A1 (8)
	R = 10g as before	B1 √
	$F T - 0.4R = 20g\cos 30$	M1 A1
	$20g \downarrow$ $T = 10\sqrt{3} g + 4g \approx 209 \text{ or } 210 \text{ N}$	A1 (4)
(c) (i)	Friction acts down slope (and has magnitude 0.4R)	B1
(ii)	Net force on package = 0 (or equivalent), or 'no acceleration'	B1 (2)

January 2005

6677 Mechanics M1

Mark Scheme

Question Number	Scheme	Marks
	3	M1 A1 A1 (3) A1√ (1) M1 A1, B1
		(3)

Question		Scheme	Marks
Number			
2	<i>T</i> 1	<u>†</u> 3 <i>T</i>	
		40g 20g	
	(a)	$R(\uparrow)$: $T + 3T = 40g + 20g$	M1
		T = 15g, so tension at C is $45g$ or 441 N or 440 N	A1 (2)
	(b)	M(B) 15g x 3 + 45g x d = 40g x 1.5	M1 A2,1,0√ ↓
		Solve: $d = \frac{1/3 \text{ or } 0.33 \text{ or } 0.333 \text{ m}}{}$	¥ M1 A1 (5)

Question Number		Scheme	Marks
3	(a)	Distance = $\frac{1}{2}$ x 4 x 9 + 16 x 9 or $\frac{1}{2}$ (20 + 16) x 9	M1
		= <u>162 m</u>	A1 (2)
	(b)	Distance over last 5 s = $\frac{1}{2}(9 + u) \times 5$	M1
		$162 + \frac{1}{2}(9 + u) \times 5 = 200$	M1 A1√
		$\Rightarrow u = \underline{6.2 \text{ m s}^{-1}}$	A1 (4)
	(c)	6.2 = 9 + 5a	M1 A1√
		$a = (-) 0.56 \text{ m s}^{-2}$	A1 (3)

Question Number	Scheme	Marks
4	R	
	$X = 2.5g$ (a) $R = 2.5g \cos 20$	M1
	≈ <u>23.0 or 23 N</u>	A1 (2)
	(b) $X = 0.4 \times 23.0 + 2.5g \sin 20$	M1 A2,1,0√
	≈ <u>17.6 or 18 N</u> (c) R F	A1 (4)
	(c) R F In equlib. $F = 2.5g \sin 20 \approx 8.38 \text{ or } 8.4 \text{ N}$	B1
	Ψ 2.5g $\mu R = 0.4 \times 2.5g \cos 20 \approx 9.21 \text{ or } 9.2 \text{ N}$	B1
	8.4 < 9.2 (using ' $F < \mu R$ ' not $F =$	· μR) M1
	Since $F < \mu R$ remains in equilibrium	(cso) A1 (4)

Question Number		Scheme	Marks
5	(a) 's = $ut + \frac{1}{2}at^2$ ' for B:	$0.4 = \frac{1}{2} a (0.5)^2$	M1 A1
		$a = 3.2 \text{ m s}^{-2}$	A1 (3)
	(b) N2L for <i>B</i> :	$0.8g - T = 0.8 \times 3.2$	M1 A1√ ↓
		T = 5.28 or 5.3 N	M1 A1 (4)
	(c) A:	$F = \mu \times 0.5g$	B1
	N2L for A:	T - F = 0.5a	M1 A1 ↓
	Sub and solve	$\mu = 0.75 \text{ or } 0.751$	M1 A1 (5)
	(d) Same acceleratio	n for A and B.	B1 (1)

Question Number		Scheme	Marks
6	(a)	$16^2 = 20^2 - 2 \times a \times 24 \implies a = 3 \text{ m s}^{-2}$	M1 A1 (2)
	(b)	$v^2 = 20^2 - 2 \times 3 \times 30$	M1 A1√
		$v = \sqrt{220 \text{ or } 14.8 \text{ m s}^{-1}}$	A1 (3)
	(c)	$0.3 = m \times 3 \implies m = 0.1 \text{ kg} (*)$	M1 A1 (2)
	(d)	$0.1(w + \sqrt{220}) = 2.4$	M1 A1√
		W = 9.17	A1
		$0 = 9,17 - 3 \times t$	↓ M1 A1√
		$t \approx 3.06 \text{ s}$	A1 (6)

Question Number		Scheme	Marks
7	(a)	$\mathbf{v}_P = \{(29\mathbf{i} + 34\mathbf{j}) - (20\mathbf{i} + 10\mathbf{j})\}/3 = \underline{(3\mathbf{i} + 8\mathbf{j}) \text{ km h}^{-1}}$	M1 A1 (2)
	(b)	p = (20i + 10j) + (3i + 8j)t	M1 A1√
		q = (14i - 6j) + 12tj	M1 A1 (4)
	(c)	$\mathbf{q} - \mathbf{p} = (-6 - 3t)\mathbf{i} + (-16 + 4t)\mathbf{j}$	M1 A1 ↓
		$d^2 = (-6 - 3t)^2 + (-16 + 4t)^2$	M1
		$= 36 + 36t + 9t^2 + 16t^2 - 128t + 256$	↓ M1
		$= 25t^2 - 92t + 292 \tag{*}$	A1 (cso) (5)
	(d)	$25t^2 - 92t + 292 = 225$	M1
		$25t^2 - 92t + 67 = 0$	A1 ↓
		(t-1)(25t-67) = 0	M1
		t = 67/25 or 2.68	A1
		time \approx 161 mins, or 2 hrs 41 mins, or 2.41 am, or 0241	A1 (5)
ı			

GCE

Edexcel GCE

Mechanics M1 (6677)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1	(a) ' $v = u + at$ ': $74 = 2 + a \times 20 \implies a = \underline{3.6 \text{ m s}^{-2}}$ (b) ' $v^2 = u^2 + 2as$ ': $74^2 = 2^2 + 2 \times 3.6 \times AC$	M1 A1 (2)
	or ' $s = ut + \frac{1}{2}at^2$ ': $AC = 2 \times 20 + \frac{1}{2} \times 3.6 \times 20^2$	M1 A1√
	$\Rightarrow AC = 760 \text{ m}$	A1
	Hence $BC = 1200 - 760 = 440 \text{ m}$	B1√ (4)
2	8 \longrightarrow 2 CLM: $0.6 \times 8 - 0.2 \times 2 = 0.6 \times v + 0.2 \times w$	M1 A1 ↓
	v w Using $w = 2v$ to form equn in v/w only Solve to get $v = 4.4 \text{ m s}^{-1}$	M1 ↓ M1 A1 (5)
	(b) Impulse on $B = 0.2(2 + 8.8)$	M1 A1√
	= 2.16 Ns	A1 (3)
3	$T \blacktriangleleft T$ (a) $R(\rightarrow) T \cos \alpha = 6$	M1 A1
	W = 7.5 N	A1 (3)
	(b) $R(\uparrow)$ $T + T \sin \alpha = W$	M1 A1 ↓
	Using same T's and solving	M1
	$\rightarrow W = \underline{12 \text{ N}}$	A1 (4)

Question Number	Scheme	Marks
4	(a) R (perp to plane): $R = 2g \cos 20$ $\approx 18.4 \text{ or } 18 \text{ N}$ (b) R (// to plane): $18 - 2g \sin 20 - F = 2a$ $F = 0.6 R \text{ used}$ Sub and solve: $a = 0.123 \text{ or } 0.12 \text{ m s}^{-2}$	M1 A1 A1 (3) M1 A1 B1 ↓ M1 A1 (5)
5	Shape $0 < t < 12$ Shape $t > 12$ Shape $t > 12$ Shape $t > 12$ Figures (b) Distance in 1 st 12 s = ½ x (10 + 3) x 12 or (3 x 12) + ½ x 3 x 7 = 78 m (c) either distance from $t = 12$ to $t = 27 = 15$ x 3 = 45 ∴ distance in last section = $135 - 45 = 12$ m ½ x 3 x $t = 12$, ⇒ $t = 8$ s hence total time = $27 + 8 = 35 \text{ s}$ Or Distance remaining after $12 \text{ s} = 135 - 78 = 57$ m ½ x (15 + 15 + t) x 3 = 57 ⇒ $t = 8$ Hence total time = $27 + 8 = 35 \text{ s}$ Hence total time = $27 + 8 = 35 \text{ s}$	B1 B1 B1 (3) M1 A1 (2) B1√ M1 A1√ A1 (5) B1√ M1 A1√ A1

Question Number	Scheme	Marks
6	(a) $M(A)$: $12g \times 1.5 = R \times 2$ $R = 9g \text{ or } 88.2 \text{ N}$ (b) $S \downarrow x$ $A \times A \times$	M1 A1 A1 (3) M1 A1 M1 A2,1,0 ↓ M1 A1 (7)
7	300 1500 (a) Lorry + Car: $2500a = 1500 - 300 - 600$ $a = 0.24 \text{ m s}^{-2}$ (b) Car: $T \cos 15 - 300 = 900a \ OR \ Lorry$: $1500 - T \cos 15 - 600 = 1600a$ Sub and solve: $T \approx \underline{534 \ N}$ (c) 300 Deceleration of car = $300/900 = 1/3 \text{ m s}^{-1}$ Hence $6^2 = 2 \times 1/3 \times s \Rightarrow s = \underline{54 \ m}$ (d) Vertical component of T now removed Hence normal reaction is increased	M1 A1 A1 (3) M1 A1 ↓↓ M1 A1 (4) M1 A1 (4) M1 A1 cso (2)

Question Number	Scheme	Marks
8	(a) Speed of ball = $\sqrt{(5^2 + 8^2)} \approx 9.43 \text{ m/s}^{-1}$	M1 A1 (2)
	(b) p.v. of ball = $(2i + j) + (5i + 8j)t$	M1 A1 (2)
	(c) North of B when i components same, i.e. $2 + 5t = 10$	M1
	$t = \underline{1.6 \text{ s}}$	A1
	(d) When $t = 1.6$, p.v. of ball = $10\mathbf{i} + 13.8\mathbf{j}$ (or \mathbf{j} component = 13.8)	(2) M1 A1
	Distance travelled by 2^{nd} player = $13.8 - 6 = 6.8$	↓ M1 A1
	Speed = $6.8 \div 1.6 = 4.25 \text{ m s}^{-1}$	↓ M1 A1
	or $[(2+5t)\mathbf{i} +] (1+8t)\mathbf{j} = [10\mathbf{i} +] (7+vt)\mathbf{j}$ (pv's or j components same)	(6) M1 A1
	Using $t = 1.6$: $1 + 12.8 = 7 + 1.6v$ (equn in v only)	↓ M1 A1
	$v = 4.25 \text{ m s}^{-1}$	↓ M1 A1
	(e) Allow for friction on field (i.e. velocity of ball not constant)	B1
	or allow for vertical component of motion of ball	(1)
	(a) M1 Valid attempt at speed (square, add and squ. root cpts)	
	(b) M1 needs non-zero p.v. + (attempt at veloc vector) x t. Must be vector	
	(d) 2 nd M1 – allow if finding displacement <i>vector</i> (e.g. if using wrong time) 3 rd M1 for getting speed as a <i>scalar</i> (and final answer must be as a scalar). But if they get e.g. '4.25 j ', allow M1 A0	
	(e) Allow 'wind', 'spin', 'time for player to accelerate', size of ball Do not allow on their own 'swerve', 'weight of ball'.	

Question Number	Scheme	Marks	5
1.	(a) Distance after $4 \text{ s} = 16 \text{ x } 4 - \frac{1}{2} \text{ x } 9.8 \text{ x } 4^2$	M1 A1	
	$= -14.4 \implies h = (+) \ \underline{14.4 \text{ m}}$	A1	(3)
	(b) $v = 16 - 9.8 \times 4$	M1 A1	(3)
	$= -23.2 \implies \text{speed} = (+) \ \underline{23.2 \text{ m s}}^{-1}$	A1	(3)
		6	(0)
2.	(a) CLM: $3 \times 4 + 2 \times 1.5 = 5 \times v$	M1 A1	
	$\Rightarrow v = 3 \text{ m s}^{-1}$	A1	(3)
	(b) (i) CLM: $3 \times 4 - m \times 4 = -3 \times 2 + m \times 1$	M1 A1	(3)
	$\Rightarrow m = \underline{3.6}$	A1	(3)
	(ii) $I = 3.6(4+1) [or 3(4+2)]$	M1	(3)
	= 18 Ns	A1√	(2)
		8	(=)

Question Number	Scheme	Marks
3.	(a) $M(C)$: $25g \times 2 = 40g \times x$ $x = \underline{1.25 \text{ m}}$ (b) Weight/mass acts at mid-point; or weight/mass evenly distributed (o.e.) $(c) \qquad y \qquad 1.4$ $25g \qquad 15g \qquad 40g \qquad M(C)$: $25g \qquad 15g \qquad 40g \times 1.4 = 15g \times y + 25g \times 2$ Solve: $y = \underline{0.4 \text{ m}}$	M1 A1 A1 (3) B1 (1) M1 A1 M1 A1 (4) 8
4.	$\mathbf{R} = 10\sqrt{3}/2 \mathbf{i} - 5\mathbf{j}$ Using $\mathbf{P} = 7\mathbf{j}$ and $\mathbf{Q} = \mathbf{R} - \mathbf{P}$ to obtain $\mathbf{Q} = 5\sqrt{3}\mathbf{i} - 12\mathbf{j}$ Magnitude = $\sqrt{[(5\sqrt{3})^2 + 12^2]} \approx \underline{14.8 \text{ N}} \text{ (AWRT)}$ angle with $\mathbf{i} = \arctan(12/5\sqrt{3}) \approx 64.2^\circ$ bearing $\approx \underline{144^\circ} \text{ (AWRT)}$	M1 A1 ↓ M1 A1 ↓ ↓ M1 A1 M1 A1 A1 (9)
	Alternative method .Vector triangle correct $Q^2 = 10^2 + 7^2 + 2 \times 10 \times 7 \cos 60$ $Q \approx \underline{14.8 \text{ N}} \text{ (AWRT)}$ $\underline{14.8} = \underline{10} \sin \theta$ $\Rightarrow \theta = 35.8, \Rightarrow \text{ bearing } 144 \text{ (AWRT)}$	B1 M1 A1 A1 M1 A1√ ↓ M1 A1, A1 9

Question Number	Scheme	Marks
5.	18 (a) R(perp to plane): $P \sin 30 + 10 \cos 30 = 18$ Solve: $P \approx 18.7 \mathrm{N}$ (b) R(// plane): $P \cos 30 = 10 \sin 30 + F$ $F = 18 \mu \text{ used}$ Sub and solve: $\mu = 0.621 \text{ or } 0.62$ (c) Normal reaction now = $10 \cos 30$ Component of weight down plane = $10 \sin 30 \ (= 5 \mathrm{N})$ (seen) $F_{\text{max}} = \mu R_{\text{new}} \approx 5.37 \mathrm{N} (\text{AWRT } 5.4)$ $5.37 > 5 \Rightarrow \text{does not slide}$	M1 A1 ↓ M1 A1 (4) M1 A1 M1 ↓ ↓ M1 A1 (5) M1 A1 B1 ↓ M1 A1 cso (5) 14

Question Number	Scheme	Marks
6.	(a) Speed of $A = \sqrt{(1^2 + 6^2)} \approx \underline{6.08 \text{ m s}^{-1}}$	M1 A1 (2)
	(b) $\tan \theta = 1/6 \Rightarrow \theta \approx 9.46^{\circ}$ Bearing ≈ 351	M1 A1 A1
	(c) P.v. of A at time $t = (2-t)\mathbf{i} + (-10+6t)\mathbf{j}$	(3)
	p.v. of B at time $t = (-26 + 3t)\mathbf{i} + (4 + 4t)\mathbf{j}$	B1 (either)
	(E.g.) i components equal $\Rightarrow 2-t = -26+3t \Rightarrow t = 7$	M1 A1
	j components at $t = 7$: $A: -10 + 6t = 32$	↓ ↓
	$B: \ 4 + 4t = 32$	M1
	Same, so collide at $t = 7$ s at point with p.v. $(-5\mathbf{i} + 32\mathbf{j})$ m	A1 cso (5)
	(d) New velocity of $B = \frac{8}{5}(3\mathbf{i} + 4\mathbf{j}) \text{ m s}^{-1}$	B1
	P.v. of B at 7 s = $-26\mathbf{i} + 4\mathbf{j} + 1.6(3\mathbf{i} + 4\mathbf{j}) \times 7 = 7.6\mathbf{i} + 48.8\mathbf{j}$	M1 A1 ↓
	$\underline{PB} = \mathbf{b} - \mathbf{p} = 12.6\mathbf{i} + 16.8\mathbf{j} $ (in numbers)	M1 ↓
	Distance = $\sqrt{(12.6^2 + 16.8^2)} = 21 \text{ m}$	M1 A1 (6)
		16

Question Number	Scheme	Marks
7.	(a) T $A: 3mg \sin 30 - T = 3m \cdot \frac{1}{10}g$ $\Rightarrow T = \frac{6}{5}mg$ (b) T R $F: R(perp): R = mg \cos 30$	M1 A1 A1 (3)
	F: R(perp): $R = mg \cos 30$ $R(//): T - mg \sin 30 - F = m \cdot \frac{1}{10}g$	M1 A1 M1 A2, 1, 0
	Using $F = \mu R$	M1
	$\frac{6}{5}mg - \frac{1}{2}mg - \mu mg\frac{\sqrt{3}}{2} = \frac{1}{10}mg$	↓↓↓ M1
	$\rightarrow \mu = 0.693 \text{ or } 0.69 \text{ or } \frac{2\sqrt{3}}{5}$	A1 (8)
	(c) T Magn of force on pulley = $2T \cos 60 = \frac{6}{5} mg$	M1 A1 √
	Direction is vertically downwards	B1 (cso) (3)
		14

GCE

Edexcel GCE

Mechanics M1 (6677)

June 2006

advancing learning, changing lives

Mark Scheme (Results)

June 2006 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
Qu 1	(a) Constant acceleration	B1
	(b) Constant speed/velocity	B1 (1)
	(c) Distance = $\frac{1}{2}(2+5) \times 3$, + (4×5)	(1) M1 A1, B1
	= <u>30.5 m</u>	A1 (4)
	(a) and (b) Accept 'steady' instead of 'constant. Allow 'o.e.' (= 'or equivalent') within reason! But must have idea of constant. 'constant speed and constant acceleration' for (a) or (b) is B0	
	(c) M1 for valid attempt at area of <i>this</i> trap. as area of a trap. Or this trap. as = triangle + rectangle, i.e. correct formula used with at most a slip in numbers.	
	B1 for area of rectangle as 5 x 4	
	Treating whole as a single const acceln situation, or whole as a single trapezium, is M0.	
	If assume that top speed is 5.1 or 5.2, allow full marks on f.t. basis (but must be consistent)	

Qu 2	$\begin{array}{ccc} \bullet & & & \bullet \\ & & & \bullet \\ & & & & \bullet \\ & & & & & \bullet \end{array}$	$\begin{array}{c} & & \\ & & \\ \bigcirc & 0.3 \\ & & \end{array} $	
	CLM: $0.4 \times 6 - 0$	$0.3 \times 2 = 0.4 \times v + 0.3 \times 3$	M1 A1
	\Rightarrow	$v = (+) 2.25 \text{ m s}^{-1}$	A1
		('+' ⇒) direction unchanged	A1√ (4)
	(b) $I = 0.3 \text{ x } (2 + $	= 3.5, Ns (o.e.)	M1 A1, B1 (3)

(a) M1 for 4 term equation dimensionally correct ($\pm g$). A1 correct

A1 answer must be positive

A1 f.t. – accept correct answer from correct working without justification; if working is incorrect allow f.t. from a clear diagram with answer consistent with their statement; also allow A1 if their ans is +ve and they say direction unchanged.

