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The vector product a × b 

 
 
 

 
 
 

 References: 
Chapter 1 
Pages 1-3 

Exercise 1A 
Q. 1(i), 5(i), 8 

 

Base Vectors 
The unit vectors parallel to the coordinate axes are i, j 
and k. 
 
i × j = k,  j × k = i, k × i = j 
i × i = j × j = k × k = 0 

E.g. If  a × b = b × c ≠ 0 prove that a + c is 
parallel to b. 
 
a × b = b × c  ⇒ a × b – b × c  = 0 
⇒ a × b +  c × b = 0 
⇒ (a + c) × b = 0 
i.e. a + c is parallel to b. 

Properties 
 
 
 

(N.B. Commutative means that either order of a binary 
operation gives the same result. So addition is  
commutative, since 3 + 2 = 2 + 3, but subtraction is 
anti-commutative since 3 −2 = −(2 −3). ) 
 
If a and b are parallel then a × b = 0. 
If either or both a and b are 0 then a × b = 0. 
Note that a × b = 0 does not mean that either a or b are 
0 – they may be parallel. 
 
(ma) × (nb) = mn(a × b) 
 
a × (b + c) = a × b + a × c 
This is the distributive law − the vector product is  
distributive over addition and subtraction. 

ˆsin  where  is the angle between
ˆ and and  is the unit vector 

perpendicular to  and  such 
ˆthat  and  form a 

right-handed set of vectors.

θ θ×a  b = a b n
a  b n

a b
a, b n

θ 

a 

b 

The vector product is anti-commutative.
× − ×a  b =  b  a

Component Form 
 

1 1 2 3 3 2

2 2 3 1 1 3

3 3 1 2 2 1

If , ,
a b a b a b
a b a b a b
a b a b a b

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = × = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

a b a b

Example 1.4 
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E.g. Find  the m agnitude of  w hen  
1 2
2 , 0 ,
1 1

ˆ ˆsin 6 5 sin
From  the scalar product, 

cos 2 0 1 3

3 9 7cos sin 1
30 1030

7sin 30 21
10

θ θ

θ

θ θ

θ

×

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

× =

= = + + =

⇒ = ⇒ = − =

⇒ × = = =

a b

a b

a b a b n = n

a.b a b

a b a b
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1 2
E.g. Calculate 2 1 .

3 4

1 2 2 4 3 1 11
2 1 3 2 1 4 2
3 4 1 1 2 2 5

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟× −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
× − × −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× − = × − × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟× − − × −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

E.g. Find the equation of the plane ABC, where 
the coordinates of A, B and C are (1,0,1), 
(2,1,1) and (3, 1, −1) respectively. 

1 2
= AB AC  where AB 1  and AC 1

0 2

1 2 2
 = 1  1 2

0 2 1
So equation of plane is 2 2 0
and is satisfied by A, giving 2 1 0

3
2 2 3 0

(

x y z d
d

d
x y z

→ → → →
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟× = =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⇒ × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− + − + =
− − + =

⇒ =
⇒ − + − + =

n

n

You can check that B and C also satisfy this 
equation.)

References: 
Chapter 1 
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E.g. Prove that (a – b) × (a + b) = 2a × b. 
 
(a – b) × (a + b) = (a – b) × a + (a – b) × b 
= a × a – b × a + a × b – b × b 
= – b × a + a × b  since a × a = b × b = 0 
= a × b  + a × b  = 2a × b   
 

Note that a × a  = 0   

a × b 



Summary  FP3 Option 1:  Vectors  - Planes        

FP3; Further Applications of Advanced Mathematics  
Version B: page 3 
Competence statements v4, v5 
© MEI 

 

E.g. Find the angle between the planes defined  in the 
example above. 

 

Intersection of two lines 
If the lines are l1 = 0 and l2 = 0 then the line l1 = 0 
will be defined by one point, p, and a direction, 
n1. Any point on this line is then given by 
 p + λn1. Similarly, any point on l2 = 0  is given 
by  q + μn2. 
Equating these two will give three equations in 
two unknowns. 
Find the values of λ and μ from the first two and 
check for consistency in the third. If they are  
consistent then the values of λ and μ  will give 
the point of intersection; if they are not consis-
tent then the lines do not meet. 

E.g. Find the equation of the plane that passes 
through the point (1, 2, 3) and the line found in the 
first example above. 

