

MEI Structured Mathematics

Module Summary Sheets

FP3, Further Applications of Advanced Mathematics (Version B: reference to new book)

Option 1: Vectors

- Option 2: Multivariable Calculus
- **Option 3: Differential Geometry**
- **Option 4: Groups**
- Option 5: Markov Chains

Purchasers have the licence to make multiple copies for use within a single establishment

© MEI, April, 2006

MEI, Oak House, 9 Epsom Centre, White Horse Business Park, Trowbridge, Wiltshire. BA14 0XG. Company No. 3265490 England and Wales Registered with the Charity Commission, number 1058911 Tel: 01225 776776. Fax: 01225 775755.

References: Chapter 1 Pages 1-3	The vector product $\mathbf{a} \times \mathbf{b}$ $\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta \hat{\mathbf{n}}$ where θ is the angle between \mathbf{a} and \mathbf{b} and $\hat{\mathbf{n}}$ is the unit vector perpendicular to \mathbf{a} and \mathbf{b} such that \mathbf{a}, \mathbf{b} and $\hat{\mathbf{n}}$ form a right-handed set of vectors. Note that $\mathbf{a} \times \mathbf{a} = 0$ \mathbf{a}	E.g. Find the magnitude of $\mathbf{a} \times \mathbf{b}$ when $\mathbf{a} = \begin{pmatrix} 1\\2\\1 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} 2\\0\\1 \end{pmatrix},$ $\mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta \hat{\mathbf{n}} = \sqrt{6} \sqrt{5} \sin \theta \hat{\mathbf{n}}$ From the scalar product, $\mathbf{a} \cdot \mathbf{b} = \mathbf{a} \mathbf{b} \cos \theta = 2 + 0 + 1 = 3$ $\Rightarrow \cos \theta = \frac{3}{\sqrt{30}} \Rightarrow \sin \theta = \sqrt{1 - \frac{9}{30}} = \sqrt{\frac{7}{10}}$ $\Rightarrow \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta = \sqrt{30} \sqrt{\frac{7}{10}} = \sqrt{21}$
References: Chapter 1 Pages 4-7	Properties The vector product is anti-commutative. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$ (N.B. Commutative means that either order of a binary operation gives the same result. So addition is commutative, since $3 + 2 = 2 + 3$, but subtraction is anti-commutative since $3 - 2 = -(2 - 3)$.)	E.g. If $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \neq 0$ prove that $\mathbf{a} + \mathbf{c}$ is parallel to \mathbf{b} . $\mathbf{a} \times \mathbf{b} = \mathbf{b} \times \mathbf{c} \implies \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{c} = 0$ $\implies \mathbf{a} \times \mathbf{b} + \mathbf{c} \times \mathbf{b} = 0$ $\implies (\mathbf{a} + \mathbf{c}) \times \mathbf{b} = 0$ i.e. $\mathbf{a} + \mathbf{c}$ is parallel to \mathbf{b} .
Example 1.4 Page 7	If a and b are parallel then $\mathbf{a} \times \mathbf{b} = 0$. If either or both a and b are 0 then $\mathbf{a} \times \mathbf{b} = 0$. Note that $\mathbf{a} \times \mathbf{b} = 0$ does not mean that either a or b are 0 – they may be parallel. (m a) × (n b) = mn(a × b) $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$	E.g. Prove that $(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = 2\mathbf{a} \times \mathbf{b}$. $(\mathbf{a} - \mathbf{b}) \times (\mathbf{a} + \mathbf{b}) = (\mathbf{a} - \mathbf{b}) \times \mathbf{a} + (\mathbf{a} - \mathbf{b}) \times \mathbf{b}$ $= \mathbf{a} \times \mathbf{a} - \mathbf{b} \times \mathbf{a} + \mathbf{a} \times \mathbf{b} - \mathbf{b} \times \mathbf{b}$ $= -\mathbf{b} \times \mathbf{a} + \mathbf{a} \times \mathbf{b}$ since $\mathbf{a} \times \mathbf{a} = \mathbf{b} \times \mathbf{b} = 0$ $= \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{b} = 2\mathbf{a} \times \mathbf{b}$
	This is the distributive law – the vector product is distributive over addition and subtraction. Base Vectors The unit vectors parallel to the coordinate axes are \mathbf{i} , \mathbf{j} and \mathbf{k} . $\mathbf{i} \times \mathbf{j} = \mathbf{k}$, $\mathbf{j} \times \mathbf{k} = \mathbf{i}$, $\mathbf{k} \times \mathbf{i} = \mathbf{j}$	E.g. Calculate $\begin{vmatrix} 2 \\ 3 \end{vmatrix} \times \begin{vmatrix} -1 \\ 4 \end{vmatrix}$. $\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \times \begin{pmatrix} 2 \\ -1 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \times 4 - 3 \times -1 \\ 3 \times 2 - 1 \times 4 \\ 1 \times -1 - 2 \times 2 \end{pmatrix} = \begin{pmatrix} 11 \\ 2 \\ -5 \end{pmatrix}$
References: Chapter 1 Pages 3-4 <i>Example 1.2</i> <i>Page 6</i>	$\mathbf{i} \times \mathbf{i} = \mathbf{j} \times \mathbf{j} = \mathbf{k} \times \mathbf{k} = 0$ Component Form If $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}, \ \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}, \ \mathbf{a} \times \mathbf{b} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}$	E.g. Find the equation of the plane ABC, where the coordinates of A, B and C are (1,0,1), (2,1,1) and (3, 1, -1) respectively. $\mathbf{n} = \overrightarrow{AB} \times \overrightarrow{AC} \text{ where } \overrightarrow{AB} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \text{ and } \overrightarrow{AC} = \begin{pmatrix} 2\\1\\-2 \end{pmatrix}$
Exercise 1A Q. 1(i), 5(i), 8 FP3; Further Applications of Advanced Mathematics Version B: page 2 Competence statements v1, v2, v3 © MEI		$\Rightarrow \mathbf{n} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \times \begin{pmatrix} 2\\1\\-2 \end{pmatrix} = \begin{pmatrix} -2\\2\\-1 \end{pmatrix}$ So equation of plane is $-2x + 2y - z + d = 0$ and is satisfied by A, giving $-2 - 1 + d = 0$ $\Rightarrow d = 3$ $\Rightarrow -2x + 2y - z + 3 = 0$ (You can check that B and C also satisfy this equation.)