(b) M1 – need (one mass) x (sum or difference of the two speeds associated with the mass chosen)

A1 – answer must be positive

B1 allow o.e. e.g. kg m s⁻¹

Question Number	Scheme	Marks
Qu 3	(a) AB : $50 = 2 \times 22.5 + \frac{1}{2} a.4$	M1 A1
	$\Rightarrow a = 2.5 \text{ m s}^{-2}$	A1
	(b) $v^2 = 22.5^2 + 2 \times 2.5 \times 100$	M1 A1√ (3)
	$\Rightarrow v \approx \frac{31.7(2) \text{ m s}^{-1}}{}$	A1
	(c) $v_B = 22.5 + 2 \times 2.5 = 27.5$ (must be used)	(3) M1
	$31.72 = 27.5 + 2.5t$ OR $50 = 27.5t + \frac{1}{2} \times 2.5t^2$ OR $50 = \frac{1}{2} (27.5 + 31.72)t$	M1 A1√
	$\Rightarrow t \approx 1.69 \text{ s}$	A1 (4)
	OR $31.72 = 22.5 + 2.5T$ OR $100 = 22.5t + \frac{1}{2} \times 2.5T^2$	M1 A1√
	$\Rightarrow T \approx 3.69$	↓
	$\Rightarrow t \approx 3.69 - 2 = \underline{1.69 \text{ s}}$	M1 A1 (4)
	OR $50 = 31.7t - \frac{1}{2} \times 2.5t^2$	M2 A1√
	Solve quadratic to get $t = \underline{1.69 \text{ s}}$	A1 (4)
	NB note slight changes to scheme: dependency now in (c) and new rule on accuracy of answers. (b) M1 for valid use of data (e.g. finding speed at <i>B</i> by spurious means and using this to get <i>v</i> at <i>C</i> is M0. Accept answer as AWRT 31.7 In (b) and (c), f.t. A marks are for f.t. on wrong <i>a</i> and/or answer from (b). (c) M1 + M1 to get to an equation in the required <i>t</i> (normally two stages, but they can do it in one via 3 rd alternative above) Ans is cao. Hence premature approx (-> e.g. 1.68) is A0. But if they use a 3 sf answer from (b) and then give answer to (c) as 1.7, allow full marks. And accept 2 or 3 s.f. answer or better to (c).	

M1 A1

(7)

Note that they can take moments legitimately about many points

Solve \rightarrow (S = 60 and) W = 30

- (a) M1 for a valid method to get *R* (almost always resolving!)
- (b) 1^{st} M1 for a valid moments equation 2^{nd} M1 for complete solution to find *AB* (or verification)

Allow 'verification', e.g. showing $140 \times 90 = 210 \times 60 \text{ M1 A1}$ 1260 = 1260 QED M1 A1

(c) In both equations, allow whatever they think S is in their equations for full marks (e.g. if using S = 70).

2nd M1 A2 is for a moments equation (which may be about any one of 4+ points!)

1st M1 A1 is for a second equation (resolving or moments)

If they have two moments equations, given M1 A2 if possible for the best one 2 M marks only available *without* using S = 70.

If take mass as 210 (hence use 210*g*) consistently: treat as MR, i.e. deduct up to two A marks and treat rest as f.t. (Answers all as given = 9.8). But allow full marks in (b) (*g*'s should all cancel and give correct result).

- (a) M1 for a complete (potential) valid method to get a
- (b) If consider car: then get 1400a = 2380 630 T. Allow M1 A1 for equn of motion for car or trailer wherever seen (e.g. in (a)).

So if consider two separately in (a), can get M1 A1 from (b) for one equation; then M1 A1 from (a) for second equation, and then A1 [(a)] for a and A1 [(b)] for T.

In equations of motion, M1 requires no missing or extra terms and dimensionally correct (e.g. extra force, or missing mass, is M0). If unclear which body is being considered, assume that the body is determined by the mass used. Hence if '1400a' used, assume it is the car and mark forces etc accordingly. But allow e.g. 630/280 confused as an A error.

- (c) Must be finding a *new* acceleration here. (If they get 1.25 erroneously in (a), and then simply assume it is the same acceln here, it is M0).
- (d) Allow o.e. but you must be convinced they are saying that it is same acceleration for both bodies. E.g. 'acceleration constant' on its own is B0 Ignore extras, but 'acceleration and tension same at *A* and *B*' is B0

Qu 7	(a) Speed = $\sqrt{(2.5^2 + 6^2)} = 6.5 \text{ km h}^{-1}$	M1 A1 (2)
	(b) Bearing = $360 - \arctan(2.5/6) \approx 337$	M1 A1 (2)
	(c) $\mathbf{R} = (16 - 3 \times 2.5)\mathbf{i} + (5 + 3 \times 6)\mathbf{j}$	M1
	$= 8.5\mathbf{i} + 23\mathbf{j}$	A 1 (2)
	(d) At $1400 extbf{s} = 11i + 17j$	M1 A1
	At time t , $\mathbf{s} = 11\mathbf{i} + (17 + 5t)\mathbf{j}$	M1 A1 (4)
	(e) East of $R \Rightarrow 17 + 5t = 23$	M1
	$\Rightarrow t = 6/5 \Rightarrow 1512 \text{ hours}$	A1 (2)
	(f) At $1600 \mathbf{s} = 11\mathbf{i} + 27\mathbf{j}$	
	$\mathbf{s} - \mathbf{r} = 2.5\mathbf{i} + 4\mathbf{j}$	M1
	Distance = $\sqrt{(2.5^2 + 4^2)} \approx 4.72 \text{ km}$	M1 A1 (3)
	(a) M1 needs square, add and $$ correct components	
	(b) M1 for finding acute angle = $\arctan (2.5/6)$ or $\arctan (6/2.5)$ (i.e. $67^{\circ}/23^{\circ}$). Accept answer as AWRT 337.	
	(c) M1 needs non-zero initial p.v. used + 'their 3' x velocity vector	
	(d) Allow 1 st M1 even if non-zero initial p.v. not used here	
	(e) A1 is for answer as a time of the day	
	(f) 1^{st} M1 for using $t = 2$ or 4 (but <i>not</i> 200, 400, 6, 16 etc) and forming $\mathbf{s} - \mathbf{r}$ or $\mathbf{r} - \mathbf{s}$	

Mark Scheme (Results) January 2007

GCE

GCE Mathematics

Mechanics M1 (6677)

January 2007 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1.	(a) $P\sin 30^{\circ} = 24$ $P = 48$	M1 A1 A1 <u>3</u>
	(b) $Q = P \cos 30^{\circ}$ $\approx 41.6 \qquad \text{accept } 24\sqrt{3}, \text{ awrt } 42$	M1 A1 A1 <u>3</u> 6
2.	(a) $M(C) 80 \times x = 120 \times 0.5$ x = 0.75 * cso	M1 A1 A1 <u>3</u>
	(b) Using reaction at $C = 0$ $M(D)$ $120 \times 0.25 = W \times 1.25$ ft their x W = 24 (N)	B1 M1 A1 A1 <u>4</u>
	(c) i $X = 24 + 120 = 144$ (N) ft their W (d) The weight of the rock acts precisely at B .	M1 A1ft B1 $\frac{2}{1}$ 10
3.	(a) $\mathbf{a} = \frac{(15\mathbf{i} - 4\mathbf{j}) - (3\mathbf{i} + 2\mathbf{j})}{4} = 3\mathbf{i} - 1.5\mathbf{j}$	M1 A1 <u>2</u>
	(b) N2L $\mathbf{F} = m\mathbf{a} = 6\mathbf{i} - 3\mathbf{j}$ ft their \mathbf{a} $ \mathbf{F} = \sqrt{(6^2 + 3^2)} \approx 6.71 (N) \text{accept } \sqrt{45}, \text{ awrt } 6.7$	M1 A1 M1 A1 <u>4</u>
	(c) $\mathbf{v}_6 = (3\mathbf{i} + 2\mathbf{j}) + (3\mathbf{i} - 1.5\mathbf{j})6$ ft their \mathbf{a} $= 21\mathbf{i} - 7\mathbf{j} (m s^{-1})$	M1 A1ft A1 <u>1</u> 9

Question Number	Scheme	Marks
4.	(a) CLM $0.3u = 0.3 \times (-2) + 0.6 \times 5$ u = 8	M1 A1 M1 A1 <u>4</u>
	(b) $I = 0.6 \times 5 = 3 \text{ (Ns)}$	M1 A1 <u>2</u>
	(c) $v = u + at \implies 5 = a \times 1.5 \left(a = \frac{10}{3}\right)$ N2L $R = 0.6 \times \frac{10}{3} = 2$	M1 A1 M1 A1 4 10
5.	(a) $v^2 = u^2 + 2as \implies 0^2 = 21^2 - 2 \times 9.8 \times h$ h = 22.5 (m)	M1 A1 A1 <u>3</u>
	(b) $v^2 = u^2 + 2as \implies v^2 = 0^2 + 2 \times 9.8 \times 24$ or equivalent $(= 470.4)$	M1 A1
	$v \approx 22 (\text{m s}^{-1})$ accept 21.7	A1 <u>3</u>
	(c) $v = u + at \implies -\sqrt{470.4} = 21 - 9.8t$ or equivalent	M1 A2 (1, 0)
	$t \approx 4.4$ (s) accept 4.36	A1 <u>4</u> 10

Question Number	Scheme	Marks
6.	(a) $\mu R \qquad R \qquad P$ $20^{\circ} \qquad 30g$	
	Use of $F = \mu R$ $P \cos 20^{\circ} = \mu R$ i $R + P \sin 20^{\circ} = 30g$ $P \cos 20^{\circ} = \mu (30g - P \sin 20^{\circ})$ $P = \frac{0.4 \times 30g}{\cos 20^{\circ} + 0.4 \sin 20^{\circ}}$ $\approx 110 \text{ (N)} \qquad \text{accept 109}$	B1 M1 A1 M1 A1 M1 M1 A1 <u>8</u>
	(b) i $R + 150 \sin 20^{\circ} = 30g$ $(R \approx 242.7)$	M1 A1
	$N2L \overline{\bullet} 150\cos 20^{\circ} - \mu R = 30a$	M1 A1
	$a \approx \frac{150\cos 20^{\circ} - 0.4 \times 242.7}{30}$	M1
	= 1.5 (ms ⁻²) accept 1.46	A1 <u>6</u> 14

Question Number	Scheme	Marks
7.	(a) N2L Q $2g-T=2a$ N2L P $T-3g\sin 30^\circ = 3a$	M1 A1 M1 A1 <u>4</u>
	(b) $2g - 3g \sin 30^{\circ} = 5a$ $a = 0.98 \text{ (ms}^{-2}) \bigstar$ cso	M1 A1 <u>2</u>
	(c) $T = 2(g - a)$ or equivalent ≈ 18 (N) accept 17.6	M1 A1 <u>2</u>
	(d) The (magnitudes of the) accelerations of P and Q are equal	B1 <u>1</u>
	(e) $v^2 = u^2 + 2as \implies v^2 = 2 \times 0.98 \times 0.8 (=1.568)$ $v \approx 1.3 (\text{m s}^{-1})$ accept 1.25	M1 A1 <u>2</u>
	(f) N2L for $P -3g\sin 30^\circ = 3a$	
	$a = \left(-\right)\frac{1}{2}g$ $s = ut + \frac{1}{2}at^2 \implies 0 = \sqrt{1.568t - \frac{1}{2}4.9t^2} \text{or equivalent}$	M1 A1 M1 A1
	t = 0.51 (s) accept 0.511	A1 <u>5</u> 16
	A maximum of one mark can be lost for giving too great accuracy.	

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Mechanics M1 6677

June 2007 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks	
1.	(a) $ \rightarrow T \sin 20^{\circ} = 12 $ $T \approx 35.1 \text{ (N) awrt } 35 $ $T = 20^{\circ}$	M1 A1	(3)
	12	M1 A1	(4) [7]
2.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	(a) $A: I = 0.3(8 + 2)$ = 3 (Ns)	M1 A1 A1	(3)
	(b) LM $0.3 \times 8 - 4m = 0.3 \times (-2) + 2m$ $m = 0.5$	M1 A1 DM1 A1	(4) [7]
	Alternative to (b) B: $m(4+2)=3$ m=0.5 The two parts of this question may be done in either order.	M1 A1 DM1 A1	(4)
	The two parts of this question may be done in cities ofder.		

Question	Scheme	Marks
Number		M1 A1
3.	(a) $M(C) 8g \times (0.9 - 0.75) = mg(1.5 - 0.9)$ Solving to $m = 2$ \star cso	M1 A1 DM1 A1 (4)
	(b)	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	M(D) $5g \times x = 8g \times (0.75 - x) + 2g(1.5 - x)$	M1 A2(1, 0)
	Solving to $x = 0.6$ ($AD = 0.6$ m)	DM1 A1 (5) [9]
4.	(a) 2 horizontal	
	lines	B1
	Joined by straight line sloping down 25, 10, 18, 30 oe	B1 B1 (3)
	25	
	O 10 18 30 t	
	(b) $25 \times 10 + \frac{1}{2} (25 + V) \times 8 + 12 \times V = 526$ Solving to $V = 11$	M1 <u>A1</u> A1 DM1 A1 (5)
	(c) $"v = u + at" \implies 11 = 25 - 8a $ ft their V $a = 1.75 (\text{m s}^{-2})$	M1 A1ft A1 (3)
		[11]

Question Number	Scheme	Marks
5.	(a) $R = 1.2 $ 40° $0.25g$	
	$\uparrow \pm R + 1.2\sin 40^{\circ} = 0.25g$ Solving to $R = 1.7$ (N) accept 1.68	M1 A1 DM1 A1 (4)
	(b) $ F = 1.2 \cos 40^{\circ} (\approx 0.919) $ Use of $F = \mu R$ $ 1.2 \cos 40^{\circ} = \mu R $ ft their R	M1 A1 B1 DM1 A1ft
	$\mu \approx 0.55$ accept 0.548	A1 cao (6)
		[10]

Question Number	Scheme		Marks	
6.	(a) $s = ut + \frac{1}{2}at^2 \implies 3.15 = \frac{1}{2}a \times \frac{9}{4}$ $a = 2.8 \text{ (m s}^{-2}) *$	cso	M1 A1 A1	(3)
	(b) N2L for P: $0.5g - T = 0.5 \times 2.8$ T = 3.5 (N)		M1 A1 A1	(3)
	(c) N2L for Q: $T - mg = 2.8m$ $m = \frac{3.5}{12.6} = \frac{5}{18} $	cso	M1 A1 DM1 A1	(4)
	(d) The acceleration of P is equal to the acceleration of Q .		B1	(1)
	(e) $v = u + at \implies v = 2.8 \times 1.5$ (or $v^2 = u^2 + 2as \implies v^2 = 2 \times 2.8 \times 3.15$) $\left(v^2 = 17.64, v = 4.2\right)$		M1 A1	
	$v = u + at \Rightarrow 4.2 = -4.2 + 9.8t$		DM1 A1	
	$t = \frac{6}{7}$, 0.86, 0.857 (s)		DM1 A1	(6) [17]