Example 1.5 
Page 9 

Exercise 1C 
Q. 1(i), (ii),  3, 6 

Intersection of two planes 
The line of intersection of two planes lies in both 
planes and is therefore perpendicular to the  
perpendicular of both planes 

References: 
Chapter 1 

Pages 9-11 

Exercise 1B 
Q. 1(i), (iii) 

1

2

If the normal direction of L  is  and the normal 
direction of L  is   then the direction of the 
intersecting line is  .
It remains to find one point common to both planes, 
which can be done by

×

1

2

1 2

n
n
n n

 putting, say, 0 and solving 
the equations simultaneously.
If 0 nowhere on the planes then the resulting 
equations will be inconsistent and so you should try, 
say, 0.

z

z

x

=

=

=

1

2

E.g. Find the line of intersection of the planes:
L : 3 4
L : 2 3 6

3 2 2
1 , 1 11
1 3 5

Substitute 0 3 4, 2 6
5 10 2, 2

2 2
2 11 5

x y z
x y z

z x y x y
x x y

x y z

+ − =
− + =

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − ⇒ × = −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= ⇒ + = − =
⇒ = ⇒ = = −

− +
⇒ = =

− −

1 2 1 2n n n n

1

2

0

L :3 4
L : 2 3 6

3 2
1 , 1 . 6 1 3 2
1 3

9 1 1 11, 4 1 9 14
2cos 0.1612 80.7

11 14

x y z
x y z

θ

+ − =
− + =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= = − ⇒ = − − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

= + + = = + + =

⇒ = ≈ ⇒

1 2 1 2

1 2

n n n n

n n

Angle between two planes 
The angle between two vectors is found from the  
Scalar Product (covered in C4.) 
The angle between two planes is the angle  
between their normal directions. 

 

References: 
Chapter 1 
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Example 1.6 
Page 12 1

2

If the normal direction of L  is  and the normal 
direction of L  is   then the angle between the
planes is the angle between these directions which is
given by   . cosθ=

1

2

1 2 1 2

n
n

n n n nExercise 1B 
Q. 2(i), (iii) 

References: 
Chapter 1 
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Family (or sheaf) of planes 
If π1 = 0 is the equation of one plane and π2 = 0 
another such that the line of intersection is l = 0, 
Then the equation λπ1  + μπ2 = 0 is the general  
equation of a family of planes with the common 
line l. 
 This is because any point on the line satisfies  
π1 = 0  and π2 = 0 and therefore  λπ1  + μπ2 = 0 for 
all values of λ and μ. 

References: 
Chapter 1 
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Page 15 

Exercise 1B 
Q. 4 

( ) ( ) ( )

1

2

1 2

:3 4 0
:2 3 6 0

Any plane through the line of intersection of 
these planes is given by 4 6

3 2 3 4 6
This is satisfied by the point (1, 2, 3)

3 2 2 2 3 9 4 6

x y z
x y z

x y z

π
π

λπ μπ λ μ
λ μ λ μ λ μ λ μ

λ μ λ μ λ μ λ μ

+ − − =
− + − =

+ = +

⇒ + + − + − + = +

⇒ + + − − + = + 2 3 0
A solution to this equation is 2, 3

13 3 24x y z

λ μ
μ λ

⇒ − + =
= =

⇒ + + =

 
 

( )
( )

1

2 3

1 2 1 3

1

2

1 1E.g. You are given :
1 2 3

4 3 1 2 2 1: :
3 1 1 2 1 1

Show that  and  intersect but  and  do not.
Any point on  is 1+ , 1+2 ,3

Any point on  is 4+3 , 3 ,1
These two point

x y zl

x y z x y zl l

l l l l
l

l

λ λ λ

μ μ μ

− +
= =

+ − − − − +
= = = =

− −

−

− − +

s are the same if 1+ 4+3
and 1+2 3

3 5 and 2 4 1, 2
The  and  values are the same and substituting 

into the  coordinates also gives the same value.
So the lines meet at (2,1,3).
Any p

x y
z

λ μ
λ μ

λ μ λ μ λ μ

= −
− = −

⇒ − = − + = ⇒ = =
⇒

( )3oint on  is 2+3 , 2 , 1
8 1Solving for equal  and  values gives ,
5 5

but the  values are not the same so the lines do not intersect.

l

x y

z

ν ν ν

λ ν

+ − +

= =
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Distance of a point from a line. 
If P is a point not on a line l and A is any point on the 
line and M is the closest point on the line from P, 
then the distance is the length of the line PM. 