	[]	
References: Chapter 1 Pages 19-22	Distance of a point from a line. If P is a point not on a line <i>l</i> and A is any point on the line and M is the closest point on the line from P, then the distance is the length of the line PM.	E.g. Find the distance of the point (1, 2, 3) from the line $\frac{x-2}{2} = \frac{y+3}{-1} = \frac{z+1}{3}$
Example 1.10 Page 22	If the direction of <i>l</i> is defined by the unit vector, $\hat{\mathbf{d}}$, then PM = APsinPAM. Since $ \mathbf{a} \times \mathbf{b} = \mathbf{a} \mathbf{b} \sin \theta$, take $\mathbf{b} = \mathbf{AP}$ and $\mathbf{a} = \hat{\mathbf{d}}$.	$\begin{vmatrix} \mathbf{d} = \begin{pmatrix} -1\\ -1\\ 3 \end{pmatrix} \Rightarrow \mathbf{d} = \sqrt{14} \Rightarrow \hat{\mathbf{d}} = \frac{1}{\sqrt{14}} \begin{vmatrix} 2\\ -1\\ 3 \end{vmatrix}$
	Then $ \hat{\mathbf{d}} \times \vec{AP} = \hat{\mathbf{d}} \vec{AP} \sin PAM$	Take A (2, -3 , -1) and P (1, 2, 3) \Rightarrow AP = 5
Exercise 1D Q. 1(i), 2(ii)	$= \vec{AP} \sin PAM = PM$ So $ \vec{PM} = \hat{d} \times \vec{AP} $ \vec{D} D	$\hat{\mathbf{d}} \times \vec{AP} = \frac{1}{\sqrt{14}} \begin{pmatrix} 2\\-1\\3 \end{pmatrix} \times \begin{pmatrix} -1\\5\\4 \end{pmatrix} = \frac{1}{\sqrt{14}} \begin{pmatrix} -19\\-11\\9 \end{pmatrix}$
		$\Rightarrow \left \hat{\mathbf{d}} \times \vec{AP} \right = \frac{1}{\sqrt{14}} \sqrt{19^2 + 11^2 + 9^2} = \sqrt{\frac{363}{14}}$
References: Chapter 1 Page 26-27	Distance of a point from a plane. If M is the foot of the perpendicular from $P(x_1, y_1, z_1)$	E.g. Find the distance of the point (1, 2, 1) from the plane $2x + 3y - z = 4$
1 4 20 27	PM. The direction of PM is the normal direction of the	Distance = $\left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right = \frac{2 \times 1 + 3 \times 2 - 1 - 4}{\sqrt{2^2 + 3^2 + 1^2}}$
	Let the equation of the plane be $ax + by + cz + d = 0$	$=\frac{3}{\sqrt{14}}$
	Take any point, R, on the plane. In general this can be (x_2, y_2, z_2) , but if <i>c</i> is not zero then this can be $(0, 0, -d/c)$.	E.g. Show that the points (6, 2, 2) and (2, -4, 4) are equidistant from the plane $2x + 3y - z - 2 = 0$
	Let the angle between PR and PM be θ . Then the scalar product gives $\overrightarrow{PR} \cdot \hat{\mathbf{n}} = PR \cos \theta$.	Distance = $\left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right $
	and PM = PRcos $\theta \Rightarrow PM = \vec{PR} \cdot \hat{n} $	For (6, 2, 2), $d = \frac{2 \times 6 + 3 \times 2 - 1 \times 2 - 2}{\sqrt{2^2 + 3^2 + 1^2}} = \frac{14}{\sqrt{14}}$
	$\vec{RP} = \begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}, \ \mathbf{n} = \begin{pmatrix} a \\ b \end{pmatrix}$	For (2, -4, 4), $d = \frac{2 \times 2 - 3 \times 4 - 1 \times 4 - 2}{\sqrt{2^2 + 3^2 + 1^2}} = \frac{-14}{\sqrt{14}}$
	$(z_1 - z_2)$ (c)	So same distance but opposite sides.
	$\Rightarrow \text{RP} \cdot \mathbf{n} = a(x_1 - x_2) + b(y_1 - y_2) + c(z_1 - z_2) = ax_1 + by_1 + cz_1 + d \text{ since } ax_2 + by_2 + cz_2 + d = 0$	E.g. Find the foot of the perpendicular from the $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$
	$\Rightarrow \vec{RP} \cdot \hat{\mathbf{n}} = \frac{ax_1 + by_1 + cz_1 + d}{ \mathbf{n} }$	point P(3, 5, 4) to the line $\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$.
	$\Rightarrow \text{distance} = \left \overrightarrow{PR} \cdot \widehat{\mathbf{n}} \right $ $= \left \frac{ax_1 + by_1 + cz_1 + d}{\sqrt{a^2 + b^2 + c^2}} \right $	Any point, A, on the line is $(1+2\lambda, 2-\lambda, 3+\lambda)$. $\vec{PA} = \begin{pmatrix} 1+2\lambda-3\\ 2-\lambda-5 \end{pmatrix} = \begin{pmatrix} 2\lambda-2\\ -\lambda-3 \end{pmatrix}$.
Exercise 1D		$\left(3+\lambda-4\right)\left(\lambda-1\right)$
Q. 3(i), 4(ii)	If two distances are opposite signs then the points are	This direction is perpendicular to the line. $(24, 2)$
	on opposite sides of the plane. If the distance is 0 then the point lies on the plane.	$\Rightarrow \begin{bmatrix} 2\lambda - 2 \\ -\lambda - 3 \\ \lambda - 1 \end{bmatrix}, \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} = 0$
	Line of A hours (1) (()	$\Rightarrow 4\lambda - 4 + \lambda + 3 + \lambda - 1 = 0 \Rightarrow \lambda = \frac{1}{2}$
Version B: page 4		3
Competence statements v6, v7 © MEI		$\Rightarrow A \text{ is } \left(\frac{1-3}{3}, \frac{1-3}{3}, \frac{3-3}{3} \right)$