Question Number	Scheme	Marks	
7.	(a) $\mathbf{v} = \frac{8\mathbf{i} + 11\mathbf{j} - (3\mathbf{i} - 4\mathbf{j})}{2.5} \text{ or any equivalent}$ $\mathbf{v} = 2\mathbf{i} + 6\mathbf{j}$	M1 A1	(3)
	(b) $\mathbf{b} = 3\mathbf{i} - 4\mathbf{j} + \mathbf{v}t \text{ ft their } \mathbf{v}$ $= 3\mathbf{i} - 4\mathbf{j} + (2\mathbf{i} + 6\mathbf{j})t$	M1 A1 ft A1cao	(3)
	(c) i component: $-9 + 6t = 3 + 2t$ t = 3	M1 M1 A1	
	j component: $20 + 3\lambda = -4 + 18$ $\lambda = -2$ (d) $v_B = \sqrt{(2^2 + 6^2)}$ or $v_C = \sqrt{(6^2 + (-2)^2)}$	M1 A1 M1	(5)
	Both correct	A1	
	The speeds of B and C are the same cso	A1	(3) [14]

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6677/01)

January 2008 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
(b)	I = 4(5-1) = 16 Ns	M1 A1 (2)
	CLM: $4 \times 5 - m \times 3 = 4 \times 1 + m \times 2$ $\Rightarrow m = \underline{3.2}$ or	M1 A1 DM1 A1 (4) or
	16 = m(3+2)	M1 A1
	$\Rightarrow m = \underline{3.2}$	DM1 A1 (4) 6
2.(a)	$27 = 0 + \frac{1}{2}a \cdot 3^2 \Rightarrow a = \underline{6}$	M1 A1 (2)
(b)	$v = 6 \times 3 = 18 \text{ m s}^{-1}$	M1 A1 f.t. (2)
(c)	From $t = 3$ to $t = 5$, $s = 18 \times 2 - \frac{1}{2} \times 9.8 \times 2^2$	M1 A1 f.t.
	Total ht. = $s + 27 = 43.4 \text{ m}, 43 \text{ m}$	M1 A1 (4)
		8

Question Number	Scheme	Marks
3.(a)	Shape 'V' Shape for last 22s (with $V > 15$) Figures	B1 B1 B1 (3)
(b)	$\frac{1}{2}(15+5) \times t = 120$ $\Rightarrow t = 12 \rightarrow T = 12 + 16 + 22 = 50 \text{ s}$	M1 M1 A1 (3)
(c)	$120 + \frac{1}{2}(V + 5).16 + 22V = 1000$ Solve: $30V = 840 \implies V = 28$	M1 <u>B1</u> A1 DM1 A1 (5) 11
4.(a)	R (// plane): $49 \cos \theta = 6g \sin 30$	M1 A1
(b)	$\Rightarrow \cos \theta = 3/5 *$ R (perp to plane): $R = 6g \cos 30 + 49 \sin \theta$ $R \approx 90.1 \text{ or } 90 \text{ N}$	M1 A1 DM1 A1 (4)
(c)	R (// to plane): $49 \cos 30 - 6g \sin 30 = 6a$ $\Rightarrow a \approx 2.17 \text{ or } 2.2 \text{ m s}^{-2}$	M1 A2,1,0 A1 (4)

Question Number	Scheme	Marks
5.(a)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1 A1
J.(a)	T = 7.5g or 73.5 N	A1
	$R(\uparrow) S + T = 12g$	M1
	$\Rightarrow S = \underline{4.5g \text{ or } 44.1 \text{ N}}$	A1 (5)
	$\begin{array}{c c} U & $	
(b)	16g $12g$ $M(A)$ $V \times 4 = 16g \times y + 12g \times 2.5$	M1 A1
	V = 4gy + 7.5g or 39.2y + 73.5 N	A1 (3)
	$V \le 98 \implies 39.2y + 73.5 \le 98$	M1
(c)	$\Rightarrow y \le 0.625 = 5/8$	DM1
	Hence "load must be no more than $5/8$ m from A " (o.e.)	A1 (3)
		11
6.(a)	Speed = $\sqrt{(5^2 + 8^2)} \approx 9.43 \text{ m s}^{-1}$	M1 A1 (2)
(b)	Forming arctan 8/5 or arctan 5/8 oe	M1
	Bearing = $360 - \arctan 5/8$ or $270 + \arctan 8/5 = 328$	DM1 A1 (3)
(c)	At $t = 3$, p.v. of $P = (7 - 15)\mathbf{i} + (-10 + 24)\mathbf{j} = -8\mathbf{i} + 14\mathbf{j}$	M1 A1
	Hence $-8\mathbf{i} + 14\mathbf{j} + 4(u\mathbf{i} + v\mathbf{j}) = 0$	M1
	$\Rightarrow \underline{u=2, v=-3.5}$	DM1 A1 (5)
(d)	p.v. of P t secs after changing course = $(-8\mathbf{i} + 14\mathbf{j}) + t(2\mathbf{i} - 3.5\mathbf{j})$	M1
	= 7 i +	DM1
	Hence total time = $\underline{10.5 \text{ s}}$	A1 (3)
		, ,
		13

Question Number	Scheme	Marks	
7.(a)	$B: \qquad 2mg - T = 2m \times 4g/9$	M1 A1	
	$\Rightarrow T = \underline{10mg/9}$	A1	(3)
(b)	$A: T - \mu \underline{mg} = m \times 4g/9$	M1 <u>B1</u> A	.1
	Sub for T and solve: $\mu = 2/3 *$	DM1 A1	(5)
(c)	When B hits: $v^2 = 2 \times 4g/9 \times h$	M1 A1	
	Deceleration of A after B hits: $ma = \mu mg \implies a = 2g/3$	M1 A1 f	t.
	Speed of <i>A</i> at <i>P</i> : $V^2 = 8gh/9 - 2 \times 2g/3 \times h/3$	DM1	
	$\Rightarrow V = \frac{2}{3}\sqrt{(gh)}$	A1	(6)
(d)	Same tension on A and B	B1	(1) 15

Mark Scheme (Results) Summer 2008

GCE

GCE Mathematics (6677/01)

June 2008 6677 Mechanics M1 Final Mark Scheme

Ougation	I IIIai Walk Scheme	
Question Number	Scheme	Marks
1.	(a) $I = mv \implies 3 = 0.4 \times v$ $v = 7.5 \text{ (ms}^{-1}\text{)}$	M1 A1 A1 (3)
	(b) $ \begin{array}{ccc} 7.5 \\ \hline 0.4 \\ \hline v \\ \hline \end{array} $ $ \begin{array}{cccc} 0.6 \\ \hline & 5 \\ \hline \end{array} $ $ \begin{array}{cccc} LM & 0.4 \times 7.5 = 0.4v + 0.6 \times 5 \end{array} $	M1 A1
	$0 = 0.4v \implies v = 0 *$ cso	A1 (3) [6]
2.	(a) $v^2 = u^2 + 2as \implies 17.5^2 = u^2 + 2 \times 9.8 \times 10$ Leading to $u = 10.5$	M1 A1 A1 (3)
	(b) $v = u + at \implies 17.5 = -10.5 + 9.8T$	M1 A1 f.t.
	$T = 2\frac{6}{7} (s)$	DM1 A1 (4)
	Alternatives for (b) $s = (\frac{u+v}{2})T \Rightarrow 10 = (\frac{17.5 + -10.5}{2})T$ $\frac{20}{7} = T$	[7] M1A1 f.t. DM1A1 (4)
	OR $s = ut + \frac{1}{2}at^2 \implies -10 = 10.5t - 4.9t^2$ Leading to $T = 2\frac{6}{7}, \left(-\frac{5}{7}\right)$ Rejecting negative	M1 A1 f.t. DM1 A1 (4)
	(b) can be done independently of (a) $s = vt - \frac{1}{2}at^2 \implies -10 = -17.5t + 4.9t^2$	M1 A1
	Leading to $T = 2\frac{6}{7}, \frac{5}{7}$	DM1
	For final A1, second solution has to be rejected. $\frac{5}{7}$ leads to a negative u .	A1 (4)

Question Number	Scheme	Marks	
3.	(a) $\tan \theta = \frac{8}{6}$ $\theta \approx 53^{\circ}$	M1 A1 (2	 ()
	(b) $\mathbf{F} = 0.4 \left(6\mathbf{i} + 8\mathbf{j} \right) \left(= 2.4\mathbf{i} + 3.2\mathbf{j} \right)$ $\left \mathbf{F} \right = \sqrt{\left(2.4^2 + 3.2^2 \right)} = 4$	M1 M1 A1 (3	3)
	The method marks can be gained in either order.	364 44	
	(c) $\mathbf{v} = 9\mathbf{i} - 10\mathbf{j} + 5(6\mathbf{i} + 8\mathbf{j})$ $= 39\mathbf{i} + 30\mathbf{j} \text{ (ms}^{-1})$	M1 A1 A1 (3	3) 3]
4.	(a) 25 shape 25, 10, 30, 90 O 30 90 t	B1 B1	(2)
	(b) $30 \times 25 + \frac{1}{2} (25 + 10)t + 10(60 - t) = 1410$ 7.5t = 60	M1 <u>A1</u> A	1
	t = 8 (s) $a = \frac{25 - 10}{8} = 1.875$ (ms ⁻²) $1\frac{7}{8}$		(7) [9]

Question Number	Scheme	Marks
5.	(a) $ \begin{array}{c} & & & \\ & & & \\ \hline $	M1 A1 DM1 A1 (4)
	(b) $ \left(\rightarrow \right) X - 15\cos 30^{\circ} = R\cos 50^{\circ} $ ft their R $ X \approx 19.3 \text{ (N)} $	M1 A2 ft DM1 A1 (5) [9]
	Alternatives using sine rule in (a) or (b); cosine rule in (b) $(a) \frac{R}{\sin 30^{\circ}} = \frac{15}{\sin 50^{\circ}}$	M1 A1
	$R \approx 9.79 \text{ (N)}$	DM1 A1 (4)
	(b) $\frac{X}{\sin 100^{\circ}} = \frac{15}{\sin 50^{\circ}} = \frac{R}{\sin 30^{\circ}}$	M1 A2 ft on R
	$X \approx 19.3 \text{ (N)}$	DM1 A1 (5)
	$X^{2} = R^{2} + 15^{2} - 2 \times 15 \times R \cos 100^{o}$ OR : cosine rule; any of $R^{2} = X^{2} + 15^{2} - 2 \times 15 \times X \cos 30^{o}$ $15^{2} = R^{2} + X^{2} - 2 \times X \times R \cos 50^{o}$	M1 A2 ft on <i>R</i>
	$X \approx 19.3 \text{ (N)}$	DM1 A1 (5)

Question Number	Scheme	Marks
6.	(a) $A \longrightarrow 2.4 \longrightarrow X$ $8g \longrightarrow 12g$ $M(A) \qquad 8g \times 0.8 + 12g \times 1.2 = X \times 2.4$ $X \approx 85 \text{ (N)} \qquad \text{accept 84.9, } \frac{26g}{3}$	M1 A1 DM1 A1 (4)
	(b) $X + 10$ $A \longrightarrow X \longrightarrow X$ $A \longrightarrow X \longrightarrow B$ $8g \longrightarrow 12g$	
	$R(\uparrow) \qquad \underbrace{(X+10)}_{} + \underbrace{X}_{} = 8g + 12g$ $(X = 93)$	M1 <u>B1</u> A1
	$M(A) 8g \times 0.8 + 12g \times x = X \times 2.4$ $x = 1.4 \text{ (m)} \text{accept } 1.36$	M1 A1 A1 (6) [10]

Question Number	Scheme	Marks
7.	(a) 45 N μR 30° $4g$	
	$R = 45\cos 40^{\circ} + 4g\cos 30^{\circ}$ $R \approx 68$ accept 68.4 (b) Use of $F = \mu R$	M1 A2 (1, 0) DM1 A1 (5) M1
	$F + 4g \sin 30 = 45 \cos 50^{\circ}$ Leading to $\mu \approx 0.14$ accept 0.136	M1 A2 (1, 0) DM1 A1 (6) [11]

Question Number	Scheme	Marks
8.	(a) $T \qquad T \qquad 30$ $\mu 2g \qquad \mu 3g$	
	$s = ut + \frac{1}{2}at^{2} \implies 6 = \frac{1}{2}a \times 9$ $a = 1\frac{1}{3} \pmod{m}$	M1 A1 (2)
	(b) N2L for system $30 - \mu 5g = 5a$ ft their a, accept symbol	M1 A1ft
	$\mu = \frac{14}{3g} = \frac{10}{21}$ or awrt 0.48	DM1 A1 (4)
	(c) N2L for P $T - \mu 2g = 2a$ ft their μ , their a , accept symbols $T - \frac{14}{3g} \times 2g = 2 \times \frac{4}{3}$	M1 A1 ft
	Leading to $T = 12$ (N) awrt 12	DM1 A1 (4)
	Alternatively N2L for Q $30 - T - \mu 3g = 3a$ Leading to $T = 12$ (N) awrt 12	M1 A1 DM1 A1
	(d) The acceleration of P and Q (or the whole of the system) is the same.	B1 (1)
	(e) $v = u + at \implies v = \frac{4}{3} \times 3 = 4$	B1 ft on a
	N2L (for system or either particle) $-5\mu g = 5a$ or equivalent $a = -\mu g$	M1
	$v = u + at \implies 0 = 4 - \mu gt$ Leading to $t = \frac{6}{7}$ (s) accept 0.86, 0.857	DM1 A1 (4)
	accept 0.80, 0.837	[15]

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6677/01)

January 2009 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks	
1	$-6\mathbf{i} + \mathbf{j} = \mathbf{u} + 3(2\mathbf{i} - 5\mathbf{j})$ $\Rightarrow \mathbf{u} = -12\mathbf{i} + 16\mathbf{j}$ $\Rightarrow u = \sqrt{(-12)^2 + 16^2} = 20$	M1 A1 A1 cso M1 A1	5]
2 (a)	shape -u	B1 B1 (2))
(b)	$19.6 = \frac{1}{2} \times 2 \times u$ $u = 19.6$	M1 A1 A1 (3))
3 (a)	$2u \rightarrow \leftarrow 4u \qquad km2u - 4mu = -kmu + mv$ $km \qquad m \qquad \qquad u(3k - 4) = v$ $u \leftarrow \rightarrow v$	M1 A1 A1 (3)
	$k > 2 \Rightarrow v > 0 \Rightarrow \text{ dir}^n \text{ of motion reversed}$	M1A1A1 cso	3)
(c)	For B, $m(u(3k-4)4u)$ $=7mu$	M1 A1 f.t. A1 (3)) ?]

Question Number	Scheme	Marks
4 (a)	$P Q \qquad \downarrow \qquad R S$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $40g C 20g D$ $C + D = 120g$ $M(Q), 80g.0.8 - 40g.0.4 = D.1.6$ solving $C = 90g; D = 30g$ $P Q x X R S$ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$ $40g 2F 20g 60g F$	M1 A1 M1 A1 M1 A1 A1 (7)
	$2F + F = 40g + 20g + 60g$ $M(Q), 60gx + 20g.0.8 = 40g.0.4 + F.1.6$ solving $QX = x = \frac{16}{15} \text{ m} = 1.07\text{m}$	M1 A1 M1 A1 M1 A1 (6) [13]

Question Number	Scheme	Marks
5 (a)	PN $1.1g$	B2 -1 e.e.o.o. (labels not needed) (2)
(b)	$F = \frac{1}{2}R$ $(\uparrow), R\cos\alpha + F\sin\alpha = mg$ $R = \frac{1.1g}{(\cos\alpha + \frac{1}{2}\sin\alpha)} = 9.8 \text{ N}$ $(\rightarrow), P + \frac{1}{2}R\cos\alpha = R\sin\alpha$ $P = R(\sin\alpha - \frac{1}{2}\cos\alpha)$ $= 1.96$	B1 M1 A2 M1 A1 (6) M1 A2 M1 A1 (5) [13]

Question Number	Scheme	Marks
6 (a)	$\tan \theta = \frac{2}{1} \Rightarrow \theta = 63.4^{\circ}$ angle is 153.4°	M1 A1 A1 (3)
(b)	$(4+p)\mathbf{i} + (q-5)\mathbf{j}$ (q-5) = -2(4+p) 2p+q+3=0*	B1 M1 A1 A1 (4)
(c)	$q = 1 \Rightarrow p = -2$ $\Rightarrow \mathbf{R} = 2\mathbf{i} - 4\mathbf{j}$ $\Rightarrow \mathbf{R} = \sqrt{2^2 + (-4)^2} = \sqrt{20}$ $\sqrt{20} = m8\sqrt{5}$ $\Rightarrow m = \frac{1}{4}$	B1 M1 M1 A1 f.t. M1 A1 f.t. A1 cao (7)
		[14]

Question Number	Scheme	Marks
7 (a)	$T - 5g \sin \alpha = 5a$ $15g - T = 15a$ solving for a $a = 0.6g$ solving for T $T = 6g$	M1 A1 M1 A1 M1 A1 M1 A1 M1 A1 (8)
(b)	For Q : $5g - N = 5a$ N = 2g	M1 A1 A1 f.t. (3)
(c)	$F = 2T \cos\left(\frac{90^{\circ} - \alpha}{2}\right)$ $= 12g \cos 26.56.^{\circ}$ $= 105 \text{ N}$	M1 A2 A1 f.t. A1 (5) [16]

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6677/01)