 
 

 References: 
Chapter 1 

Pages 19-22 

Exercise 1D 
Q. 1(i), 2(ii) 

E.g. Find the distance of the point (1, 2, 1) from 
the plane 2x + 3y − z = 4 

Distance of a point from a plane. 
If M is the foot of the perpendicular from P(x1, y1, z1) 
to a plane then the distance of P from the plane is 
PM. 
The direction of PM is the normal direction of the 
plane, n. 
Let the equation of the plane be ax + by + cz + d = 0 
Take any point, R, on the plane. In general this can 
be (x2, y2, z2), but if c is not zero then this can be  
(0, 0, −d/c). 
Let the angle between PR and PM be θ.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Note that: 
If two distances are opposite signs then the points are 
on opposite sides of the plane. 
If the distance is 0 then the point lies on the plane. 

 

ˆIf the direction of  is defined by the unit vector, , 
then PM = APsinPAM.

ˆSince sin ,  take and .

ˆ ˆThen AP AP sin PAM 

         = AP sin PAM= PM

ˆSo PM AP

l

θ
→ →

→

→ →

× =

× =

= ×

d

a b a b b = AP a = d

d d

d 

E.g. Find the distance of the point (1, 2, 3) from 
2 3 1the line   

2 1 3
2 2

1ˆ1 14 1
143 3

1
Take A (2, 3, 1) and P (1, 2, 3) AP 5

4

2 1
1ˆ AP 1
14 3

x y z

→

→

− + +
= =

−
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − ⇒ = ⇒ = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

−⎛ ⎞
⎜ ⎟− − ⇒ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

−⎛ ⎞
⎜ ⎟× − ×⎜ ⎟
⎜ ⎟
⎝ ⎠

d d d

d =

2 2 2

19
15 11
144 9

1 563ˆ AP 19 11 9
1414

→

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒ × = + + =d 
A 

P 

M 

θ 

1 2

1 2

1 2

1 2 1 2 1 2

1 1 1 2 2 2

1 1

ˆThen the scalar product gives PR . PR cos .

ˆand PM = PRcos PM PR .

RP ,

RP . ( ) ( ) ( )
 since 0

ˆRP .

x x a
y y b
z z c

a x x b y y c z z
ax by cz d ax by cz d

ax by c

θ

θ

→

→

→

→

→

=

⇒ =

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⇒ = − + − + −
= + + + + + + =

+ +
⇒

n

n

n

n

n = 1

1 1 1
2 2 2

ˆdistance = PR .

z d

ax by cz d
a b c

→

+

⇒

+ + +
=

+ +

n

n

References: 
Chapter 1 

Page 26-27 

Exercise 1D 
Q. 3(i), 4(ii) 

1 1 1
2 2 2 2 2 2

2 1 3 2 1 4Distance = 
2 3 1

3
14

ax by cz d
a b c
+ + + × + × − −

=
+ + + +

=

E.g. Show that the points (6, 2, 2) and (2, -4, 4) 
are equidistant from the plane 2x + 3y − z – 2 = 0 

1 1 1
2 2 2

2 2 2

2 2 2

Distance = 

2 6 3 2 1 2 2 14For (6, 2, 2), 
142 3 1

2 2 3 4 1 4 2 14For (2, 4, 4), 
142 3 1

So same distance but opposite sides.

ax by cz d
a b c

d

d

+ + +

+ +
× + × − × −

= =
+ +

× − × − × − −
− = =

+ +

R 

P 

M 

E.g. Find the foot of the perpendicular from the
1 2

point P(3, 5, 4) to the line 2 1 .
3 1

Any point, A, on the line is (1 2 , 2 ,3 ).
1 2 3 2 2

PA  = 2 5 3
3 4 1

λ

λ λ λ
λ λ
λ λ
λ λ

→

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= + −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
+ − +

+ − −⎛ ⎞ ⎛
⎜ ⎟ ⎜− − = − −⎜ ⎟
⎜ ⎟+ − −⎝ ⎠ ⎝

r

.

This direction is perpendicular to the line.
2 2 2

3 1 0
1 1

14 4 3 1 0
3

2 2 1A is 1 ,1 ,3
3 3 3

λ
λ
λ

λ λ λ λ

⎞
⎟

⎜ ⎟
⎜ ⎟

⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⇒ − − − =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

⇒ − + + + − = ⇒ =

⎛ ⎞⇒ ⎜ ⎟
⎝ ⎠

.