References: Chapter 2 Pages 43-50A function of three variables Just as the function $y = f(x)$ represents a curve in two dimensions, the function $z = f(x, y)$ represents a surface.E.g. $z = x^2 + 2y$ Example 2.1 Page 45If the x- and y-axes are horizontal and the z-axis is vertical then for any coordinate pair (x, y) a value of z can be found.If the x- and y-axes are horizontal and the z-axis is $\frac{1}{2}$	
Example 2.1 Page 45If the x- and y-axes are horizontal and the z-axis is vertical then for any coordinate pair (x, y) a value of z can be found. 3^3 2^1 1^1 2^0 -1 2^1	
of z can be round.	
Q. 2, 7 All the points where z is equal is known as a contour.	
Example 2.2 Page 49A vertical plane cuts the surface in what is called a section.E.g. Determine the section $z = 3$ of the above function.	
Exercise 2B Q. 2, 3 z = 3 gives $x^2 + 2y = 3$ In the plane the	is
References: Chapter 2 Pages 52-53Partial differentiation This is the process of differentiating the function $z = f(x, y)$ with respect to x keeping y constant and differentiating $z = f(x, y)$ with respect to y, keeping x constant z_{20} z_{21} is a parabola $y = \frac{3-x^2}{2}$	
Example 2.4 Page 53	
Exercise 2C Q. 1(i), (iii), 5	
References: Chapter 2 Pages 55-59Differentiability- The Tangent Plane At a point on a continuous surface the plane which touches the surface at a point is said to be the tangent plane at that pointE.g. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ when $z = x^2 + 3x - y$	
Example 2.5 Page 58It contains the tangent of the section of the surface parallel to the x-axis at that point and also the tan- gent of the section of the surface parallel to the y- axis at that point. $\frac{\partial z}{\partial x} = 2x+3, \ \frac{\partial z}{\partial y} = -1$	
The directions of these lines are given by $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$. E.g. Find the equation of the tangent plane to surface $z = x^2 + 2xy + 4x$ at the point (1, 2, 9)	the
$\frac{\partial z}{\partial x} = c \text{ means that from the point, the change in y is}$ zero (because we keep it constant!) $\frac{\partial z}{\partial x} = 2x + 2y + 4 = 10 \text{ giving the direction} \left(\frac{\partial z}{\partial x} - \frac{\partial z}{\partial x} \right)$	$\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$
and for a change of 1 in x there is a change of c in z. $\frac{\partial z}{\partial y} = 2x = 2 \text{ giving the direction} \begin{pmatrix} 0\\1\\2 \end{pmatrix}$	
Alternative notation (2)	
If $z = f(x, y)$ then differentiating with respect $\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ -10 \end{pmatrix}$	
to x gives $\frac{\partial z}{\partial x}$.	
Exercise 2D Q. 1(i), (ii)This can also be written $\frac{\partial f}{\partial x}$ or $f_x(x, y)$.So the plane can be written $10x + 2y - z = d$ and the equation is satisfied by the point (1, 2 $\Rightarrow d = 10 + 4 - 9 = 5$	9)
FP3; Further Applications of Advanced Mathematics Version B: page 6 $\Rightarrow 10x + 2y - z = 5$	
© MEI	

Directional derivatives

vector $\hat{\mathbf{u}} = \begin{pmatrix} \cos \alpha \\ \sin \alpha \end{pmatrix}$, where the line makes an

References:

Chapter 2

Pages 61-63

E.g. Find grad f when $f = 2x + xy^2$. In any 3-D representation, the horizontal Find the gradient on this surface at (1, 1, 3) in the direction of a line may be denoted by the unit

direction
$$\hat{\mathbf{u}} = \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}$$
.
 $\frac{\partial f}{\partial x} = 2 + y^2, \quad \frac{\partial f}{\partial y} = 2xy$
grad $\mathbf{f} = \begin{pmatrix} 2 + y^2 \\ 2xy \end{pmatrix}$. At A, grad $\mathbf{f} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$
Gradient $= \begin{pmatrix} 0.6 \\ 0.8 \end{pmatrix}$. $\begin{pmatrix} 3 \\ 2 \end{pmatrix} = 1.8 + 1.6 = 3.4$

Competence statements c4, c5, c6, c8

© MEI

angle of α with the x-axis. Then $\hat{\mathbf{u}} \cdot \left| \frac{\partial x}{\partial z} \right| = \hat{\mathbf{u}} \cdot \mathbf{grad} \mathbf{f} = \frac{\partial z}{\partial x} \cos \alpha + \frac{\partial z}{\partial y} \sin \alpha$ is Exercise 2E Q. 1, 3 the directional derivative. E.g. Investigate the stationary points on the curve **Stationary points** References: $z = x^2 - 8xy + 2y^2 + 14x.$ A stationary point on a surface is defined as a Chapter 2 point where the tangent plane is parallel to the x-y Pages 64-66 $z = x^2 - 8xy + 2y^2 + 14x$ plane. This is a point which is a local maximum or minimum of z. $\Rightarrow \frac{\partial z}{\partial x} = 2x - 8y + 14, \ \frac{\partial z}{\partial y} = -8x + 4y$ This occurs when $\frac{\partial z}{\partial r} = \frac{\partial z}{\partial v} = 0.$ Example 2.7 Page 65 2x - 8y = -14The nature of a stationary point may be -8x + 4y = 0Exercise 2F determined by considering sections or the value of $\Rightarrow x = 1, y = 2, z = 7$ Q. 2, 3 z for small changes in x and y. **Small changes References:** Chapter 3 For z = f(x, y), $\delta z \approx \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y$ Pages 69-72 This formula is applicable for any number of Example 2.9 variables. Page 71 For z = f(x, y, w), $\delta z \approx \frac{\partial f}{\partial x} \delta x + \frac{\partial f}{\partial y} \delta y + \frac{\partial f}{\partial w} \delta w$ E.g. in the example above, the stationary point is Exercise 2G (1, 2, 7).Q. 3, 4 $z = x^2 - 8xy + 2y^2 + 14x$ The approximation can be used to estimate the effects of errors in a calculation. When y = 2, $z = x^2 - 2x + 8$ **References:** $\Rightarrow \frac{\partial z}{\partial x} = 2x - 2 = 0$ at x = 1**The Directional Derivative** Chapter 3 Pages 74-76 If w = g(x, y, z) then the directional derivative is Also, when x = 1, $z = 2y^2 - 8y + 15$ ∂w Example 2.11 $\Rightarrow \frac{\partial z}{\partial y} = 4y - 8 = 0 \text{ at } y = 2$ ∂x Page 75 ∂w $\hat{\mathbf{u}}$.grad g, where grad g = ∂y At this point $\frac{\partial^2 z}{\partial r^2} > 0$ and $\frac{\partial^2 z}{\partial v^2} > 0$ Exercise 2H ∂w Q. 1, 5 ∂z i.e. the stationary value is a minimum. **References:** The surface g(x,y,z) = k. Chapter 3 For the point A with position vector **a** on the Pages 77-79 surface g(x,y,z) = k, the tangent plane is $(\mathbf{r} - \mathbf{a})$.grad g = 0, where grad g is evaluated at Example 2.12 point A. FP3; Further Applications of Page 78 Advanced Mathematics The normal line is $\mathbf{r} = \mathbf{a} + \lambda \operatorname{grad} \mathbf{g}$. Version B: page 7