June 2009 6677 Mechanics M1 Mark Scheme

Ques	stion nber	Scheme	Mar	rks
Q1				
		$45 = 2u + \frac{1}{2}a2^2 \Rightarrow 45 = 2u + 2a$	M1 A1	
		$165 = 6u + \frac{1}{2}a6^2 \implies 165 = 6u + 18a$	M1 A1	
		eliminating either u or a	M1	
		u = 20 and $a = 2.5$	A1 A1	[7]
Q2	(a)	$\tan \theta = \frac{p}{2p} \Longrightarrow \theta = 26.6^{\circ}$	M1 A1	(2)
	(b)	$\mathbf{R} = (\mathbf{i} - 3\mathbf{j}) + (p\mathbf{i} + 2p\mathbf{j}) = (1+p)\mathbf{i} + (-3+2p)\mathbf{j}$	M1 A1	
		R is parallel to $\mathbf{i} \implies (-3 + 2p) = 0$	DM1	
		$\Rightarrow p = \frac{3}{2}$	A1	(4) [6]
Q3	(a)			
		For A: $-\frac{7mu}{2} = 2m(v_A - 2u)$	M1 A1	
		$v_A = \frac{u}{4}$	A1	(3)
	(b)	$\frac{7mu}{2} = m(v_B3u)$	M1 A1	
		For B : $v_B = \frac{u}{2}$	A1	(3)
		OR CLM:	OR	
		$4mu - 3mu = 2m\frac{u}{4} + mv_B$	M1 A1	
		$v_B = \frac{u}{2}$	A1	(3)
				[6]

Ques		Scheme	Marks
Q4		$0.5g\sin\theta - F = 0.5a$	M1 A1 A1
		$F = \frac{1}{3}R$ seen	B1
		$R = 0.5g\cos\theta$	M1 A1
		Use of $\sin \theta = \frac{4}{5}$ or $\cos \theta = \frac{3}{5}$ or decimal equiv or decimal angle e.g 53.1° or 53°	B1
		$a = \frac{3g}{5}$ or 5.88 m s ⁻² or 5.9 m s ⁻²	DM1 A1 [9]
Q5		$F = P\cos 50^{\circ}$	M1 A1
		F = 0.2R seen or implied.	B1
		$P\sin 50^\circ + R = 15g$	M1 A1 A1
		Eliminating R ; Solving for P ; $P = 37 (2 \text{ SF})$	DM1;D M1; A1 [9]
Q6	(a)	For whole system: $1200 - 400 - 200 = 1000a$	M1 A1
		$a = 0.6 \text{ m s}^{-2}$	A1 (3)
	(b)	For trailer: $T - 200 = 200 \times 0.6$	M1 A1 ft
		T = 320 N	A1
		OR : For car: $1200 - 400 - T = 800 \times 0.6$	OR: M1 A1 ft
		T = 320 N	A1 (3)
	(c)	For trailer: $200 + 100 = 200f$ or $-200f$	M1 A1
		$f = 1.5 \text{ m s}^{-2} (-1.5)$	A1
		For car: $400 + F - 100 = 800 f$ or $-800 f$	M1 A2
		F = 900	A1 (7)
		(N.B. For both: $400 + 200 + F = 1000f$)	[13]

Ques	stion nber	Scheme	Mark	S
Q7	(a)	$M(Q)$, $50g(1.4-x) + 20g \times 0.7 = T_P \times 1.4$	M1 A1	
		$T_P = 588 - 350x$ Printed answer	A1	(3)
	(b)	$M(P)$, $50gx + 20g \times 0.7 = T_Q \times 1.4$ or $R(\uparrow)$, $T_P + T_Q = 70g$	M1 A1	
		$T_Q = 98 + 350x$	A1	(3)
	(c)	Since $0 < x < 1.4$, $98 < T_P < 588$ and $98 < T_Q < 588$	M1 A1 A	1 (3)
	(d)	98 + 350x = 3(588 - 350x)	M1	
		x = 1.19	DM1 A1	(3) [12]
Q8	(a)	$ \mathbf{v} = \sqrt{1.2^2 + (-0.9)^2} = 1.5 \text{ m s}^{-1}$	M1 A1	(2)
	(b)	$(\mathbf{r}_H =)100\mathbf{j} + t(1.2\mathbf{i} - 0.9\mathbf{j}) \text{ m}$	M1 A1	(2)
	(c)	$(\mathbf{r}_K =)9\mathbf{i} + 46\mathbf{j} + t(0.75\mathbf{i} + 1.8\mathbf{j}) \text{ m}$	M1 A1	
	(d)	$HK = \mathbf{r}_K - \mathbf{r}_H = (9 - 0.45t)\mathbf{i} + (2.7t - 54)\mathbf{j}$ m Printed Answer	M1 A1	(4)
	(u)	Meet when $\overrightarrow{HK} = 0$		
		(9-0.45t) = 0 and $(2.7t-54) = 0$	M1 A1	
		t = 20 from both equations	A1	
		$\mathbf{r}_K = \mathbf{r}_H = (24\mathbf{i} + 82\mathbf{j}) \text{ m}$	DM1 A1	cso
				(5)
				[13]

Mark Scheme (Results) January 2010

GCE

Mechanics M1 (6677)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010
Publications Code UA023034
All the material in this publication is copyright
© Edexcel Ltd 2010

January 2010 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks	
Q1.	(a) $I = 2 \times 12 - 2 \times 3 = 18 \text{ (N s)}$	M1 A1	(2)
	(b) LM $2 \times 12 - 8m = 2 \times 3 + 4m$ Solving to $m = 1.5$	M1 A1 DM1 A1	(4) [6]
	Alternative to (b) $I = m(4 - (-8)) = 18$ Solving to $m = 1.5$	M1 A1 DM1 A1	(4)
Q2.	First two line segments Third line segment 8, 75	B1 B1 B1	(3)
	$\frac{1}{2} \times 8 \times (T + 75) = 500$	M1 A2 (1,0)	١
	Solving to $T = 50$	DM1 A1	(5)
			[8]

Question Number	Scheme	Marks
Q3.	A 30° 60° B 20 N TN	
	(a) $R(\rightarrow)$ $20\cos 30^{\circ} = T\cos 60^{\circ}$ $T = 20\sqrt{3}, 34.6, 34.64,$	M1 A2 (1,0) A1 (4)
	(b) $R(\uparrow)$ $mg = 20\sin 30^{\circ} + T\sin 60^{\circ}$ $m = \frac{40}{g} (\approx 4.1), 4.08$	M1 A2 (1,0) A1 (4) [8]
Q4.	(a) X A 1.8 m $1.5 \text{ m} W$ 1.5 m 20	
	M (A) $W \times 1.5 + 20 \times 3 = Y \times 1.8$ $Y = \frac{5}{6}W + \frac{100}{3}$ * cso	M1 A2 (1, 0) A1 (4)
	(b) $ \uparrow \qquad X + Y = W + 20 \qquad \text{or equivalent} $ $ X = \frac{1}{6}W - \frac{40}{3} $	M1 A1 A1 (3)
	(c) $\frac{5}{6}W + \frac{100}{3} = 8\left(\frac{1}{6}W - \frac{40}{3}\right)$ $W = 280$	M1 A1 ft A1 (3) [10]
	Alternative to (b) M(C) $X \times 1.8 + 20 \times 1.2 = W \times 0.3$ $X = \frac{1}{6}W - \frac{40}{3}$	M1 A1 A1

Question Number	Scheme	Marks
Q5.	(a) $s = ut + \frac{1}{2}at^2 \implies 2.7 = \frac{1}{2}a \times 9$ $a = 0.6 \text{ (m s}^{-2}\text{)}$	M1 A1 (3)
	Use of $F = \mu R$ $0.8g \sin 30^{\circ} - \mu R = 0.8g \cos 30^{\circ} (\approx 6.79)$ $0.8g \sin 30^{\circ} - \mu R = 0.8 \times a$ $(0.8g \sin 30^{\circ} - \mu 0.8g \cos 30^{\circ} = 0.8 \times 0.6)$	B1 B1 M1 A1
	$\mu \approx 0.51$ accept 0.507	A1 (5)
	$ \begin{array}{c} X \\ \mu R \\ \hline 0.8g \\ \hline 30^{\circ} \\ \end{array} $ $ \uparrow R\cos 30^{\circ} = \mu R\cos 60^{\circ} + 0.8g$	M1 A2 (1,0)
	$(R \approx 12.8)$ $\rightarrow X = R \sin 30^{\circ} + \mu R \sin 60^{\circ}$ Solving for X , $X \approx 12$ accept 12.0	M1 A1 DM1 A1 (7) [15]
	Alternative to (c)	
	$R = X \sin 30^{\circ} + 0.8 \times 9.8 \sin 60^{\circ}$ $\mu R + 0.8g \cos 60^{\circ} = X \cos 30^{\circ}$	M1 A2 (1,0) M1 A1
	$X = \frac{\mu 0.8g \sin 60^\circ + 0.8g \cos 60^\circ}{\cos 30^\circ - \mu \sin 30^\circ}$ Solving for X, $X \approx 12$ accept 12.0	DM1 A1 (7)

Question Number	Scheme	Marks	
Q6.	(a) N2L A: $5mg - T = 5m \times \frac{1}{4}g$	M1 A1	
	$T = \frac{15}{4} mg *$ cso	A1	(3)
	(b) N2L B: $T - kmg = km \times \frac{1}{4}g$	M1 A1	
	k = 3	A1	(3)
	(c) The tensions in the two parts of the string are the same	B1	(1)
	(d) Distance of A above ground $s_1 = \frac{1}{2} \times \frac{1}{4} g \times 1.2^2 = 0.18g \ (\approx 1.764)$	M1 A1	
	Speed on reaching ground $v = \frac{1}{4}g \times 1.2 = 0.3g \ (\approx 2.94)$	M1 A1	
	For B under gravity $(0.3g)^2 = 2gs_2 \implies s_2 = \frac{(0.3)^2}{2}g \approx 0.441$	M1 A1	
	$S = 2s_1 + s_2 = 3.969 \approx 4.0 \text{ (m)}$		(7) 14]

Question Number	Scheme	Mark	S
Q7.	(a)		
	$\mathbf{v} = \frac{21\mathbf{i} + 10\mathbf{j} - (9\mathbf{i} - 6\mathbf{j})}{4} = 3\mathbf{i} + 4\mathbf{j}$	M1 A1	
	speed is $\sqrt{(3^2 + 4^2)} = 5 \text{ (km h}^{-1}\text{)}$	M1 A1	(4)
	(b) $\tan \theta = \frac{3}{4} \ (\Rightarrow \theta \approx 36.9^{\circ})$	M1	
	bearing is 37, 36.9, 36.87,	A1	(2)
	(c) $\mathbf{s} = 9\mathbf{i} - 6\mathbf{j} + t(3\mathbf{i} + 4\mathbf{j})$	M1	
	$= (3t+9)\mathbf{i} + (4t-6)\mathbf{j} \bigstar $ cso	A1	(2)
	(d) Position vector of S relative to L is $(3T+9)\mathbf{i} + (4T-6)\mathbf{j} - (18\mathbf{i} + 6\mathbf{j}) = (3T-9)\mathbf{i} + (4T-12)\mathbf{j}$ $(3T-9)^2 + (4T-12)^2 = 100$ $25T^2 - 150T + 125 = 0$ or equivalent $(T^2 - 6T + 5 = 0)$ $T = 1, 5$	M1 A1 M1 DM1 A1	(6)
			[14]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023034 January 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

GCE Mechanics M1 (6677/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010
Publications Code UA024469
All the material in this publication is copyright
© Edexcel Ltd 2010

Summer 2010 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
Q1	$(-4\mathbf{i} - 7\mathbf{j}) = \mathbf{r} + 4(-3\mathbf{i} + 2\mathbf{j})$ $\mathbf{r} = (8\mathbf{i} - 15\mathbf{j})$ $ \mathbf{r} = \sqrt{8^2 + (-15)^2} = 17 \text{ m}$	M1 A1 A1 M1 A1 ft	[5]
Q2 (a)	$4u \xrightarrow{ku} \qquad ku$ $2u \xrightarrow{P} \qquad \frac{ku}{\frac{ku}{2}}$ $4mu - 3mku = -2mu + 3mk\frac{u}{2}$ $k = \frac{4}{3}$	M1 A1 M1 A1cso	(4)
(b)	For P , $I = m (2u4u)$ = 6mu OR For Q , $I = 3m (\frac{ku}{2}ku)$	M1 A1 A1 (M1A1)	(3) [7]
Q3	(→) $100\cos 30 = F$ F = 0.5 R seen (↓) $mg + 100\cos 60 = R$ m = 13 kg or 12.6 kg	M1 A1 A1 (B1) M1 A1 DM1 A1	[7]
			L/.

Question Number	Scheme	Marks	
Q4	R 500 200 500 S $M(B)$, $500x + 500.2x + 200x3 = Rx5 + Sx1 (or any valid moments equation)$	M1 A1 A1	
	$(\downarrow) R + S = 500 + 500 + 200 = 1200$ (or a moments equation)	M1 A1	
	solving for x ; $x = 1.2 \text{ m}$	M1 A1 cso	[7]
Q5 (a)	Shape (both) Cross Meet on t-axis Figures 25,20,T,25	B1 B1 B1 B1	
	$\frac{1}{O}$ T 25 t		(4)
(b)	For Q : $20\left(\frac{t+25}{2}\right) = 800$ $t = 55$	M1 A1	
	For P: $25\left(\frac{T+55}{2}\right) = 800$ solving for T: $T = 9$	M1 A1 DM1 A1	(8) [12]

	stion nber	Scheme	Marks	S
Q6	(a)	$(\uparrow)v^2 = u^2 + 2as$ $0 = 14.7^2 - 2x \ 9.8 \ x \ s$ s = 11.025 (or 11 or 11.0 or 11.03) m Height is 60 m or 60.0 m ft	M1A1 A1 A1ft	(4)
	(b)	$(\downarrow)v^2 = u^2 + 2as$ $v^2 = (-14.7)^2 + 2x \ 9.8 \ x \ 49$ $v = 34.3 \text{ or } 34 \text{ m s}^{-1}$	M1 A1	(3)
	(c)	OR $(\downarrow)v = u + at$ 34.3 = -14.7 + 9.8t t = 5 OR $(\downarrow)s = ut + \frac{1}{2}at^2$ $49 = -14.7t + 4.9t^2$ t = 5	M1 A1 A1	(3) [10]
Q7	(a)	$F = \frac{1}{3}R$ $(\uparrow) R\cos\alpha - F\sin\alpha = 0.4g$ $R = \frac{2}{3}g = 6.53 \text{ or } 6.5$	B1 M1 A1 M1 A1	(5)
	(b)	$(\rightarrow)P - F\cos\alpha - R\sin\alpha = 0$ $P = \frac{26}{45}g = 5.66 \text{ or } 5.7$	M1 A2 M1 A1	(5) [10]

Question Number	Scheme	Marks
Q8 (a) Mark together	$(\downarrow)0.4g - T = 0.4a$ $(\uparrow)T - 0.3g = 0.3a$ solving for T T = 3.36 or 3.4 or $12g/35$ (N)	M1 A1 M1 A1 DM1 A1 (6)
(b)	0.4g - 0.3g = 0.7a $a = 1.4 \text{ m s}^{-2}, g/7$	DM1 A1 (2)
(c)	$(\uparrow)v = u + at$ $v = 0.5 \times 1.4$ $= 0.7$ $(\uparrow)s = ut + \frac{1}{2}at^{2}$	M1 A1 ft on <i>a</i>
	$s = 0.5 \times 1.4 \times 0.5^{2}$ $= 0.175$ $(\downarrow)s = ut + \frac{1}{2}at^{2}$	M1 A1 ft on <i>a</i>
	$1.175 = -0.7t + 4.9t^{2}$ $4.9t^{2} - 0.7t - 1.175 = 0$ $t = \frac{0.7 \pm \sqrt{0.7^{2} + 19.6 \times 1.175}}{9.8}$	DM1 A1 ft DM1 A1 cao
	= 0.5663or Ans 0.57 or 0.566 s	A1 cao (9) [17]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email <u>publications@linneydirect.com</u>
Order Code UA024469 Summer 2010

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Mechanics M1 (6677) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011
Publications Code UA026577
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol √will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Mechanics M1 6677 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	Conservation of momentum: 4m-6=m+9 m=5	M1 A1 A1	3)
(b)	Impulse = change in momentum = $3 \times 3 - (3 \times -2) = 15$	M1 A1 (2	

1

Question Number	Scheme	Marks	
2. (a)	$-6.45 = u - 9.8 \times 0.75$ $0.9 = u **$	M1 A1 A1	3)
(b)	$0 = 0.81 - 2 \times 9.8 \times s$ s = 0.041 or 0.0413	M1 A1	2)
(c)	$h = -0.9 \times 0.75 + 4.9 \times 0.75^{2}$ $h = 2.1 \text{ or } 2.08$	M1 A1	
	n = 2.1 of 2.00	(3	3) 3]

1

Question Number	Scheme	Marks
3. (a)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Taking moments about B: $5 \times R_C = 20g \times 3$ $R_C = 12g \text{ or } 60g/5 \text{ or } 118 \text{ or } 120$	M1A1 A1
	Resolving vertically: $R_C + R_B = 20g$ $R_B = 8g \text{ or } 78.4 \text{ or } 78$	M1 A1 (5)
(b)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	Resolving vertically: $50g = R + R$	B1
	Taking moments about B: $5 \times 25g = 3 \times 20g + (6-x) \times 30g$	M1 A1 A1
	30x = 115 $x = 3.8 or better or 23/6 oe$	A1 (5) [10]