Example 1.10 
Page 22 

d̂
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The Scalar Triple Product  References: 
Chapter 1 

Pages 31-36 

Exercise 1F 
Q. 2, 3 

Volume of the parallelepiped OAEBCGFD  
where the three sets of parallel sides are given by  
OA = a, OB = b, OC = c 
is given by   

 
 

 
 
 
If the volume is 0 then the four points lie on the same 
plane. 

 

The Scalar Triple Product in component form. 

Volume of the tetrahedron OABC  
where the three sides are given by  
OA = a, OB = b, OC = c 

 
 

Example 1.12 
Page 33 

( )
( )

ˆ ˆGiven that sin  where  is the unit 
vector perpendicular to both  and , 

ˆ ˆ ˆand cos  with 1
ˆ sin sin cos
ˆ

θ

ϕ

θ θ ϕ

×

=

× =

= ×

b  c = b c n n
b c

a.n = a n n

a . b c = a .n  b c a  b c

a .n b  c 

( ) ( )

1 1 1

2 2 2

3 3 3

2 3 3 2 1 2 3 3 2

3 1 1 3 2 3 1 1 3

1 2 2 1 3 1 2 2 1

1 2 3 3 2 2 3 1 1 3

If ,  ,  ,

, .

a b c
a b c
a b c

b c b c a b c b c
b c b c a b c b c
b c b c a b c b c

a b c b c a b c b c a

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

− −⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟× − ⇒ × −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠ ⎝ ⎠

= − + − +

a b c

b  c = a . b  c = 

( )3 1 2 2 1

1 1 1

2 2 2

3 3 3

b c b c

a b c
a b c
a b c

−

=

1 3 1
E.g. Given that  2 ,  1 ,  1 ,

1 2 2
find .

1 3 1
1 1 1 2 2 1

2 1 1 1 3 1
2 2 2 1 1 2

1 2 2
1 ( 4) 3( 5) 1(3) 16

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

×

− −
× = − = + +

− −
−

= × − + − + = −

a b c

a . b  c 

a . b  c 

O 

A

B 

C 
E 

D 

F G 

a 

b 
c 

1is given by 
6

V = ×a.(b c)

C 

B 

A 

O 

c b 
a 

Distance between two skew lines 
If l1 is defined by a point a and direction n1 and l2 by a 
point b and direction n2 then the shortest distance is 
given by 
 
 
 
 
If the shortest distance is 0 then the lines intersect. 

( ) .( )
d

×
=

×
1 2

1 2

a b n n
n n

−

Exercise 1E 
Q. 1(i), 2(i) 

1

2

E.g. You are given the equations of two lines:
1 2 1:

3 1 2
3 1:

2 1 1
(i)  Find the distance between the lines 
      when 9.
(ii) Find the value of  if the two lines intersect.

1
2
1

x y zl

x y z kl

k
k

− − −
= =

− − −
= =

−

=

⎛ ⎞
⎜= ⎜
⎜
⎝

a

( ) ( )

3 2
, 1 1

1

3 2 3
1 , 1 1 ,
2 1 5

9 1 25 35

2 3
. 1 1 5 10

1 5
5 10

35
(i) When 9, 35
(ii) When 0,

k k

k
k

kd

k d
d

−⎛ ⎞ ⎛ ⎞
⎟ ⎜ ⎟ ⎜ ⎟= ⇒ − =⎟ ⎜ ⎟ ⎜ ⎟
⎟ ⎜ ⎟ ⎜ ⎟−⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = − ⇒ × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

× = + + =

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟− × = × = −⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

−
⇒ =

= =
=

1 2 1 2

1 2

1 2

b a b

n n n n

n n

a b n n

5 10 0 2 k k− = ⇒ =

Show that the points A(1, 1, 1), B(2, 4, 7),  
C(−1, 3, 1) and D(3, 1, 4) are coplanar. 

 

1 2 2
AB = 3 , AC = 2 , AD = 0

6 0 3

12
AB AC = 12

8

2 12
AD.AB AC = 0   12 24 0 24 0

3 8

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

−⎛ ⎞
⎜ ⎟× −⎜ ⎟
⎜ ⎟
⎝ ⎠

−⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟× − = − + + =⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

.

V = ×a.(b c)



E.g. Determine the section z = 3 of the above  
function. 

 

Summary  FP3 Option 2:  Multivariable Calculus - 1         

FP3; Further Applications of Advanced Mathematics  
Version B: page 6 
Competence statements c1, c2, c3, c7 
© MEI 

References: 
Chapter 2 

Pages 52-53 

E.g. z = x2 + 2y References: 
Chapter 2 

Pages 43-50 

Exercise 2A 
Q. 2, 7 

Exercise 2C 
Q. 1(i), (iii), 5 

 

Differentiability- The Tangent Plane 
At a point on a continuous surface the plane which 
touches the surface at a point is said to be the  
tangent plane at that point. 
It contains the tangent of the section of the surface 
parallel to the x-axis at that point and also the tan-
gent of the section of the surface parallel to the y-
axis at that point. 