Exercise 2I Q. 1, 4

Summary FP3 Option 3: Differentiable Geometry - 1

E.g. Find the circumference of a circle. Envelopes References: The family of lines obeying a rule is the set of Chapter 3 1. Cartesian coordinates: Pages 85-91 equations f(x,y,p) = 0. $x^{2} + y^{2} = a^{2} \Longrightarrow 2x + 2y \frac{dy}{dx} = 0 \Longrightarrow \frac{dy}{dx} = -\frac{x}{y}$ The equation of the **envelope** is given by the two equations Example 3.3 Length of positive quadrant (x = 0 to x = a) $f(x, y, p) = 0, \frac{\partial}{\partial n} f(x, y, p) = 0$ Page 89 $s = \int_{-\infty}^{x=a} \left(\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \right) \mathrm{d}x = \int_{-\infty}^{x=a} \left(\sqrt{1 + \left(\frac{x}{\mathrm{d}x}\right)^2} \right) \mathrm{d}x$ If p can be eliminated then the Cartesian equa-Exercise 3A Q. 1, 2, 3 tion results. Alternatively rearrange to give parametric equations x = g(p), y = h(p). $= \int_{-\infty}^{x=a} \left(\sqrt{\frac{y^2 + x^2}{y^2}} \right) dx = \int_{-\infty}^{x=a} \left(\sqrt{\frac{a^2}{a^2 - x^2}} \right) dx = a \int_{x=0}^{x=a} \frac{1}{\sqrt{a^2 - x^2}} dx$ **References:** Arc length Chapter 3 Cartesian coordinates: y = f(x)Let $x = a \sin \theta$: $\frac{dx}{d\theta} = a \cos \theta$, $a^2 - x^2 = a^2 \cos^2 \theta$ Page 93-97 $\frac{\mathrm{d}s}{\mathrm{d}x} = \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \implies s = \int_{-\infty}^{x=b} \left(\sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2}\right) \mathrm{d}x$ When $x = 0, \theta = 0$; when $x = a, \theta = \frac{\pi}{2}$ Example 3.4 $\Rightarrow s = a \int_{-\infty}^{\theta = \pi/2} \mathrm{d}\theta = \frac{a\pi}{2}$ Polar coordinates: $r = f(\theta)$ Page 96 $\frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} \Longrightarrow s = \int_{\theta=a}^{\theta=b} \left(\sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2}\right) \mathrm{d}\theta$ So for whole circle, $c = 4 \times \frac{a\pi}{2} = 2a\pi$ Parametric coordinates: $x = f(\theta), y = f(\theta)$ 2. Parametric coordinates: $\frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2}$ $x = a\cos\theta, y = a\sin\theta$ Exercise 3B $\frac{\mathrm{d}x}{\mathrm{d}\theta} = -a\sin\theta, \frac{\mathrm{d}y}{\mathrm{d}\theta} = a\cos\theta; \frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2}$ Q. 1, 2, 6 $\Rightarrow s = \int_{-\infty}^{\theta=b} \left(\sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2} + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 \right) \mathrm{d}\theta$ $\Rightarrow \frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{a^2 \sin^2 \theta + a^2 \cos^2 \theta} = a$ $\Rightarrow s = \left[a\theta\right]_{0}^{2\pi} = 2a\pi$ **References:** Volume of solid of revolution Chapter 3 The volume of the solid swept out when the 3. Polar coordinates Page 99 curve y = f(x) is rotated through 2π about $r = a \Rightarrow \frac{\mathrm{d}s}{\mathrm{d}\theta} = \sqrt{r^2 + \left(\frac{\mathrm{d}r}{\mathrm{d}\theta}\right)^2} = a \Rightarrow s = \int_{-\infty}^{0} a\mathrm{d}\theta$ the x-axis is given by $V = \int \pi y^2 dx$. $=\left[a\theta\right]_{0}^{2\pi}=2a\pi$ The volume of the solid swept out when the curve x = f(y) is rotated through 2π about E.g. To find the surface area of a sphere. the y-axis is given by $V = \int_{0}^{y=b} \pi x^2 dy$. Rotate a circle through 360° about the *x*-axis. $x^{2} + y^{2} = a^{2}$ between x = -a and x = aSurface area of solid of revolution **References:** $\Rightarrow S = \int_{1}^{a} 2\pi y \frac{ds}{dx} dx$ where $\frac{ds}{dx} = \sqrt{1 + \left(\frac{dy}{dx}\right)^2}$ The surface area of the solid swept out when Chapter 3 Pages 100-102 the curve y = f(x) is rotated through 2π about $x^{2} + y^{2} = a^{2} \implies 2x + 2y \frac{dy}{dx} = 0 \implies \frac{dy}{dx} = -\frac{x}{y}$ the x-axis is given by $S = \int_{0}^{x=b} 2\pi y \, ds$. Example 3.6 Page 101 In cartesian coordinates this becomes $\Rightarrow 1 + \left(\frac{dy}{dx}\right)^2 = 1 + \left(\frac{x}{y}\right)^2 = \frac{x^2 + y^2}{y^2} = \frac{a^2}{y^2}$ $S = \int_{0}^{x=b} 2\pi y \frac{\mathrm{d}s}{\mathrm{d}x} \mathrm{d}x$ $\Rightarrow \frac{\mathrm{d}s}{\mathrm{d}x} = \frac{a}{v} \Rightarrow S = \int_{-a}^{a} 2\pi y \cdot \frac{a}{v} \mathrm{d}x = \int_{-a}^{a} 2\pi a \, \mathrm{d}x = 2\pi a \left[x\right]_{-a}^{a}$ The surface area of the solid swept out when Exercise 3C the curve x = f(y) is rotated through 2π about $\Rightarrow S = 4\pi a^2$ Q. 1(i), 5 the y-axis is given by $S = \int_{0}^{y-y} 2\pi x \, ds$. FP3; Further Applications of Advanced **Mathematics** In caresian coordinates this becomes Version B: page 8 $S = \int_{-\infty}^{y=0} 2\pi x \frac{\mathrm{d}s}{\mathrm{d}y} \mathrm{d}y$