Question Number	Scheme	Marks
4.		
(a)	speed = $\sqrt{2^2 + (-5)^2}$	M1
	$=\sqrt{29} = 5.4$ or better	A1
	V25 3.1 of botter	(2)
(b)	((7i+10i)-(2i-5i))/5	M1 A1
	$ \frac{\left(\left(7\mathbf{i} + 10\mathbf{j}\right) - \left(2\mathbf{i} - 5\mathbf{j}\right)\right)/5}{=\left(5\mathbf{i} + 15\mathbf{j}\right)/5 = \mathbf{i} + 3\mathbf{j}} $	
		A1
	$\mathbf{F} = m\mathbf{a} = 2(\mathbf{i} + 3\mathbf{j}) = 2\mathbf{i} + 6\mathbf{j}$	DM1 A1ft
		(5)
(c)	$\mathbf{v} = \mathbf{u} + \mathbf{a}t = (2\mathbf{i} - 5\mathbf{j}) + (\mathbf{i} + 3\mathbf{j})t$	M1
	$\left(-5+3t\right)$ j	A1
	Parallel to $i \Rightarrow -5 + 3t = 0$	M1
	t = 5/3	A1
		(4)
		[11]

	Marks
1 st section correct 2 nd & 3 rd sections correct Numbers and v marked correctly on the axes.	B1 B1 DB1
$1^{\text{st}} \text{ section correct}$ $2^{\text{nd}} \text{ section correct}$ $3^{\text{rd}} \text{ section correct and no}$ "extras" on the sketch	B1 B1 B1 (6)
$\frac{70+40}{2} \times v = 880$ $v = 880 \times \frac{2}{110} = 16$	M1 A1 DM1 A1 (4)
	1st section correct 2nd & 3rd sections correct Numbers and v marked correctly on the axes. 1st section correct 2nd section correct 2nd section correct 3rd section correct 3rd section correct and no "extras" on the sketch

Question Number	Scheme	Marks
6. (a)	30 N F 120 N	
	Resolving perpendicular to the plane: $S = 120\cos\alpha + 30\sin\alpha$ = 114 *	M1 A1 A1 A1 (4)
(b)	P_F 120 N	
	Resolving perpendicular to the plane: $R = 120\cos\alpha$ $= 96$ $F_{\text{max}} = \frac{1}{2}R$ Resolving parallel to the plane: In equilibrium: $P_{\text{max}} = F_{\text{max}} + 120\sin\alpha$	M1 A1 A1 M1
	= 48 + 72 = 120	A1 (8)
(c)	$30 + F = 120 \sin \alpha$ OR $30 - F = 120 \sin \alpha$ So $F = 42$ N acting up the plane.	M1 A1 A1 (3) [15]

Question Number	Scheme	Marks
7. (a)	$ \begin{array}{cccc} P & T & R & \tan \theta = \frac{5}{12} \\ \hline A & 7 \text{ kg} & \sin \theta = \frac{5}{13} \\ \hline A & 7 \text{ kg} & \cos \theta = \frac{12}{13} \end{array} $	
	For A: $7g - T = 7a$ For B: parallel to plane $T - F - 3g \sin \theta = 3a$ perpendicular to plane $R = 3g \cos \theta$ $F = \mu R = 3g \cos \theta = 2g \cos \theta$ Eliminating T , $7g - F - 3g \sin \theta = 10a$ Equation in g and a: $7g - 2g \times \frac{12}{13} - 3g \frac{5}{13} = 7g - \frac{39}{13}g = 4g = 10a$	M1 A1 M1 A1 M1 A1 M1 DM1
	$a = \frac{2g}{5} oe \text{ or } 3.9 \text{ or } 3.92$	A1 (10)
(b)	After 1 m, $v^2 = u^2 + 2as$, $v^2 = 0 + 2 \times \frac{2g}{5} \times 1$ v = 2.8	M1 A1 (2)
(c)	$-(F+3g \sin \theta) = 3a$ $\frac{2}{3} \times 3g \times \frac{12}{13} + 3g \times \frac{5}{13} = 3g = -3a, \ a = -g$ $v = u + at, \ 0 = 2.8 - 9.8t,$ $t = \frac{2}{7} \text{ oe, } 0.29. \ 0.286$	M1 A1 DM1 A1 (4) [16]

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publications@linneydirect.com</u> Order Code UA026577 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Mechanics M1 (6677) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011
Publications Code UA028437
All the material in this publication is copyright
© Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.

Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- · dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

June 2011 Mechanics M1 6677 Mark Scheme

	Walk Scheme	
Question Number	Scheme	Marks
1. (a)	$0^{2} = u^{2} - 2x9.8x40$ $u = 28 \text{ m s}^{-1} ** \text{ GIVEN ANSWER}$	M1 A1 A1 (3)
(b)	$33.6 = 28t - \frac{1}{2}9.8t^{2}$ $4.9t^{2} - 28t + 33.6 = 0$ $t = \frac{28 \pm \sqrt{28^{2} - 4x4.9x33.6}}{9.8}$ $= 4 \text{ s or } (1.7 \text{ s or } 1.71 \text{ s})$	M1 A1 M1 A1 A1 (5) 8
2. (a)	CLM: $3x3 - 2x2 = 3v + 2(v+1)$ $v_P = 0.6 \text{ m s}^{-1}; v_Q = 1.6 \text{ m s}^{-1}$	M1 A1 M1A1 (A1 ft) (5)
(b)	$3(v-3) OR 2(v+12) \\ = 7.2 \text{ Ns} $ = 7.2 Ns	M1 A1 ft A1 (3) 8

	advancing	learning, changing liv
Question Number	Scheme	Marks
3. <u>OR</u>	$ \begin{array}{c} $	M1 A1 M1 A1 B1 B1 M1 A1 A1 (9) M1 A1 B1 B1 B1 M1 A1 A1
4. (a)	5 V 0 4 64 84	B1 shape B1 figs
(b)	$ (\frac{1}{2}x4x5) + 60 \times 5 $ $ = 310 $	M1 A1 A1 (3)
(c)	$\frac{(5+V)}{2} \times 20 = (400-310)$ $V = 4$	M1 A2 ft DM1 A1 (5)
(d)	$\frac{5-4}{20} = 0.05 \text{ ms}^{-2}$	M1 A1 (2) 12
`E Mochanics M1 (4	6477\ luno 2011	

	advancin _i	g learning, changing liv
Question Number	Scheme	Marks
5. (a)	$P \downarrow 2 \text{ m} 2 \text{ m} 2 \text{ m} Q 2 \text{ m} \\ X 40g 20g X Mg$	
(i)	EITHER $M(R)$, $8X + 2X = 40g \times 6 + 20g \times 4$ solving for X , $X = 32g = 314$ or 310 N	M1 A2 M1 A1
(ii)	(†) $X + X = 40g + 20g + Mg$ (or another moments equation) solving for M , $M = 4$	M1 A2 M1 A1
(i)	OR $M(P)$, $6X = 40g \times 2 + 20g \times 4 + Mg \times 8$ solving for X , $X = 32g = 314$ or 310 N $(\uparrow) X + X = 40g + 20g + Mg$ (or another moments	M1 A2 M1 A1
(ii)	equation) solving for M , $M = 4$	M1 A2 M1 A1 (10)
(b)	Masses concentrated at a point or weights act at a point	B1 (1) 11
6. (a)	$R = 0.3g \cos \alpha$ = 0.24g = 2.35 (3sf)=2.4 (2sf)	M1 A1
(b)	$mg - T = 1.4m$ $T - 0.3g \sin \alpha - F = 0.3 \times 1.4$ $F = 0.5R$ Eliminating R and T $m = 0.4$	(2) M1 A1 M1 A2 M1 DM 1 A1 (8)
(c)	$v = 1.4 \times 0.5$ $-0.3g \sin \alpha - F = 0.3a$ $a = -9.8$ $0 = 0.7 - 9.8t$ $t = 0.071 \text{ s or } 0.0714 \text{ s } (1/14 \text{ A0})$	B1 M1 A1 A1 M1 A1 (6) 16

Physics And Maths Tutor.com

		advancing learning, changing l
Question Number	Scheme	Marks
_		
7. (a)	$\tan \theta = \frac{3}{4}$; bearing is 37° (nearest degree)	M1; A1
(b)		(2)
(i)	$\mathbf{p} = (\mathbf{i} + \mathbf{j}) + t(2\mathbf{i} - 3\mathbf{j})$	M1 A1
(ii)	$\mathbf{q} = (-2\mathbf{j}) + t(3\mathbf{i} + 4\mathbf{j})$	A1
(iii)	$\mathbf{PQ} = \mathbf{q} - \mathbf{p} = (-\mathbf{i} - 3\mathbf{j}) + t(\mathbf{i} + 7\mathbf{j})$	M1 A1
(c)		(5)
(i)	-1+t=0	M1
	t = 1 or 3pm	A1
(ii)	-1 + t = -(-3 + 7t)	M1
	$t = \frac{1}{2}$ or 2.30 pm	A1
		(4) 11
		11

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467

Fax 01623 450481

Email <u>publication.orders@edexcel.com</u>

Order Code UA028437 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

January 2012

GCE Mechanics M1 (6677) Paper 1

PhysicsAndMathsTutor.com

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012
Publications Code UA030770
All the material in this publication is copyright
© Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c|, \text{ leading to } x = \dots$$

$$(ax^2 + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a|, \text{ leading to } x = \dots$$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c, \quad q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. <u>Differentiation</u>

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1 (a)	$P \stackrel{15 \text{ m s}^{-1}}{\longrightarrow} Q \stackrel{3000 \text{ kg}}{\longrightarrow} $ $3 \text{ m s}^{-1} \qquad 9 \text{ m s}^{-1}$	
(b)	For Q $I = 3000 \times 9 = 27000$ (N s) Conservation of linear momentum $15m = -3m + 3000 \times 9$ Leading to $m = 1500$	M1 A1 (2) M1 A1 A1 (3) 5
	Alternative to (b) For P $27\ 000 = m(15 - (-3))$ Leading to $m = 1500$	M1 A1 A1 (3)

Question Number	Scheme	Marks
2 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	For the whole system $R(\rightarrow) \qquad 3200-800-R=1750\times0.88$ Leading to $R=860 \text{ *}$	M1 A1 A1
(b)	For the caravan	(3)
	$R(\rightarrow) \qquad T - 860 = 750 \times 0.88$	M1 A1
	Leading to $T = 1520 \text{ (N)}$	A1
		(3) 6
	Alternative for (b) For the car	
	$R(\rightarrow)$ 3200 – 800 – $T = 1000 \times 0.88$	M1 A1
	Leading to $T = 1520 \text{ (N)}$	A1
		(3)

Question Number	Scheme	Marks
3 (a)	7 + 5 + p = 0 or $-9 + 6 + q = 0p = -12q = 3$	M1 A1 A1 (3)
(b)	$\mathbf{R} = 12\mathbf{i} - 3\mathbf{j}$ $ \mathbf{R} = \sqrt{(12^2 + (-3)^2)} = \sqrt{153} \text{ or } 3\sqrt{17} \text{ or } 12.4 \text{ or better } (N)$	M1 A1 (2)
(c)	$\tan \theta = \frac{3}{12}$ $\theta = 14.03^{\circ}$ Angle with j is 104°, to the nearest degree cao	M1 A1 A1 (3) 8

Question Number	Scheme	Marks
4 (a)	$A \xrightarrow{\longleftarrow} G \qquad \qquad A \xrightarrow{\longleftarrow} B \qquad \qquad \Delta $	
	$M(D) mg \times GD = \frac{5}{2} mg \times d$ $GD = \frac{5}{2} d *$	M1 A1 DM1 A1
(b)	$A \xrightarrow{\bullet} G \qquad \qquad G \qquad \qquad A \xrightarrow{\bullet} B$ $C \qquad \downarrow mg \qquad \downarrow \frac{5}{2}mg \qquad D$	(4)
	M(C) $mg \times \frac{d}{2} + \frac{5}{2}mg \times \frac{3}{2}d = Y \times 3d$ Leading to $Y = \frac{17}{12}mg$	M1 A2(1, 0) DM1 A1 (5)

Question Number	Scheme	Marks	
5 (a)	$v = u + at(\uparrow) \Longrightarrow 0 = u - g(\frac{25}{14})$ $u = 17 \frac{1}{2} $	M1 M(A)1	(3)
(b)	$v^2 = u^2 + 2as(\uparrow) \Longrightarrow 0^2 = 17.5^2 - 2gs$	M1	(3)
	s = 15.6 (m) or 16 (m)	A1	(2)
(c)	$s = ut + \frac{1}{2}at^{2}(\uparrow) \Longrightarrow 6.6 = 17.5t - \frac{1}{2}gt^{2}$ $4.9t^{2} - 17.5t + 6.6 = 0$	M1 A1	
	$t = \frac{17.5 \pm \sqrt{(17.5^2 - 129.36)}}{9.8} = \frac{17.5 \pm 13.3}{9.8}$	DM1	
	9.8 9.8 $t = 3.142 (22/7)$ or $0.428 (3/7)$	A1	
	$T = t_2 - t_1 = 2.71 (2.7)$	DM1 A1	(6)
	OR $v^{2} = u^{2} + 2as(\uparrow) \Rightarrow v^{2} = 17.5^{2} - 2gx6.6$ $v = \pm 13.3$ $v = u + at(\uparrow) \Rightarrow \pm 13.3 = 17.5 - gt$ $t = \frac{17.5 \pm 13.3}{9.8}$ $= 3.14 (22/7) \text{ or } 0.428 (3/7)$ $T = 3.14 0.428 = 2.71 \text{ or } 2.7$	M1A1 DM1 A1 DM1 A1	(6)
	OR		
	$v^2 = u^2 + 2as(\uparrow) = v^2 = 17.5^2 - 2gx6.6$ or $0^2 = u^2 - 2gx(15.625 - 6.6)$ v = 13.3 $u = 13.3$		
	$v = u + at(\uparrow) \Longrightarrow 0 = 13.3 - gt$	M1 A1	
	$t = \frac{13.3}{g}$	DM1 A1	
	$T = 2 \times \frac{13.3}{g} = 2.7 \text{ or } 2.71$	DM1 A1	(6)
			11

Question Number	Scheme	Marks	
6 (a)	$v = u + at \implies 0 = 15 - 2.5t$ $t = 6 (s)$	M1 A1	
(b)	$v(m s^{-1}) \uparrow$	(2	2)
	Shape 15, T $O = \frac{1}{3}T \longrightarrow T$ $T \longrightarrow 6 \longrightarrow t(s)$	B1 B1	2)
(c)	$\frac{1}{2}15\left(\frac{4}{3}T + 6 + T\right) = 885$ ft their 6	M1 A1ft	
	$\frac{7}{3}T = 118 - 6$		
	$T = 112 \times \frac{3}{7} = 48$	M1 A1	
(d)	$a = \frac{15}{\frac{1}{3}T} = \frac{15}{16}$, 0.9375, 0.938, 0.94	M1 A1	
(e)	$a(\text{m s}^{-2}) \uparrow$	(2	2)
	$\frac{15}{16}$ 64 70 Correctly placed; no cts vert line	B1 B1 B1	
	$16 t(s) -2.5, \text{ trule if } \frac{1}{16}$	(3	3)
	-2.5	1	3

Physics And Maths Tutor.com

Question Number	Scheme	Marks	
7 (a)	$\sqrt{\left(\left(-4\right)^2+8^2\right)} = \sqrt{80}$ (km h ⁻¹) accept exact equivalents or 8.9 or better	M1 A1	
(b)	$\mathbf{p} = (2\mathbf{i} - 8\mathbf{j}) + t(-4\mathbf{i} + 8\mathbf{j})$	B1	(2)
(c)	Equating j components		(1)
	-8 + 8t = 12 - 8t	M1 A1	
	$t = \frac{5}{4}$ oe	A1	
	7		(3)
(d)	Using their t from (c) to find the i -cpts of p and q and subtract them	M1	
	$10\frac{1}{2} - (-3) = 13\frac{1}{2}$ (km)	A1 ft A1	
			(3) 9

Question Number	Scheme	Marks
8 (a)	R 36 7 30° $4g$	
	$R + 36 \sin 30^{\circ} = 4g \cos 30^{\circ}$ $R \approx 15.9, 16$	M1 A1 M1 A1
(b)	Use of $F_r = \mu R$ $36\cos 30^\circ = F + 4g\sin 30^\circ$ $36\cos 30^\circ - 4g\sin 30^\circ$	(4) B1 M1 A1
	$\mu = \frac{36\cos 30^{\circ} - 4g\sin 30^{\circ}}{R} \approx 0.726$ 0.73	M1 A1 (5)
(c)	After force is removed $R = 4g \cos 30^{\circ}$	В1
	$-\mu 4g \cos 30^{\circ} - 4g \sin 30^{\circ} = 4a$ $a = (-)11.06 \dots$	M1 A1
	$v^2 = u^2 + 2as \implies 0^2 = 16^2 - 2 \times 11.06 \dots \times s$ $s = \frac{16^2}{2 \times 11.06 \dots} \approx 11.6 (m)$	M1
	2×11.06 12	A1 (5) 14

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA030770 January 2012

For more information on Edexcel qualifications, please visit $\underline{www.edexcel.com/quals}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2012

GCE Mechanics M1 (6677) Paper 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2012
Publications Code UA032675
All the material in this publication is copyright
© Pearson Education Ltd 2012

Summer 2012 6677 Mechanics 1 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mechanics Marking

Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.

Omission or extra g in a resolution is accuracy error not method error.

Omission of mass from a resolution is method error.

Omission of a length from a moments equation is a method error.

Omission of units or incorrect units is not (usually) counted as an accuracy error.

DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.

Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF. Use of g = 9.81 should be penalised once per (complete) question.

N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.

However, premature approximation should be penalised every time it occurs. MARKS MUST BE ENTERED IN THE SAME ORDER AS THEY APPEAR ON THE MARK SCHEME.

In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.

Accept column vectors in all cases.