 

Example 2.1 
Page 45 

Example 2.2 
Page 49 

Exercise 2B 
Q. 2, 3 

The notation is  and z z
x y

∂ ∂
∂ ∂

Example 2.4 
Page 53 

2E.g. Find   and  when 3

2 3, 1

z z z x x y
x y

z zx
x y

∂ ∂
= + −

∂ ∂
∂ ∂

= + = −
∂ ∂

The directions of these lines are given by  and .

 means that from the point, the change in  is 

zero (because we keep it constant!)
and for a change of 1 in  there is a change of  in .

z z
x y

z c y
x

x c z

∂ ∂
∂ ∂

∂
=

∂
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Exercise 2D 
Q. 1(i), (ii) 

2

E.g. Find the equation of the tangent plane to the 
surface +2 4  at the point (1, 2, 9).

1
 2 2 4 10 giving the direction 0

10

0
 2 2 giving the direction 1

2

1
 0

10

z x xy x

z x y
x

z x
y

= +

⎛ ⎞
∂ ⎜ ⎟= + + = ⎜ ⎟∂ ⎜ ⎟

⎝ ⎠
⎛ ⎞

∂ ⎜ ⎟= = ⎜ ⎟∂ ⎜ ⎟
⎝ ⎠

⎛
⇒ =

⎝

n
0 10
1  = 2
2 1

So the plane can be written 10 2
and the equation is satisfied by the point (1, 2, 9)

10 4 9 5
10 2 5

x y z d

d
x y z

−⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟× −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎠ ⎝ ⎠ ⎝ ⎠
+ − =

⇒ = + − =
⇒ + − =

Alternative notation 

( )

If f( , ) then differentiating with respect 

to gives . 

fThis can also be written  or f , .x

z x y
zx
x

x y
x

=
∂
∂

∂
∂

z = 3 gives  
x2 + 2y = 3 
In the plane this 
is a parabola  

 

A function of three variables 
Just as the function y = f(x) represents a curve in 
two dimensions, the function z = f(x, y) represents 
a surface. 
 
If the x- and y-axes are horizontal and the z-axis is 
vertical then for any coordinate pair (x, y) a value 
of z can be found. 
 
All the points where z is equal is known as a  
contour. 
 
A vertical plane cuts the surface in what is called a 
section. 

Partial differentiation 
This is the process of differentiating the function  
z = f(x, y) with respect to x keeping y constant and 
differentiating z = f(x, y) with respect to y, keeping 
x constant. 
  

23
2

xy −
=

Example 2.5 
Page 58 



Summary  FP3 Option 2:  Multivariable Calculus  - 2         

FP3; Further Applications of  
Advanced Mathematics  
Version B: page 7 
Competence statements c4, c5, c6, c8 
© MEI 

References: 
Chapter 2 

Pages 64-66 

Stationary points 
A stationary point on a surface is defined as a 
point where the tangent plane is parallel to the x-y 
plane. This is a point which is a local maximum or 
minimum of z. 

 
 
 

The nature of a stationary point may be  
determined by considering sections or the value of 
z for small changes in x and y. 

E.g. Investigate the stationary points on the curve  
z = x2 − 8xy + 2y2 + 14x. 

 

References: 
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Exercise 2E 
Q. 1, 3 

Exercise 2F 
Q. 2, 3 

E.g. in the example above, the stationary point is  
(1, 2, 7). 

 

Small changes 
 
 
 

 
This formula is applicable for any number of  
variables. 

 
 
 
 

The approximation can be used to estimate the 
effects of errors in a calculation. 

  Directional derivatives 

Example 2.7 
Page 65 

 

This occurs when 0. z z
x y

∂ ∂
= =

∂ ∂

2 28 2 14

2 8 14, 8 4

2 8 14
8 4 0

1, 2, 7

z x xy y x
z zx y x y
x y

x y
x y
x y z

= − + +
∂ ∂

⇒ = − + = − +
∂ ∂
− = −

− + =
⇒ = = =

In any 3-D representation, the horizontal  
direction of a line may be denoted by the unit 

cos
ˆvector ,  where the line makes an 

sin
angle of  with the -axis.