Competence statements g1, g2, g3

© MEI

ME

References: Chapter 3 Pages 105-108 <i>Example 3.9</i> <i>Page 108</i> Exercise 3D Q. 1, 3 References: Chapter 3 Page 109-112 <i>Example 3.11</i>	Intrinsic Equations An alternative way to describe a curve is in terms of the arc length, <i>s</i> , with the angle ψ , which its tangent makes with a fixed direction. We determine the equation uniquely we also need the point of the curve where $s = 0$, the direction where $\psi = 0$ and also a sense of direction. (ψ is usually measured in radians anticlockwise.) tan $\psi = \frac{dy}{dx}$, $\frac{dx}{ds} = \cos \psi$, $\frac{dy}{ds} = \sin \psi$ Curvature The curvature of a curve at a point P is the rate of change of ψ with <i>s</i> at P. $\kappa = \frac{d\psi}{ds}$	E.g. The curve with intrinsic equation $s = 4a(1 - \cos\psi)$ has a stationary point at the origin. Find the paramtric equations for the curve. $\frac{dx}{ds} = \cos\psi$, $\frac{dy}{ds} = \sin\psi$. From the curve $\frac{ds}{d\psi} = 4a\sin\psi$ $\frac{dx}{d\psi} = \frac{dx}{ds} \times \frac{ds}{d\psi} = \cos\psi \times 4a\sin\psi = 2a\sin 2\psi$ $\Rightarrow x = k - a\cos 2\psi$; $x = 0$ when $\psi = 0 \Rightarrow k = a$ $\Rightarrow x = a(1 - \cos 2\psi)$ $\frac{dy}{d\psi} = \frac{dy}{ds} \times \frac{ds}{d\psi} = \sin\psi \times 4a\sin\psi = 2a(1 - \cos 2\psi)$ $\Rightarrow y = k + 2a\psi - a\sin 2\psi$; $y = 0$ when $\psi = 0 \Rightarrow k = 0$ $\Rightarrow y = a(2\psi - \sin 2\psi)$ Writing $2\psi = \theta$ gives parametric equations $x = a(1 - \cos\theta)$, $y = a(\theta - \sin\theta)$
Exercise 3E Q. 1, 6	If <i>K</i> is positive, then ψ increases with <i>s</i> and the curve curves to the left. For a curve given in intrinsic form the formula above can be used. If the equation is given in Cartesian coordinates, $y = f(x)$ then $\kappa = \frac{\frac{d^2 y}{dx^2}}{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}$	E.g. For the point P $\left(a, \frac{1}{4}a\right)$ on the curve $4a^2y = x^3$ (where <i>a</i> is a positive constant), find (i) the radius of curvature, (ii) the coordinates of the centre of curvature. (i) At P, $\frac{dy}{dx} = \frac{3x^2}{4a^2} = \frac{3}{4}$, $\frac{d^2y}{dx^2} = \frac{6x}{4a^2} = \frac{3}{2a}$
References: Chapter 3 Page 115-117 <i>Example 3.12</i> <i>Page 116</i>	$\begin{pmatrix} (dx) \end{pmatrix}$ Centre of curvature The circle of curvature of a curve at a point P is the circle with centre on the normal at P. The radius is $\rho = \frac{1}{\kappa} = \frac{ds}{d\psi}$ We define unit vectors in the direction of the positive tangent and positive normal to be $\hat{\mathbf{t}}$ and $\hat{\mathbf{n}}$ where $\hat{\mathbf{t}} = \begin{pmatrix} \cos\psi\\ \sin\psi \end{pmatrix}$ and $\hat{\mathbf{n}} = \begin{pmatrix} -\sin\psi\\ \cos\psi \end{pmatrix}$ Then, if the vector for P is \mathbf{r} and the vector	$\Rightarrow \rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2 y}{dx^2}} = \frac{\left(1 + \left(\frac{3}{4}\right)^2\right)^{\frac{3}{2}}}{\frac{3}{2a}}$ $= \frac{\left(\frac{5}{4}\right)^3}{\frac{3}{2a}} = \frac{125}{64} \times \frac{2a}{3} = \frac{125a}{96}$ $(ii) \text{ Normal vector is } \begin{pmatrix}-3\\4\end{pmatrix} \Rightarrow \hat{n} = \frac{1}{5} \begin{pmatrix}-3\\4\end{pmatrix}$ $\begin{pmatrix}a\\2\end{pmatrix} = 125 = 1 \begin{pmatrix} -3\\4 \end{pmatrix}$
Exercise 3F Q. 1, 2 References: Chapter 3 Page 118-119 <i>Example 3.13</i> <i>Page 118</i> Exercise 3G	for the centre, C, is c then $\mathbf{c} = \mathbf{r} + \rho \hat{\mathbf{n}}$ The Evolute of a Curve As the point P moves along a curve , the centre of curvature, C, also moves. The locus of C is called the <i>evolute</i> of the curve. As shown, the centre of curvature can be found for a specific point. If, instead, the parametric point is used then the form of c will be in parametric form, which will be the equation of the evolute. An alternative form is $\frac{d\mathbf{c}}{ds} = \frac{d\rho}{ds} \hat{\mathbf{n}}$.	$\Rightarrow \text{ Centre of curvature is } \left(\frac{1}{4}a\right) + \frac{125a}{96} \times \frac{1}{5} \begin{pmatrix} -3\\4 \end{pmatrix}$ i.e. $\left(\frac{a - \frac{75a}{96}}{\frac{1}{4}a + \frac{100a}{96}}\right)$ which is $\left(\frac{7a}{32}, \frac{31a}{24}\right)$ FP3; Further Applications of Advanced Mathematics Version B: page 9 Competence statements g4, g5, g6, g7, g8