June 2012 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks	
1.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	After $0.8 \text{ m s}^{-1} \qquad v \text{ m s}^{-1}$		
	(a) CLM $5m \times 3 - 2m \times 4 = 5m \times 0.8 + 2mv$ Leading to $v = 1.5$ (Speed is 1.5 m s^{-1})	M1 A1 A1	(3)
	(b) Impulse for A $5m(0.8-3) = -3.3$ Leading to $m = 0.3$	M1 A1 A1	(3) [6]
	Alternative for (b) Impulse for B $2m(1.54) = 3.3$ Leading to $m = 0.3$	M1 A1 A1	(3)

Question 1(a)

M1 for attempt at CLM equation, with correct no.of terms, correct masses and

dimensionally consistent. Allow consistent extra g's, consistent missing m's and sign errors. However, M0 if masses are not paired with the correct speeds.

First A1 for a correct equation.

Second A1 for v = 1.5. (-1.5 A0)

N.B. Allow M1 for an attempt to equate the impulses on the particles but must have 5m (0.8 - 3) or 5m (3 - 0.8) on one side of the equation and $2m (\pm v \pm 4)$ on the other.

Question 1(b)

M1 for attempt at impulse = difference in momenta, for either

particle, (must be considering one particle) (M0 if g's are included or if mass omitted or if just *m* used) Allow Initial Momentum – Final Momentum.

A1 cao (i.e. no ft on their v) for a correct equation in m only.

A1 for m = 0.3

Question Number	Scheme	Marks
2.	A P G Q B $4.5g$ $4.5g$ $4.5g$ Leading to $X = \frac{3g}{2}$ or 14.7 or 15 (N) (b) M(A) $4.5g \times AG = (2X) \times 0.8 + X \times 2.4$ $AG = \frac{4}{3}$ (m), 1.3 , 1.33 ,	M1 A1 A1 (3) M1 A2 ft (1,0) A1 (4) [7]

Question 2(a)

First M1 for a complete method for finding R_Q , either by resolving vertically, or taking moments twice, with usual criteria (allow M1 even if $R_P = 2R_Q$ not substituted)

First A1 for a correct equation in either R_Q or R_P ONLY.

Second A1 for 1.5g or 14.7 or 15 (A0 for a negative answer)

Question 2(b)

First M1 for taking moments about any point, with usual criteria.

A2 ft for a correct equation (A1A0 one error, A0A0 for two or more errors, ignoring consistent omission of g's) in terms of X and their x (which may not be AG at this stage)

Third A1 for AG = 4/3, 1.3, 1.33,..... (any number of decimal places, since g cancels) need 'AG =' or x marked on diagram

N.B. if $R_Q = 2R_P$ throughout, mark as a misread as follows:

(a) M1A1A0 (resolution method) (b) M1A0A1A1, assuming all work follows through correctly...

Question Number	Scheme	Marks
3.	$\frac{20}{30^{\circ}}$	
	(a) \perp plane $R = 20\cos 60^{\circ} + 5g\cos 30^{\circ}$ = 52.4 (N) or 52	M1 A2(1,0) A1 (4)
	(b) $F_r = \mu R$ $P \text{ plane} \qquad F + 20\cos 30^\circ = 5g\cos 60^\circ$ $Leading \text{ to } \mu = 0.137 \qquad \text{or } 0.14$	B1 M1 A2(1, 0) A1 (5) [9]

Question 3(a)

First M1 for resolving perpendicular to plane with usual criteria

First A2 for a correct equation (A1A0 one error, A0A0 for two or more errors)

Second A1 for either 52 or 52.4

N.B. In part (a), the M1 is for a <u>complete method</u>, so they must have sufficient equations to be able to solve for *R*. The A2 marks are then for *all* the equations.

Question 3(b)

B1 for use of $F=\mu R$ (could just be on diagram)

First M1 (allow if F is used rather than μR) for resolving parallel to the plane with usual criteria First A2 for a correct equation (A1A0 one error, A0A0 for two or more errors)

Second A1 for either 0.14 or 0.137

N.B. If they resolve vertically AND horizontally, there are max 6 marks available (M1A2, M1A2) for the TWO equations, but if they only have one equation, there are no marks available for that equation. The marks for the horizontal resolution should be entered first on ePen.

Question Number	Scheme	Marks
4.	(a) $v(m s^{-1})$ 20 20, 8, 25	B1 B1 B1 (3)
	(b) $v = u + at \implies 8 = 20 - 0.4t$ t = 30 (s)	M1 A1 (2)
	(c) $1960 = (25 \times 20) + (30 \times 8) + (\frac{1}{2} \times 30 \times 12) + (60 \times 8) + 8 \times t + \frac{1}{2} \times t \times 12$	M1A3 ft (2,1,0)
	1960 = 500 + 240 + 180 + 480 + 14t	DM1 A1
	T = 115 + 40 = 155	DM1 A1
	N.B. SEE ALTERNATIVES	(8) [13]

Question 4(a) First B1 for 1st section of graph Second B1 for 2nd section Third B1 for the figures 20, 8 and 25

Question 4(b)

M1 for a complete method to produce an equation in t only; allow (20 - 8)/0.4A1 for 30 N.B.

Give A0 for t = -30, even if changed to 30, but then allow use of 30 in part (c), where full marks could then be scored.

Question 4(c)

First M1 (generous) for clear attempt to find whole area under *their* graph (must include at least one "1/2"), in terms of *a single unknown time* (*t say*), and equate it to 1960.

First A3, ft on their (b), for a correct equation.

Deduct 1 mark for each numerical error, or omission, in each of the 4 *sections of the area* corresponding to each stage of the motion. (they may 'slice' it, horizontally into 3 sections, or a combination of the two) Second DM1, dependent on first M1, for simplifying to produce an equation with all their *t* terms collected. Fourth A1 for a correct equation for *t* or *T*

Third DM1, dependent on second M1. for solving for *T* Fifth A1 155

Please note that any incorrect answer to (b) will lead to an answer of 155 in (c) and can score max 6/8;

Solutions with the correct answer of 155 will need to be checked carefully.

Solutions to 4 (c) N.B. t = T - 115

A.
$$1960 = (25 \times 20) + (30 \times 8) + (\frac{1}{2} \times 30 \times 12) + (60 \times 8) + 8 \times t + \frac{1}{2} \times t \times 12$$
 M1 A3 **ft** $1960 = 500 + 240 + 180 + 480 + 14t$ M1 A1 $T = 115 + 40$ M1 A1 = 155

B.
$$1960 = (25 \times 20) + \frac{1}{2} \times 30 \times (20 + 8) + (60 \times 8) + \frac{1}{2} \times t \times (20 + 8)$$
 M1 A3 **ft** $1960 = 500 + 420 + 480 + 14t$ M1 A1 $T = 115 + 40$ M1 A1 M1 A1

C.
$$1960 = 8T + \frac{1}{2} \times 12 \times (55 + 25) + \frac{1}{2} \times 12 \times (T - 115)$$
 M1 A3 ft $1960 = 8T + 480 + 6T - 690$ M1 A1 $155 = T$ M1 A1

D.
$$1960 = 20T - \frac{1}{2} \times 12 \times (60 + T - 25)$$
 M1 A3 **ft** $1960 = 20T - 6T - 210$ M1 A1 $155 = T$ M1 A1

E.
$$1960 = (55 \times 20) - \frac{1}{2} \times 30 \times 12 + (60 \times 8) + \frac{1}{2} \times t \times (20 + 8)$$
 M1 A3 **ft** $1960 = 1100 - 180 + 480 + 14t$ M1 A1 $T = 115 + 40$ M1 A1 A1

F.
$$1960 = (8 \times 115) + \frac{1}{2} \times 12 \times (55 + 25) + \frac{1}{2} \times 28 \times (T - 115)$$
 M1 A3 **ft** $1960 = 920 + 480 + 14T - 1610$ M1 A1 $155 = T$ M1 A1

Question Number	Scheme	Marks
5.	(a) $v^2 = u^2 + 2as \implies 28^2 = u^2 + 2 \times 9.8 \times 17.5$ Leading to $u = 21$ * cso	M1 A1 A1 (3)
	(b) $s = ut + \frac{1}{2}at^2 \implies 19 = 21t - 4.9t^2$ $4.9t^2 - 21t + 19 = 0$ $t = \frac{21 \pm \sqrt{21^2 - 4x4.9.x19}}{9.8}$	M1 A1
	t = 2.99 or 3.0 t = 1.30 or 1.3	DM1 A1 A1 (5)
	(c) N2L $4g - 5000 = 4a$ (a = -1240.2) $v^2 = u^2 + 2as \implies 0^2 = 28^2 - 2 \times 1240.2 \times s$	M1 A1
	Leading to $s = 0.316 \text{ (m)}$ or 0.32	M1 A1 (4) [12]
	OR $\frac{1}{2} \times 4 \times 28^{2} + 4gs = 5000s$ Work-Energy: $s = 0.316 \text{ or } 0.32$	M1 A1 M1 A1

Question 5(a)

First M1 for a complete method for finding u e.g.

$$28^2 = u^2 + 2gx17.5$$

or
$$28^2 = u^2 + 2(-g)x(-17.5)$$

or
$$28^2 = 2gs \Rightarrow s = 40$$
 then $0^2 = u^2 + 2(-g)x(22.5)$

condone sign errors

First A1 for a correct equation(s) with g = 9.8

Second A1 for "u = 21" PRINTED ANSWER

N.B. Allow a verification method, but they must state, as a conclusion, that "u = 21", to score the final A1.

Question 5(b)

First M1 for a complete method for finding at least one *t* value i.e. for producing an equation in *t* only. (condone sign errors but not missing terms)

First A1 for a correct quadratic equation in t only or TWO correct linear equations in t only.

Second DM1, dependent on first M1, for attempt to solve the quadratic or one of the linear equations.

Second A1 for 3.0 or 3 or 2.99

Third A1 for 1.3 or 1.30

Question 5(c)

First M1 for resolving vertically with usual rules.

First A1 for a correct equation

Second M1 for use of $v^2 = u^2 + 2as$, with v = 0, u = 28 or u = 0 and v = 28 and their a, (or any other complete method which produces an equation in s, which could be negative)

M0 if they haven't *calculated* a value of a.

Second A1 for 0.32 or 0.316. (must be positive since it's a distance)

	Marks	
12	M1 A1 A1	(3)
(b) $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j} + t(-12\mathbf{i} + 7.5\mathbf{j})$	M1 A1	(2)
$\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$	M1 M1 DM1 A1	(4)
$40 - 12t = 7 \qquad \text{or} \qquad -33 + 12t = 0$	M1 A1	
4 8 8	M1 A1	(4)
OR When $t = 2\frac{3}{4}$, 7.5 $t - 18.5 = 2.125$, 2.13	M1 A1	[13]
	Bearing is 302 (allow more accuracy) (b) $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j} + t(-12\mathbf{i} + 7.5\mathbf{j})$ (c) $t = 3$, $\mathbf{s} = 4\mathbf{i} + 16.5\mathbf{j}$ $\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ $SB = \sqrt{(-3)^2 + 4^2} = 5 \text{ (km)}$ (d) Equating \mathbf{i} components $40 - 12t = 7 \qquad \mathbf{or} \qquad -33 + 12t = 0$ $t = 2\frac{3}{4}$ When $t = 2\frac{3}{4}$, $\mathbf{s} = (7\mathbf{i}) + 14\frac{5}{8}\mathbf{j}$ $SB = 2\frac{1}{8} \text{ (km)} 2.125, 2.13$	Bearing is 302 (allow more accuracy) A1 (b) $\mathbf{s} = 40\mathbf{i} - 6\mathbf{j} + t(-12\mathbf{i} + 7.5\mathbf{j})$ M1 A1 (c) $t = 3$, $\mathbf{s} = 4\mathbf{i} + 16.5\mathbf{j}$ $\mathbf{s} - \mathbf{b} = -3\mathbf{i} + 4\mathbf{j}$ $SB = \sqrt{((-3)^2 + 4^2)} = 5 \text{ (km)}$ (d) Equating \mathbf{i} components $40 - 12t = 7 \text{or} -33 + 12t = 0$ $t = 2\frac{3}{4}$ M1 A1 When $t = 2\frac{3}{4}$, $\mathbf{s} = (7\mathbf{i}) + 14\frac{5}{8}\mathbf{j}$ $SB = 2\frac{1}{8} \text{ (km)} 2.125, 2.13$ M1 A1

Question 6(a)

 $\arctan(\frac{\pm 7.5}{\pm 12})$ either way up First M1 for

First A1 for a correct value from their expression, usually 32° or 58°

Second A1 for 302 (allow more accurate answers)

Question 6(b)

 $\overline{M1}$ for a clear attempt at $(40\mathbf{i} - 6\mathbf{j}) + t(-12\mathbf{i} + 7.5\mathbf{j})$ A1 for any correct expression

Question 6(c)

First M1 is really B1 for $4\mathbf{i} + 16.5\mathbf{j}$ (seen or implied but can be in unsimplified form) Second M1 is for a subtraction, $\mathbf{s} - \mathbf{b}$ or $\mathbf{b} - \mathbf{s}$.

Third DM1, dependent on second M1, for finding magnitude of their $\mathbf{s} - \mathbf{b}$ or $\mathbf{b} - \mathbf{s}$ A1 for 5

Question 6(d)

First M1 for equating **i**-component of their answer in part (b) to 7 or the **i**-component of their s - b or b - s to zero

First A1 for 2.75 cao

Second M1 (independent) for attempt to find **j**-component of their **s** at their

t = 2.75

Second A1 2.125 or 2.13 cao

Question Number	Scheme	Marks
7.	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	(a) For system N2L $4-3=0.8a$ $a=1.25 \text{ (m s}^{-2}), 1.3$	M1 A1 A1 (3)
	(b) $v = u + at \implies v = 0 + 1.25 \times 6 = 7.5 \text{ (m s}^{-1}\text{)}$	M1 A1 (2)
	(c) For P N2L $T-1=0.3\times1.25$ ft their a $T=1.375$ (N) 1.38, 1.4	M1 A1ft A1 (3)
	OR For Q N2L $4 - 2 - T = 0.5 \times 1.25$	
	$P(0.3 \text{ kg}) \qquad Q(0.5 \text{ kg})$ $T' \qquad T'$	
	1 N 2 N	
	(d) For system N2L $-3 = 0.8a \implies a = -3.75$ $v^2 = u^2 + 2as \implies 0^2 = 7.5^2 - 2 \times 3.75s$ s = 7.5 (m)	M1 A1 M1 A1 (4)
	(e) For P N2L $T'+1=0.3\times3.75$ $T'=0.125$ (N), 0.13	M1 A1 A1 (3) [15]
	Alternative for (e) For Q N2L $2-T' = 0.5 \times 3.75$ $T' = 0.125 \text{ (N)}, 0.13$	M1 A1 A1 (3)

Question 7(a)(In parts (a), (c), (d) and (e) use the value of the mass being used to guide you as to which part of the system is being considered, and mark equation(s) accordingly)

M1 for resolving horizontally to produce an equation in a ONLY.

First A1 for a correct equation

Second A1 for 1.25

Question 7(b)

M1 for a complete method to find the speed A1 cao 7.5

Question 7(c)

M1 for resolving horizontally, for either P or Q, to produce an equation in T only.

First A1ft for a correct equation, ft on their a

Second A1 cao for 1.38 (N) or 1.375 (N)

Question 7(d)

First M1 for resolving horizontally to produce an equation in a ONLY.

First A1cao for -3.75 (or 3.75)

Second M1 for use of $v^2 = u^2 + 2as$, with v = 0, u = their (b) and their a, (or any other complete method which produces an equation in s only)

M0 if they haven't *calculated* a value of *a*.

Second A1 for 7.5 m

Question 7(e)

M1 for resolving horizontally, for either P or Q, to produce an equation in T only.

M0 if they haven't *calculated* a value of a

First A1cao for a correct equation

Second A1 cao for 0.125 or 0.13 (N) (must be positive)

Physics And Maths Tutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u>

Order Code UA032675 Summer 2012

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Mark Scheme (Results)

January 2013

GCE Mechanics M1 (6677/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013
Publications Code UA034762
All the material in this publication is copyright
© Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment.
 Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.

- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

0	1
	•
•	
	•
•	
•	
	•
	•
	•

Jan 2013 6677 Mechanics M1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$4m.2u - m.5u = -4m.\frac{1}{2}u + mv$ $3mu = -2mu + mv$	M1 A1
	v = 5u, opposite direction	A1, A1 cso (4)
(b)	$I = 4m(\frac{1}{2}u2u)$ OR $I = m(5u5u)$ = 10mu = 10mu	M1 A1 A1 (3)
		7
2.(a)	$M(D)$, $8R = (80g \times 6) + (200g \times 4)$ R = 160g, 1600 , 1570	M1 A1 A1 (3)
(b)	(\uparrow), $2S = 80g + 200g$ S = 140g, 1400, 1370	M1 A1 (2)
(c)	$M(B)$, $Sx + (S \times 10) = (80g \times 8) + (200g \times 6)$ 140x + 1400 = 640 + 1200 140x = 440	M1 A2
	$x = \frac{22}{7}$	A1 (4) 9
3.	$(\uparrow), T\cos 30 + F\cos 60 = 2g$	M1 A1 M1 A1
	(\rightarrow), $T\cos 60 - F\cos 30 = 0$ F = g = 9.8 $T = \sqrt{3}g = 17 \text{ or } 17.0$	M1 A1 M1 A1 8
	OR: $(\Box), F = 2g\cos 60$ $(\Box), T = 2g\cos 30$ $F = g = 9.8$ $T = \sqrt{3}g = 17 \text{ or } 17.0$	M1 A1 M1 A1 M1 A1 M1 A1 8

	2	1354.4	
4.	$12.6^2 = 2a.50 \qquad (\Rightarrow a = 1.5876)$	M1 A1	
	$800g\sin 15 - F = 800a$	M1 A1	
	$R = 800g\cos 15$	M1 A1 B1	
	$F = \mu R$	D1	
	$800g\sin 15 - \mu 800g\cos 15 = 800 \times 1.5876$	M1	
	$\mu = 0.1, 0.10, 0.100$	A1	
	μ- 0.1, 0.10, 0.100		9
5. (a)	$30^2 = 2a.300$	M1	
	a = 1.5	A1	(2)
(b)	$0^2 = 30^2 - 2 \times 1.25s$ OR $0 = 30 - 1.25t_2$	M1	
	$s = 360 t_2 = 24$	A1	
	$300 + 30T + 360 = 1500 \qquad \frac{(20 + T + 24 + T)}{2} \times 30 = 1500$	M1 A1	
	T = 28 T = 28	A1	(5)
(c)	triangle, drawn on the diagram, with base coinciding with base of	B1	
	trapezium, top vertex above line $v = 30$ and meeting trapezium at least once	DB1	
	V marked correctly		(2)
(d)			
		M1	
	$30 = 1.5t_1 \Rightarrow t_1 = 20$	A1 A1	
	$30 = 1.25t_2 \Longrightarrow t_2 = 24$		
	$\frac{1}{2}(20+28+24)V = 1500$	M1 A1	
	2	A1	
	$V = \frac{750}{18} = 41.67$		(6)
			(6)
	$=\frac{125}{3}$ (oe) 0r 42 (or better)		
		15	

6.(a)	(i - 4j) - (4i - 8j)	M1 A1	
	$\frac{(\mathbf{i} - 4\mathbf{j}) - (4\mathbf{i} - 8\mathbf{j})}{0.5}; (\pm 6\mathbf{i} \pm 8\mathbf{j})$		
	$\sqrt{(\pm 6)^2 + (\pm 8)^2} = 10$	M1 A1	(4)
	$\mathbf{r} = (4\mathbf{i} - 8\mathbf{j}) + t(-6\mathbf{i} + 8\mathbf{j})$	M1	
(b)	$=(4\mathbf{i}-8\mathbf{j})-6t\mathbf{i}+8t\mathbf{j}$		
(b)	$= (4-6t)\mathbf{i} + (8t-8)\mathbf{j} *$	A1	(2)
	At 10 am, $\mathbf{r} = -2\mathbf{i}$	M1 A1	
(c)	At 10.30 am, $r = -5i + 4j$	A1	
(0)	$\mathbf{l} = k\mathbf{i}, \ k < -2$	DM1	
	k = -5 - 4 = -9	Divil	
	$\mathbf{l} = -9\mathbf{i}$	A1	(5)
	- /-	111	
			11
7.(a)	Inextensible string	B1	(1)
/ .(u)	_		
(b)	4mg - T = 4ma	M1A1	
	$T - 2mg\sin\alpha - F = 2ma$	M1A1	(4)
	F = 0.25R	B1	
(c)	$R = 2mg\cos\alpha$	B1	
	$\cos \alpha = 0.8 \text{ or } \sin \alpha = 0.6$	B1	
	Eliminating R, F and T	M1	
	a = 0.4g = 3.92	A1	(5)
	$v^2 = 2 \times 0.4gh$		
(d)	$-2mg\sin\alpha - F = 2ma'$	M1	
	a' = -0.8g	M1 A1	
	$0^2 = 0.8gh - 2x \ 0.8g \ x \ s$		
	s = 0.5h	M1	
	XY = 0.5h + h = 1.5h	A1 A1	
			<i>(</i> - \)
			(6) 16
			-0

Physics And Maths Tutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA034762 January 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Mechanics 1 (6677/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036418
All the material in this publication is copyright
© Pearson Education Ltd 2013

PhysicsAndMathsTutor.com

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
 - Omission or extra g in a resolution is accuracy error not method error.
 - Omission of mass from a resolution is method error.
 - Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
 - DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
 - Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
 - Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
 - In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
 - Accept column vectors in all cases.
 - Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks
1(a) (b)	$ \begin{array}{c} $	M1A1 A1 (3) M1A1 A1 (3) [6]
	Notes for Question 1	
Q1(a)	M1 for attempt at Impulse = difference in momenta for particle A , (must be considering <i>one</i> particle) (M0 if g is included or if mass omitted). First A1 for $-14 = 2(\pm v - 5)$ Second A1 for 2 (Must be positive). Allow change of sign at end to obtain speed.	
Q1(b)	EITHER M1 for attempt at Impulse = difference in momenta for particle B , (must be considering <i>one</i> particle) (M0 if g is included or if mass omitted). First A1 $14 = 3(\pm w6)$ Second A1 for $4/3$, 1.3 or better (Must be positive). Allow change of sign at end to obtain speed. OR M1 for attempt at CLM equation, with correct no. of terms, dimensionally correct. Allow consistent extra g's and sign errors. First A1 (Not f.t.) for a correct equation e.g. $2 \times 5 - 3 \times 6 = -2 \times 2 + 3w$ Second A1 for speed is $4/3$; 1.3 or better N.B. They may find the speed of B first and then use CLM to find the speed of A . It must be clear which speed is which, in order to gain the A marks for the answers	

Question Number	Scheme	Marks
2.	A $T_{A}N$ $T_{B}N$ $S_{A}N$ $S_{A}N$ $S_{A}N$	
	Resolve horizontally: $T_A \cos 35^\circ = T_B \cos 25^\circ$ Resolve vertically: $T_A \sin 35^\circ + T_B \sin 25^\circ = 8$ Equation in one unknown: $T_B \frac{\cos 25^\circ}{\cos 35^\circ} \sin 35^\circ + T_B \sin 25^\circ = 8$ or $T_A \sin 35^\circ + T_A \frac{\cos 35^\circ}{\cos 25^\circ} \sin 25^\circ = 8$	M1A1 M1A1 DM1 A1
	$T_A = 8.4, 8.37, 8.372$ (N) or better $T_B = 7.6, 7.57, 7.567$ (N) or better	A1 A1 (8)
2alt	Using Sine Rule on triangle of forces: $\frac{8}{\sin 60^{\circ}} = \frac{T_A}{\sin 65^{\circ}} = \frac{T_B}{\sin 55^{\circ}}$	M1A1
	$\frac{8 \times \sin 65^{\circ}}{\sin 60^{\circ}} = T_A, = 8.4, 8.37, 8.372 \text{ (N) or better}$ $\frac{8 \times \sin 55^{\circ}}{\sin 60^{\circ}} = T_B, = 7.6, 7.57, 7.567 \text{ (N) or better}$	M1A1, A1 M1A1, A1

Notes for Question 2		
2	First M1 for resolving horizontally with correct no. of terms and both T_A and T_B terms resolved. First A1 for a correct equation. Second M1 for resolving vertically with correct no. of terms and both T_A and T_B terms resolved. Second A1 for a correct equation. Third M1, dependent on first two M marks, for eliminating T_A or T_B Third A1 for a correct equation in one unknown Fourth A1 for $T_A = 8.4$ (N) or better. Fifth A1 for $T_B = 7.6$ (N) or better. N.B. The first two M marks can be for two resolutions in any two directions. N.B. If the two tensions are taken to be equal, can score max M1A0 for vertical resolution.	
2 alt 1	See Alternative 1 using a Triangle of Forces and the Sine Rule.	
2 alt 2	Alternative 2 is to resolve perpendicular to each string: The scheme is similar to Alt 1 and gives the same expressions for T_A and T_B M1A1 resolving perp to <i>both</i> strings as a complete method. M1A1A1 for finding T_A M1A1A1 for finding T_B	

Question Number	Scheme	Marks	
3.	R T B $4g$		
	Equation of motion of B: $4g - T = 4a$	M1A1	
	Equation of motion of A: $T - F - 2g \sin 30 = 2a$ OR: $4g - F - 2g \sin 30 = 6a$	M1A2	
	Resolve perpendicular to the plane at A: $R = 2g \cos 30$	B1	
	Use of $F = \mu R$: $F = \frac{1}{\sqrt{3}} \times 2g \cos 30 (= g)$	M1	
	T - g - g = T - 2g = 2a		
	$2T - 4g = 4g - T$, $3T = 8g$, $T = \frac{8g}{3} (\approx 26) \ 26.1(N)$	DM1 A1	
			(9) [9]
	Notes for Question 3		
3	First M1 for resolving vertically (up or down) for <i>B</i> , with correct no. of terms. First A1 for a correct equation. Second M1 for resolving parallel to the plane (up or down) for <i>A</i> , with correct no. of terms. A2 for a correct equation (-1 each error) OR: M2 A3 for the whole system equation - any method error loses all the		
	marks. B1 for perpendicular resolution Third M1 for sub for R in $F = \mu R$ Fourth DM1, dependent on first and second M marks, for eliminating a . Fourth A1 for 8g/3, 26.1 or 26 (N). (392/15 oe is A0)		

Question Number	Scheme	Marks	
4.			
(a)	Use of $s = ut + \frac{1}{2}at^2$	M1	
	$-2t + \frac{1}{2}gt^2 \ (+ \text{ or } -50)$	A1	
	$20t - \frac{1}{2}gt^2 \ (+ \text{ or } -50)$	A1	
	$50 = -2T + \frac{1}{2}gT^2 + 20T - \frac{1}{2}gT^2 = 18T$	M1	
	$T = \frac{50}{18} = 2.777 = 2.8$ or better	A1	
	10	((5)
(b)	$h = 20 \times T - 4.9 \times T^2 = 17.74 \approx 17.7 (18 \text{ to } 2 \text{ s.f.})$ (use of 2.8 gives 17.584)	M1A1	
	(use of 2.6 gives 17.364)		(2) [7]
	Notes on Question 4	L	
Q4(a)	First M1 for use of $s = ut + 1/2at^2$ (or use of 2 <i>suvat</i> formulae AND eliminating v , to give an equation in s and t). N.B. M0 if they use $s = 50$ or $u = 0$ or $v = 0$) First A1 with $u = 2$ and $a = -g$ or -9.8 to obtain a distance, possibly with 50 added or subtracted. (2 and 4.9 must have <i>opposite</i> signs) Second A1 with $u = 20$ and $a = -g$ or -9.8 to obtain a distance, possibly with 50 added or subtracted. (2 and 4.9 must have <i>opposite</i> signs) Second M1 dependent on first M1 for a <i>correct</i> equation obtained correctly		
Q4(b)	in <i>T</i> only. Third A1 for 25/9 oe, 2.8 or better First M1 for substituting their <i>T</i> value (allow –ve changed to +ve but A mark is then unavailable) into an appropriate equation First A1 for 17.7 or 18 (m). (A0 if they then add 50)		

Question Number	Scheme	Marks
5. (a)	$s = \frac{u+v}{2}t \qquad 10 = \frac{2+v}{2} \times 3.5$ $v = \frac{20}{3.5} - 2 = \frac{26}{7} = 3.71 \text{ (m s}^{-1})$	M1A1 A1 (3)
(b)	$a = \frac{v - u}{t} = \frac{\frac{26}{7} - 2}{3.5} = \frac{24}{49} = 0.490 \text{ (m s}^{-2})$	M1A1 (2)
(c)	Normal reaction : $R = 0.6g \cos 25^\circ$ Resolve parallel to the slope : $0.6g \sin 25^\circ - \mu \times R = 0.6 \times a$ $\mu = 0.41$ or 0.411	B1 M1A2 A1 (5) [10]
	Notes for Question 5	
Q5(a)	First M1 for producing an equation in <i>v only</i> . First A1 for a correct equation Second A1 for 26/7 oe, 3.7 or better (ms ⁻¹)	
Q5(b)	M1 for producing an equation in <i>a only</i> . A1 for 24/49, 0.49 or better (ms ⁻²)	
Q5(c)	B1 for $R = 0.6 \text{gcos} 25^{\circ}$ M1 for resolving along the plane, correct no. of terms etc. A2 (-1 each error) R and a do not need to be substituted Third A1 for 0.41 or 0.411	

Question Number	Scheme	Marks
6.		
(a)	Use of $r = r_0 + vt$	M1
	(-4i+2j)+(3i+3j)t = (-4+3t)i+(2+3t)j	A1
	J, (= = y), (= = 1/y)	(2)
(b)	(6i + j) + (-2i + nj)t = (6 - 2t)i + (1 + nt)j	B1
` ,	Position vectors identical $\Rightarrow -4 + 3t = 6 - 2t$ AND $5t = 10$,	M1
	Either equation	A1
	$2+3\times 2=1+2n$,	DM1
	n=3.5	A1
		(5)
(c)	Position vector of P is $(-4+6)i+(2+6)j=2i+8j$	M1A1
	Distance OP = $\sqrt{2^2 + 8^2} = \sqrt{68} = 8.25 \text{ (km)}$	M1A1
		(4)
		[11]
	Notes for Question 6	
Q6(a)	M1 for clear attempt to use $\mathbf{r}_0 + t\mathbf{v}$ (M0 if \mathbf{r}_0 and \mathbf{v} reversed)	
Qu(a)	A1 for answer in any form.	
	B1 for $(6\mathbf{i} + \mathbf{j}) + (-2\mathbf{i} + n\mathbf{j})t$ seen or implied	
	First M1 for equating their i - cpts and their j - cpts. (must have both	
	equations in terms of <i>same t</i>)	
Q6(b)	First A1 for a correct equation (either)	
	Second M1 dependent on first M1 for producing an equation in <i>n</i> only.	
	Second A1 for $n = 3.5$ oe	
	First M1 for clear attempt to find pv of <i>P</i> , using their <i>t</i> and/or <i>n</i> value(s)	
	First A1 for $2\mathbf{i} + 8\mathbf{j}$	
Q6(c)	Second M1 for attempt to find magnitude of their p	
4 0(c)	Second A1 for $\sqrt{68}$, $2\sqrt{17}$, 8.2 or better (km)	

Question Number	Scheme	Marks
7		
(a)	Use of $v^2 = u^2 + 2as$	M1
. ,	$14^2 = 20^2 - 2a \times 100$	A1
	Deceleration is $1.02 (\text{m s}^{-2})$	A1
	Deceleration is 1.02(m/s)	(3)
(b)	Horizontal forces on the car: $\pm T \cos \theta - 300 = 750 \times -1.02 = -765$ T = -1550/3	M1A2 f.t.
	The force in the tow-bar is 1550/3, 520 (N) or better (allow –ve answer)	A1
		(4)
(c)	Horizontal forces on the truck: $\pm T \cos \theta - 500 - R = 1750 \times -1.02$	M1A2 f.t.
	Braking force $R = 1750 (N)$	A1
		(4)
		[11]
	ALT : Whole system: $800 + R = 2500 \times 1.02$	M1A2 f.t.
	R = 1750	A1
	Notes for Question 7	I
	M1 for a complete method to produce an equation in a only.	
Q7(a)	First A1 for a correct equation.	
Q / (u)	Second A1 for 1.02 (ms ⁻²) oe. must be POSITIVE.	
	M1 for considering <i>the car ONLY</i> horizontally to produce an equation in T	
	only, with usual rules. i.e. correct no. of terms AND T resolved:	
0=0	$\pm T \cos \theta - 300 = 750 \text{ x} - 1.02$	
Q7(b)	A2 ft on their <i>a</i> for a correct equation (300 and <i>a</i> must have <i>same</i> sign); -1	
	each error (treat cos 0.9 as an A error)	
	A1 for 1550/3 oe, 520 or better (N) N.B. Allow a negative answer.	
	M1 for considering <i>the truck ONLY</i> horizontally to produce an equation,	
	with usual rules. i.e. correct no. of terms AND T resolved:	
	$\pm T \cos \theta - 500 - R = 1750 \text{ x} - 1.02$	
	A2 ft on their <i>T</i> and <i>a</i> for a correct equation (500, <i>a</i> and <i>R</i> must have <i>same</i>	
	sign); -1 each error (treat cos 0.9 as an A error)	
	A1 for 1750 (N).	
O7(a)	OR	
Q7(c)	M1 for considering <i>the whole system</i> to produce an equation in <i>R</i> only,	
	with usual rules. i.e. correct no. of terms.	
	A2 ft on their a for a correct equation (<u>a and R must have same sign</u>) -1	
	each error	
	A1 for 1750 (N).	
	N.B. If 300 and 500 are given separately, penalise any sign errors only	
	ONCE.	

Question Number	Scheme	Marks
8. (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	Vertical equilibrium: $R + 2R = 50g$, Moments about C: $50g \times 0.8 = (1.8 - x) \times 2 \times R$ $3 \times 0.8 = 3.6 - 2x$, $x = 0.6$	M1A1 M1A1 DM1 A1 (6)
(b)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	S, 4S Vertical equilibrium: $S + 4S = (50 + m)g = 5S$ Moments about $B: 50g \times 1 = 4S \times 0.4 + S \times 1.8 = 3.4S$ $50 \times \frac{5}{3.4} = (50 + m)$ m = 400/17, 24, 23.5 or better	B1 M1A1 M1A1 DM1 A1 (7) [13]

Notes for Question 8		
	In both parts consistent omission of g's can score all the marks.	
	First M1 for vertical resolution or a moments equation, with usual rules.	
	(allow <i>R</i> and <i>N</i> at this stage)	
	First A1 for a correct equation (with $N = 2R$ substituted)	
O 8(a)	Second M1 for a moments equation in <i>R</i> and one unknown length with	
Q8(a)	usual rules.	
	Second A1 for a correct equation.	
	Third M1, dependent on first and second M marks, for solving for x	
	Third A1 for $x = 0.6$.	
	S.C. Moments about centre of rod: $R \times 0.8 = 2R(1-x)$ M2 A2	
	B1 for S and 4S placed correctly.	
	First M1 for vertical resolution or a moments equation, with usual rules.	
	(allow S and 4S reversed)	
	First A1 for a correct equation.	
	Second M1 for a moments equation in <i>S</i> (and <i>m</i>) with usual rules.	
Q8(b)	Second A1 for a correct equation.	
	Third M1, dependent on first and second M marks, for <i>eliminating S</i> to	
	give an equation in <i>m</i> only.	
	Third A1 for $m = 400/17$ oe or 24 or better.	
	N.B. SC If they use the reaction(s) found in part (a) in their equations, can	
	score max B1M1A0M1A0DM0A0.	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467
Fax 01623 450481
Email <u>publication.orders@edexcel.com</u>
Order Code UA036418 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Mechanics 1 (6677/01)

PhysicsAndMathsTutor.com

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.btec.co.uk for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson.