References: Chapter 4 Pages 130-132	Sets and operations A set is a collection of items having a common property. A binary operation is an operation combining two items of a set to form a third item. The result of a binary operation is often referred to as the product (though most people restrict this word to the result of the binary operation "multiply".) The operation is closed with respect to a set if, for all elements <i>x</i> , <i>y</i> of the set, the product x^*y lies in the set. The operation is commutative if, for all <i>x</i> , <i>y</i> \in <i>S</i> , x^*y $= y^*x$. The operation is associative if, for all <i>x</i> , <i>y</i> , <i>z</i> \in <i>S</i> $x^*(y^*z) = (x^*y)^*z$ An identity element, $e \in S$, is an element such that $e^*x = x^*e = x$ for all $x \in S$. The inverse x^{-1} , of an element <i>x</i> is an element such that $x^*x^{-1}=x^{-1}*x=e$	E.g. The binary operation "add" is closed with respect to the set of positive numbers because the addition of any two positive numbers is positive. The binary operation "subtract" how- ever is not closed. For example $4 - 5$ is not a positive number. E.g. The binary operation "add" is commutative because the addition of any two positive num- bers is same whichever way round you combine the numbers. I.e. $4 + 5 = 5 + 4$. The binary operation "subtract" however is not commutative. For example $4 - 5 \neq 5 - 4$. E.g. The binary operation "add" is associative: E.g. $6 + (5 + 4) = 6 + 9 = 15$ and $(6 + 5) + 4 = 11 + 4 = 15$ The binary operation "subtract" however is not associative:
References: Chapter 4 Page 132	Modular arithmetic Within the set of integers, two numbers are said to be congruent modulo <i>m</i> if the difference between them	E.g. $6 - (5 - 4) = 6 - 1 = -5$ and $(6 - 5) - 4 = 1 - 4 = -3$ E.g. Consider the set <i>G</i> and the binary operation
Exercise 4A Q. 2, 3	Is a multiple of <i>m</i> . E.g. $37 = 1 \pmod{3}$ because $37 - 1 = 3 \times 12$. In modulo 3 arithmetic all integers can be reduced to the numbers 0, 1 or 2.	of multiplication modulo 20, where $G = \{1, 3, 7, 9, 11, 13, 17, 19\}$ Show that G is a group under this operation.
References: Chapter 4 Page 135-143	Groups A Group (<i>S</i> ,*) is a non-empty set <i>S</i> with a binary operation * such that * is closed in <i>S</i> - i.e. for all <i>x</i> , <i>y</i> \in <i>S</i> , <i>x</i> * <i>y</i> \in <i>S</i> * is associative in <i>S</i> i.e. for all <i>x</i> , <i>y</i> , <i>z</i> \in <i>S</i> , <i>x</i> *(<i>y</i> * <i>z</i>) = (<i>x</i> * <i>y</i>)* <i>z</i> There is an identity element , <i>e</i> \in <i>S</i> such that	1 3 7 9 11 13 17 19 1 1 3 7 9 11 13 17 19 3 3 9 1 7 13 19 11 17 3 3 9 1 7 13 19 11 17 7 7 1 9 3 17 11 19 13 9 9 7 3 1 19 17 13 11 11 11 13 17 19 1 3 7 9
Exercise 4B Q. 1, 2	For every element of the set, x, there exists an inverse element $x^{-1} \in S$ such that $x * x^{-1} = x^{-1} * x = e$ An element that is its own inverse is said to be	13 13 19 11 17 3 9 1 7 17 17 11 19 13 7 1 9 3 19 19 17 13 11 9 7 3 1
Example 4.2 Page 140	 self-inverse. If, in addition, the operation is commutative, then the group is said to be Abelian. The table showing the combination of elements is called the Cayley Table. In each row and column each element will occur once and once only. 	 (i) The set is closed under the operation (ii) Multiplication is associative (iii) The identity element is 1 (iv) There is an inverse for each element (i.e. 1 appears in each row and each column). E.g. State the order of <i>G</i> and find the order of each element. The order of the group is the number of
0	The order of a Group The order of a finite group is the number of elementsin the group.The order of an element, x , is the smallest positiveinteger n such that $x^n = e$.	elements i.e. 8. The order of each element, x , is the smallest integer, n , such that $x^n = 1$ For 1 the order is 1. For 9, 11, 19, the order is 2 (These are the elements where 1 is in the leading diagonal) For 3, 7, 13, 17, the order is 4
	Properties of a Group The identity element is unique.	$(i.e. 3 \times 3 = 9, 9 \times 3 = 7, 7 \times 3 = 1)$
	Each element has an unique inverse.	FP3; Further Applications of Advanced Mathematics Varian B: page 10
Exercise 4C Q. 1, 2, 3	If $x^*y = x^*z$ then $y = z$ (known as the cancellation law) The equation $ax = b$ has the unique solution $x = a^{-1}b$.	© MEI

References: Chapter 4 Page 146-149 Exercise 4D Q. 1, 8	Isomorphism Consider two groups with the same order. If the mapping of the elements of one group to the other preserves the structure then the two groups are said to be isomorphic .	 E.g. List all the sub-groups of <i>G</i> in example on previous page. The identity element {1} always forms a sub-group or order 1. Other proper subgroups are found by scrutinising the combination table. Any element with order 2 will, with <i>e</i> form a proper
References: Chapter 4 Pages 151-153 <i>Example 4.4</i> <i>Page 151</i>	Subgroups A subgroup of a group $(S, *)$ is a non-empty subset of <i>S</i> which forms a group under the operation *. Every group has a trivial sub-group $\{e\}$. As with factors of a number, you may also consider the set as a subgroup of itself.	 subgroup of order 2 if <i>e</i> is in the leading diagonal position for the element. So {1,9}, {1,11} {1,19} are proper subgroups of order 2. By Lagrange's Theorem there cannot be any subgroups of order 3. Scrutiny of the combination table will reveal that the
Exercise 4E Q. 1, 6	A proper subgroup is a subgroup that is not one of the above.	"top left" block of 4 elements contains only those 4 elements. Therefore {1,3,7,9} is proper subgroups of order 4. There are two others:
References: Chapter 4 Pages 154-156	Lagrange's Theorem The order of any sub-group is a factor of the order of the group.	{1, 9, 13, 17}, {1, 9, 11, 19} Note the combination table for these subgroups which are an extraction of the combination table of G.
Exercise 4F Q. 3, 4	For instance, a group of order 4 can have subgroups only of order 1, 2 or 4, but not 3.	1 9 13 17 1 9 11 19 1 1 9 13 17 1 1 9 11 19 9 9 1 17 13 9 9 1 19 11 13 13 17 9 1 11 11 19 1 15 12 12 10 11 10 1 9
References: Chapter 4 Pages 159-160	Cyclic groups If a member of a group is x then x^2 , x^3 , etc are also members of the group.	17 17 13 1 9 19 19 11 9 1 The set G itself is a subgroup of itself, of order 8.
Example 4.5 Page 160	There must be a smallest number, <i>m</i> , such that $x^m = e$. <i>m</i> must be less than or equal to <i>n</i> , the order of the group. If $m = n$, then each member of the group is a power of <i>x</i> . <i>x</i> is said to generate the group and the group is said to be cyclic . The group $\{e, a, a^2, a^3\}$ with $a^4 = e$ is cyclic.	 E.g. List the subgroups of <i>G</i> that are isomorphic to one another. Subgroups of order 2 will always be isomorphic to one another. I.e. {1, 9}, {1, 11} and {1, 19} Likewise, subgroups of order 4 will be isomorphic to each other providing the identity element is in the same place within their tables. This is so for (1, 2, 7, 0) and (1, 0, 13, 17)
Exercise 4G Q. 2, 5	Groups with order a prime number must be cyclic. This is because the order of each element is a factor of p , the order of the group (Lagrange's	[The subgroup {1, 9, 11, 19} has the identity element in every place of the leading diagonal.]
	Theorem). Since e is the only element with order 1, all others much have order p and so must generate the group.	E.g. Prove that G is not cyclic. For all elements in G, there is a least value of n for which $x^n = 1$. We have seen above that the values of n for the elements are 1, 2 and 4.
	FP3; Further Applications of Advanced Mathematics Version B: page 11 Competence statements a3, a5, a6, a7, a8 © MEI	In order for <i>G</i> to be cyclic there must be at least one element, <i>x</i> , for which $x^8 = 1$ with 8 the smallest such value.

MEI

References: Chapter 5 Pages 171-175 Exercise 5A Q. 1(i), 5	TerminologyA sequence of events where the probability of an outcome at one stage depends only on the outcome at the previous stage is known as a Markov Chain. The conditional probabilities of passing from one stage to the next are called transition probabilities. They are most usefully arranged in a square transi- tion matrix, P. Each column of P is a probability vector. It follows that the sum of elements of each column is 1. If the column vector p represents the probabilities at one stage and P is the transition matrix then Pp represents the probabilities at the next stage. E.g. if there are, at any stage, two outcomes then P is 	E.g. $\mathbf{P} = \begin{pmatrix} 0.5 & 0.8 \\ 0.5 & 0.2 \end{pmatrix} \text{ find } \mathbf{P}^2.$ $\mathbf{P}^2 = \begin{pmatrix} 0.5 & 0.8 \\ 0.5 & 0.2 \end{pmatrix} \times \begin{pmatrix} 0.5 & 0.8 \\ 0.5 & 0.2 \end{pmatrix} = \begin{pmatrix} 0.25+0.4 & 0.4+0.16 \\ 0.25+0.1 & 0.4+0.04 \end{pmatrix}$ $= \begin{pmatrix} 0.65 & 0.56 \\ 0.35 & 0.44 \end{pmatrix}$ A weather forecaster classifies the weather as dry or wet. If it is wet on one day then the probability that it is wet the next day is 0.7. If it is dry one day then the probability that it is dry the next is 0.8. (i) Form the transition matrix. (ii) If it is dry one Monday what is the probabil- ity that it will be wet on Wednesday? (i) wet dry wet $(0.7 - 0.2)$
References: Chapter 5 Pages 177-179 <i>Example 5.1</i> <i>Page 177</i> Exercise 5B Q. 1(i), 3	3×3 Transition Matrices If at any stage there are three states, then the transition matrix \mathbf{P} will be a 3×3 matrix. There will be 9 transition probabilities. The calculation of the product of these matrices (and those which are larger!) can be tedious so it is important that you are able to use your calculator effectively. Usually (but not always) the transition matrix from stage 1 to stage 2 is the same as that from stage 2 to stage 3. The transition matrix from stage 1 to stage 3 is therefore \mathbf{P}^2 . You may therefore be required to calculate \mathbf{P}^n for any integer value, <i>n</i> .	$\mathbf{P} = \frac{\text{wet}}{\text{dry}} \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix}.$ (ii) The state for Monday is $\mathbf{M} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ The state for Tuesday is $\mathbf{T} = \mathbf{PM}$ The state for Wednesday is $\mathbf{W} = \mathbf{PT} = \mathbf{P}^2 \mathbf{M}$ $\mathbf{W} = \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0.55 & 0.3 \\ 0.45 & 0.7 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $= \begin{pmatrix} 0.3 \\ 0.7 \end{pmatrix}$ so the probability that it will be wet on Wednesday is 0.3.
References: Chapter 5 Pages 182-187 Exercise 5C Q. 2, 6	Equilibrium probabilities If, for some given starting state, successive states converge to fixed probabilities then those values are called equilibrium probabilities . This means that at a limiting stage which gives a probability vector p then Pp = p . This may occur in two situations: (i) Whatever the initial column probability this stage is eventually reached. (ii) If the initial column probability is the equilibrium probabilities then this state will be constant at all stages. This column probability vector can be found as follows If $\mathbf{P} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and $\mathbf{p} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$ then $\mathbf{Pp} = \mathbf{p}$ gives $ap_1 + bp_2 = p_1$ $cp_1 + dp_2 = p_2$ These can be solved simulataneously to find p_1 and p_2 .	E.g. Find the Equilibrium probabilities for the matrix above. Solve $\begin{pmatrix} 0.7 & 0.2 \\ 0.3 & 0.8 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $0.7x + 0.2y = x \Rightarrow 0.2y = 0.3x \Rightarrow y = \frac{3}{2}x$ Also $x + y = 1 \Rightarrow x + \frac{3}{2}x = 1 \Rightarrow x = \frac{2}{5} \Rightarrow y = \frac{3}{5}$ FP3; Further Applications of Advanced Mathematics Version B: page 12 Competence statements m1, m2, m3, m4, m6 © MEI