Their contact details can be found on this link: www.edexcel.com/teachingservices.

You can also use our online Ask the Expert service at www.edexcel.com/ask. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013
Publications Code UA036415
All the material in this publication is copyright
© Pearson Education Ltd 2013

PhysicsAndMathsTutor.com General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PhysicsAndMathsTutor.com EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{\text{ will be used for correct ft}}$
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

General Rules for Marking Mechanics

- Usual rules for M marks: correct no. of terms; dim correct; all terms that need resolving (i.e. multiplied by cos or sin) are resolved.
 - Omission or extra g in a resolution is accuracy error not method error.
 - Omission of mass from a resolution is method error.
 - Omission of a length from a moments equation is a method error.
- Omission of units or incorrect units is not (usually) counted as an accuracy error.
 - DM indicates a dependent method mark i.e. one that can only be awarded if a previous specified method mark has been awarded.
 - Any numerical answer which comes from use of g = 9.8 should be given to 2 or 3 SF.
 - Use of g = 9.81 should be penalised once per (complete) question.
 - N.B. Over-accuracy or under-accuracy of correct answers should only be penalised *ONCE* per complete question.
 - In all cases, if the candidate clearly labels their working under a particular part of a question i.e. (a) or (b) or (c),.....then that working can only score marks for that part of the question.
 - Accept column vectors in all cases.
 - Misreads if a misread does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, bearing in mind that after a misread, the subsequent A marks affected are treated as A ft.

Question Number	Scheme	Marks
1.		
(a)	For P , $-I = 3(1-4)$	M1 A1
	I = 9 Ns	A1
		(.
(b)	For Q , $9 = m(1.53)$	M1 A1
	m=2	A1
	OR	
	12-3m=3+1.5m	M1 A1
	m=2	A1
		(,
		[
	Number O. A. A. A.	
	Notes for Question 1 M1 for attempt at Impulse = difference in momenta for particle P , (must	
Q1(a)	be considering <i>one</i> particle i.e. have <i>same mass</i> in both terms) (M0 if g is included or if mass omitted). First A1 for $\pm 3(1-4)$	
	Second A1 for 9 (Must be positive). Allow change of sign at end to obtain magnitude. N.B. For M1 they may use CLM to find a value for <i>m</i> first and then use it when considering the change in momentum of <i>Q</i> to find the impulse.	
Q1(b)	EITHER M1 for attempt at: their Impulse from (a) = difference in momenta for particle Q , (must be considering <i>one</i> particle) (M0 if g is included or if mass omitted). First A1 for $9 = m(1.53)$ oe. Second A1 for $m = 2$. OR	
	M1 for attempt at CLM equation, with correct no. of terms, dimensionally correct. Allow consistent extra g's and sign errors. First A1 for a correct equation i.e. $12 - 3m = 3 + 1.5m$ oe. Second A1 for $m = 2$.	

Physics And Maths Tutor.com

Question Number	Scheme	Marks
2.		
(a)	For system, (\uparrow) , $T - 950g - 50g = 1000 \times -2$	M1 A1
	T = 7800 N	A1
		(3)
(b)	For woman, (\uparrow) , $R-50g=50\times-2$	M1 A1
	R = 390 N	A1
		(3)
		[6]
	Notes for Question 2	_
Q2(a)	(In both parts, use the <i>mass</i> to decide which part of the system is being considered and M marks can only be scored if an equation contains only forces acting on that part of the system) M1 is for a complete method for finding <i>T</i> i.e. for an equation in <i>T only</i> , dimensionally correct, with the correct number of terms. First A1 for a correct equation. Second A1 for 7800 (N).	
Q2(b)	M1 is for a complete method for finding <i>R</i> i.e. for an equation in <i>R only</i> , dimensionally correct, with the correct number of terms. First A1 for a correct equation. Second A1 for 390 (N). N.B. Equation for lift <i>only</i> is: $T - 950g - R = 950 \times (-2)$	

Question Number	Scheme	Marks
3.	$T\cos\alpha - F = 2g\cos 60^{\circ}$	M1 A1
	$T\sin\alpha + R = 2g\cos 30^{\circ}$	M1 A1
	$F = \frac{1}{3}R$	B1
	eliminating F and R	DM 1
	$T = g(1 + \frac{1}{\sqrt{3}})$, 1.6g (or better), 15.5, 15 (N)	DM 1 A1
		(8)
		[8]
	Notes for Question 3	
	Titles for Question 5	
Q3	First M1 for resolving parallel to the plane with correct no. of terms and both T and $2g$ terms resolved. First A1 for a correct equation. (use of α instead of 30° or 60° or vice versa is an A error not M error; similarly if they use $\sin(3/5)$ or $\cos(4/5)$ when resolving, this can score M1A0) Second M1 for resolving perpendicular to the plane with correct no. of terms and both T and $2g$ terms resolved. Second A1 for a correct equation (use of α instead of 30° or 60° or vice versa is an A error not M error; similarly if they use $\sin(3/5)$ or $\cos(4/5)$ when resolving, this can score M1A0) B1 for $F = 1/3$ R seen or implied. Third M1, dependent on first two M marks and appropriate angles used when resolving in <i>both</i> equations, for eliminating F and R . Fourth M1 dependent on third M1, for solving for T Third A1 for $15(N)$ or $15.5(N)$. N.B. The first two M marks can be for two resolutions in any directions. Use of $\tan \alpha = 4/3$ leads to an answer of 17.83 and can score max $7/8$.	

Scheme	Marks
$240 = \frac{1}{2}(u+34)10$	M1 A1
u = 14	A1
	(3)
$34 = 14 + 10a \implies a = 2$	M1 A1
$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
$t^2 + 14t - 120 = 0$	
Solving, $t = -20$ or 6	DM 1
t=6	A1
	M1 A1
AND $26 = 14 + 2t$	M1 A1
t=6	DM 1 A1
	(6)
	[9]
Notes for Question 4	
Notes for Question 4	
First M1 for a complete method to produce an equation in u only. First A1 for a correct equation. ($u^2 - 48u + 476 = 0$ oe is possible). Second A1 for $u = 14$.	
EITHER First M1 for an equation in a only. (M0 if $v = 34$ when $s = 120$ is used) First A1 for $a = 2$. (This may have been found in part (a)) Second M1 for a 3-term quadratic equation in t only, allow sign errors (must have found a value of a . (M0 if $v = 34$ when $s = 120$ is used) Second A1 for a correct equation. Third M1 dependent on previous M1 for solving for t . Third A1 for $t = 6$ OR First M1 for an equation in t only. First A1 for t = 2. (This may have been found in part (a)) Second M1 for a complete method to obtain an equation in t only, allow sign errors. (must have found a value of t a)	
	$240 = \frac{1}{2}(u+34)10$ $u = 14$ $34 = 14 + 10a \implies a = 2$ $120 = 14t + \frac{1}{2} \times 2 \times t^2$ $t^2 + 14t - 120 = 0$ Solving, $t = -20$ or 6 $t = 6$ OR $34 = 14 + 10a \implies a = 2$ $v^2 = 14^2 + 2 \times 2 \times 120 \implies v = 26$ AND $26 = 14 + 2t$ $t = 6$ First M1 for a complete method to produce an equation in u only. First A1 for a correct equation. ($u^2 - 48u + 476 = 0$ oe is possible). Second A1 for $u = 14$. ETHER First M1 for an equation in u only. (M0 if u = 34 when u = 120 is used) First A1 for u = 2. (This may have been found in part (a)) Second M1 for a 3-term quadratic equation in u only, allow sign errors (must have found a value of u . (M0 if u = 34 when u = 120 is used) Second A1 for u = 2. (This may have been found in part (a)) Third M1 dependent on previous M1 for solving for u . Third A1 for u = 2. (This may have been found in part (a)) Second M1 for an equation in u only. First M1 for an equation in u only, allow

Question Number	Scheme	Mar	ks
5.			
(a)	Speed ▲ Shape	B1	
	Figures	B1	
	22		(2)
	0 20 20 7 120 7		
	0 30 30+7 120 Time		
(b)	$\frac{(120+T)22}{2} = 2145$	M1 A	1
	T = 75	A1	
		711	(3)
	(t+t-30)22		(3)
(c)	$\frac{(t+t-30)22}{2} = 990$	M1 A	1
	-	A 1	
	t = 60	A1	
	Answer = 60 - 10 = 50	A1	
			(4)
(d)	$990 = 0.5a50^2$	M1	
	a = 0.79, 0.792, 99/125 oe	A1	
			(2)
			[11]
	Notes for Question 5		
	First B1 for a trapezium starting at the origin and ending on the <i>t</i> -axis.		
Q5(a)	Second B1 for the figures marked (allow missing 0 and a delineator of		
QS(a)	for T) (allow if they have used $T = 75$ correctly on their graph)		
	First M1 for producing an equation in their T only by equating the area		
	of the trapezium to 2145, with the correct no. of terms. If using a single		
	trapezium, we need to see evidence of using ½ the sum of the two		
	parallel sides or if using triangle(s), need to see ½ base x height.		
Q5(b)	Second A1 cao for a correct equation in T (This is not f.t. on their T)		
	Third A1 for $T = 75$.		
	N.B. Use of a single <i>suvat</i> equation for the whole motion of the car		
	e.g. $s = t(u+v)/2$ is M0		
	First M1 for producing an equation in <i>t only</i> (they may use $(t-30)$ oe as		
	their variable) by equating the area of the trapezium to 990, with the		
	correct no. of terms. If using a trapezium, we need to see evidence of		
	5 1		
	using ½ the sum of the two parallel sides or if using triangle(s), need to		
	see ½ base x height.		
Q5(c)	First A1 for a correct equation.		
	Second A1 for $t = 60$ (Allow $30 + 30$).		
	Third A1 for answer of 50.		
	N.B. Use of a single <i>suvat</i> equation for the whole motion of the car		
	e.g. $s = t(u+v)/2$ is M0.		
	Use of the motion of the motorcycle is M0 (insufficient information).		
	Use of $v = 22$ for the motorcycle is M0.		
A = 1 = 1	First M1 for an equation in a only.		
Q5(d)	First A1 for $a = 0.79, 0.792, 99/125$ oe		
	N.B. Use of $v = 22$ for the motorcycle is M0.		

Question Number	Sch	eme	Marks
6.			
(a)	Р	Q	
	A 2 m ♠	↑3 m B	
	'		
	▼ Mg		
	★ xm		
	$M(P), \qquad 50g \times 2 = Mg \times (x-2)$		M1 A1
	9 9 1		M1 A1
	$M(Q), 50g \times 3 = Mg \times (12 - x)$		M1 A1
	16.05.4		
(i)	M = 25 (kg)		DM 1 A1
(ii)	x = 6 (m)		DM 1 A1
			(8)
(b)	P A 2 m A V	Q B	
		↑3 m B	
	R 25g	Ř	
		-50 <i>g</i>	
	(A) D D 25 50	-	3.51 4.1 6
	$(\uparrow)R + R = 25g + 50g$		M1 A1 ft
	$M(A)$, $2R + 12R = 25g \times 6 + 50g \times A$	1 <i>X</i>	M1 A1 ft
	AX = 7.5 (m)		DM 1 A1
			(6)
			[14]

Notes for Question 6		
Q6(a)	First M1 for moments about <i>P</i> equation with usual rules (or moments about a different point AND vertical resolution and <i>R</i> then eliminated) (M0 if non-zero reaction at <i>Q</i>) Second M1 for moments about <i>Q</i> equation with usual rules (or moments about a different point AND vertical resolution) (M0 if non-zero reaction at <i>P</i>) Second A1 for a correct equation in <i>M</i> and same unknown. Third M1, dependent on first and second M marks, for solving for <i>M</i> Third A1 for 25 (kg) Fourth M1, dependent on first and second M marks, for solving for <i>x</i> Fourth A1 for 6 (m) N.B. No marks available if rod is assumed to be uniform but can score max 5/6 in part (b), provided they have found values for <i>M</i> and <i>x</i> to f.t. on. If they have just invented values for <i>M</i> and <i>x</i> in part (a), they can score the M marks in part (b) but not the A marks.	
Q6(b)	First M1 for vertical resolution or a moments equation, with usual rules. First A1 ft on their M and x from part (a), for a correct equation. (must have <i>equal reactions</i> in vertical resolution to earn this mark) Second M1 for a moments equation with usual rules. Second A1 ft on their M and x from part (a), for a correct equation in R and same unknown length. Third M1, dependent on first and second M marks, for solving for AX (not their unknown length) with $AX \le 15$ Third A1 for $AX = 7.5$ (m) N.B. If a single equation is used (see below), equating the sum of the moments of the child and the weight about P to the sum of the moments of the child and the weight about Q , this can score M2 A2 ft on their M and x from part (a), provided the equation is in one unknown. Any method error, loses both M marks. e.g. $25g.4 + 50g(x - 2) = 25g.6 + 50g(12 - x)$ oe.	

Question Number	Scheme	Marks
7.		
(a)	$t = 0$ gives $\mathbf{v} = \mathbf{i} - 3\mathbf{j}$	B1
	speed = $\sqrt{1^2 + (-3)^2}$	M1
	$=\sqrt{10}=3.2$ or better	A1
		(3)
(b)	$t=2$ gives $\mathbf{v} = (-3\mathbf{i} + 3\mathbf{j})$	M1
	Bearing is 315°	A1
		(2)
(c)(i)	$1 - 2t = 0 \Rightarrow t = 0.5$	M1 A1
(ii)	-(3t-3) = -3(1-2t)	M1 A1
	Solving for <i>t</i>	DM 1
	t = 2/3, 0.67 or better	A1
		(6)
		[11]
	N. d. O. d. T	
	Notes for Question 7	1
	D1 for ; 2;	
Q7(a)	B1 for $\mathbf{i} - 3\mathbf{j}$. M1 for $\sqrt{\text{(sum of squares of cpt.s)}}$	
Q/(a)	A1 for $\sqrt{10}$, 3.2 or better	
	M1 for clear attempt to sub $t = 2$ into given expression.	
Q7(b)	A1 for 315.	
	(i) First M1 for $1 - 2t = 0$.	
	First A1 for $t = 0.5$.	
	N.B. If they offer two solutions, by equating both the \mathbf{i} and \mathbf{j}	
	components to zero, give M0.	
Q7(c)	(ii) First M1 for $\frac{1-2t}{3t-3} = \pm (\frac{-1}{-3})$ o.e. (Must be an equation in t	
	only)	
	First A1 for a correct equation (the + sign)	
	Second M1, dependent on first M1, for solving for t.	
	Second A1 for 2/3, 0.67 or better.	

Question Number	Scheme	Marks
8.		
(a)	For A , $T = 2ma$	B1
	For B , $3mg - T = 3ma$	M1 A1
	3mg = 5ma	DM 1
	$\frac{3g}{5} = a$ (5.9 or 5.88 m s ⁻²)	A1
		(5)
(b)	T = 6mg/5; $12m$; $11.8m$	B1
		(1)
(c)	$F = \sqrt{T^2 + T^2}$	M1 A1 ft
	$F = \sqrt{T^2 + T^2}$ $F = \frac{6mg\sqrt{2}}{5}; 1.7mg \text{ (or better)}; 16.6m; 17m$	A1
	Direction clearly marked on a diagram, with an arrow, and 45° (oe) marked	B1
		(4)
		[10]
	Notes for Question 8	
Q8(a)	B1 for $T = 2ma$ First M1 for resolving vertically (up or down) for B , with correct no. of terms. (allow omission of m , provided 3 is there) First A1 for a correct equation. Second M1, dependent on first M1, for eliminating T , to give an equation	
	in a only. Second A1 for 0.6g, 5.88 or 5.9. N.B. 'Whole system' equation: $3mg = 5ma$ earns first 4 marks but any error loses all 4.	
Q8(b)	B1 for $\frac{6mg}{5}$, 11.8m, 12m	
Q8(c)	M1 $\sqrt{(T^2 + T^2)}$ or $\frac{T}{\sin 45^\circ}$ or $\frac{T}{\cos 45^\circ}$ or $2T\cos 45^\circ$ or $2T\sin 45^\circ$ (allow if m omitted) (M0 for $T\sin 45^\circ$) First A1 ft on their T . Second A1 cao for $\frac{6mg\sqrt{2}}{5}$ oe, $1.7mg$ (or better), $16.6m$, $17m$	
	B1 for the direction clearly shown on a diagram with an arrow and 45° marked.	

Physics And Maths Tutor.com

PhysicsAndMathsTutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036415 Summer 2013

For more information on Edexcel qualifications, please visit our website $\underline{www.edexcel.com}$

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