References: Chapter 5 Pages 190-192	Run lengths in Markov Chains The run length is the number of "no change" transitions. This is one less than the number of times the state is repeated. So for any state A, if <i>p</i> is the probability that the	E.g. Expected run length of wet days for example on previous page. Length = $\frac{p}{1-p} = \frac{0.7}{1-0.7} = 2\frac{1}{3}$
Example 5.2 Page 192 Exercise 5D Q. 1(i),(iii), 3	system remains in that state at the next stage. Hence the probability that it changes from state A to state A' is $1 - p$. Let X represent the number of further consecutive stages in which the state of the system is A, given that it is initially in state A then $P(X = r) = p^r \times (1 - p)$ for $r = 0, 1, 2, 3, 4,$ The expected run length is given by $E(X) = \sum [r \times P(X = r)] = p(1-p) + 2p^2(1-p) + 3p^3(1-p) +$ $= p(1-p)(1+2p+3p^2 +)$ $= p(1-p) \times \frac{1}{(1-p)^2} = \frac{p}{1-p}$	E.g. The following matrix represents the transition matrix for the purchase by customers of three brands of a commodity, A, B and C. A B C A $\begin{pmatrix} 3 & 1 & 1 \\ 4 & 3 & 1 \\ 1 & 3 & 1 \\ 1 & 8 & 2 \\ C \begin{pmatrix} 1 \\ 4 & 1 & 3 \\ 1 \\ 8 & 1 & 2 \\ 1 \\ 8 & 6 \\ 1 \\ 2 \end{pmatrix}$ (i.e. If a cutomer buys brand A then the chance of him buying it again is $\frac{3}{4}$; otherwise there is an equal
References: Chapter 5 Pages 196-203 <i>Example 5.3</i>	Classifying Markov Chains Regular chains A transition matrix is <i>regular</i> if some power of the matrix has only positive entries. A Markov Chain is regular if its transition matrix is regular. In a regular Markov chain it is possible to pass from any state to any other state and there is a unique lim-	 chance of buying <i>B</i> or <i>C</i>.) (i) Find the equilibrium probabilities. (i.e. the long-run proportion of purchases.) (ii) A customer buys brand <i>A</i>. Find the expected number of consecutive further occasions on which this customer purchased brand <i>A</i>.
Page 198 Example 5.4 Page 199	iting probability vector. Random Walks This is an expression that describes a process of moving between ordered states.	(i) $\mathbf{PX} = \mathbf{X} \Rightarrow \frac{3}{4}x + \frac{1}{3}y + \frac{1}{3}z = x$ $\frac{1}{8}x + \frac{1}{2}y + \frac{1}{6}z = y$ $\Rightarrow x = \frac{4}{3}(y+z) \text{ with } x + y + z = 1$
	Periodic chains A periodic Markov chain is one where successive powers of P form a pattern where there is a value of k such that $\mathbf{P}^k = \mathbf{P}$. The period of the Markov chain is $k - 1$ where k is the smallest value for which this is true. Reflecting barriers A Markov chain has a <i>reflecting barrier</i> if following one particular state, the next state is inevitable. In the corresponding column of the transition matrix there is 0 in each position including position (<i>i</i> , <i>i</i>) except 1 which has the entry 1. Absorbing states A Markov chain has an <i>absorbing state</i> if the system is unable to leave that state once it has reached it. In	$\Rightarrow x = \frac{4}{7}, y = z = \frac{3}{14}$ (ii) Expected run of purchaes of $A = \frac{p}{1-p}$ where p is the probability that A is purchased again after $A= \frac{\frac{3}{4}}{1-\frac{3}{4}} = 3E.g. The following matrix has an absorbing state.A = \frac{A = C}{1 = 0.5 = 0.8}\mathbf{P} = \begin{pmatrix} 1 = 0.5 = 0.8 \\ 0 = 0.3 = 0.1 \\ 0 = 0.2 = 0.1 \end{pmatrix}$
Exercise 5E Q. 1, 3	the corresponding column of the transition matrix there is an entry of 1 in position (i,i) and 0 elsewhere.	On further steps, <i>B</i> will transfer to <i>A</i> with probability 0.5, <i>B</i> with probability 0.3 and <i>C</i> with probability 0.2
FP3; Further Applications of Advanced Mathematics Version B: page 13 Competence statements m5, m7, m8, m9, m10 © MEI		These probabilities will reduce to 0, so A is an absorbing state.