ˆ ˆThen 

x
z
x
z
y

α
α

α

⎛ ⎞
⎜ ⎟
⎝ ⎠

∂⎛ ⎞
⎜ ⎟∂⎜ ⎟ =

∂⎜ ⎟
⎜ ⎟∂⎝ ⎠

u = 

u ui i f cos sin  is

the directional derivative.

z z
x y

α α∂ ∂
= +

∂ ∂
grad 

2 2

2

2

2 2

2 2

8 2 14
When 2, 2 8

2 2 0 at 1

Also, when 1, 2 8 15

4 8 0 at 2

At this point 0 and 0

i.e. the stationary value is a minimum.

z x xy y x
y z x x

z x x
x

x z y y
z y y
y

z z
x y

= − + +

= = − +
∂

⇒ = − = =
∂

= = − +
∂

⇒ = − = =
∂

∂ ∂
> >

∂ ∂

f fFor f( , ),z x y z x y
x y

δ δ δ∂ ∂
= ≈ +

∂ ∂
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2

2

2

E.g. Find grad f when f = 2 .
Find the gradient on this surface at (1, 1, 3) in the

0.6
ˆdirection .

0.8
f f2 , 2

32
f = . At A,  f =

22

0.6
Gradient = .

0.8

x xy

y xy
x y

y
xy

+

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∂ ∂

= + =
∂ ∂

⎛ ⎞+ ⎛ ⎞
⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠
⎛ ⎞
⎜ ⎟
⎝ ⎠

u

grad grad 

3
1.8 1.6 3.4

2
⎛ ⎞

= + =⎜ ⎟
⎝ ⎠

f f fFor f( , , ),z x y w z x y w
x y w

δ δ δ δ∂ ∂ ∂
= ≈ + +

∂ ∂ ∂

Example 2.9 
Page 71 

Exercise 2G 
Q. 3, 4 

If g( , , ) then the directional derivative is 

ˆ g, where g = 

w x y z

w
x
w
y
w
z

=

⎛ ⎞∂
⎜ ⎟∂⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂
⎜ ⎟

∂⎜ ⎟
⎜ ⎟∂⎝ ⎠

The Directional Derivative

u.grad grad 

Example 2.11 
Page 75 
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Exercise 2H 
Q. 1, 5 

The surface g(x,y,z) = k. 
For the point A with position vector a on the 
surface g(x,y,z) = k , the tangent plane is  
(r –a).grad g = 0, where grad g is evaluated at 
point A. 
 
The normal line is r = a + λgrad g. 

Example 2.12 
Page 78 
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Exercise 2I 
Q. 1, 4 
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Arc length 
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Exercise 3A 
Q. 1, 2, 3 

Exercise 3B  
Q. 1, 2, 6 

Surface area of solid of revolution 

 

Volume of solid of revolution 
 

2 2

Cartesian coordinates: f( )

d d d1 1 d
d d d

x b

x a

y x

s y ys x
x x x

=

=

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + ⇒ = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫

2 2
2 2

Polar coordinates: f( )

d d d d
d d d

b

a

r

s r rr s r
θ

θ

θ

θ
θ θ θ

=

=

=

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟= + ⇒ = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫

2 2 2

22

0 0

2

E.g. Find the circumference of a circle.
1. Cartesian coordinates:

d d2 2 0 .
d d

Length of positive quadrant ( 0 to )

d1 d 1 d
d

x a x a

x x

y y xx y a x y
x x y

x x a

y xs x x
x y

y

= =

= =

+ = ⇒ + = ⇒ = −

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟= + = + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

+
=

∫ ∫

2 2

2 2 2 2 2
0 0 0

2 2 2 2

2

0

1d d d

dLet sin : cos , cos
d

When 0, 0;  when ,
2

d
2

So for whole circle, 4 2
2

2. Parametric coordinate

x a x a x a

x x x

x ax x a x
y a x a x

xx a a a x a

x x a

as a

ac a

πθ

θ

θ θ θ
θ

πθ θ

πθ

π π

= = =

= = =

=

=

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

= = − =

= = = =

⇒ = =

= × =

∫ ∫ ∫

∫

[ ]

[ ]

2 2

2 2 2 2

2

0

2 2
2

0
2

0

s:
cos , sin

d d d d dsin , cos ;
d d d d d

d sin cos
d

2

3. Polar coordinates

d d d
d d

2

x a y a

x y s x ya a

s a a a

s a a

s rr a r a s a

a a

π

θ π

θ

π

θ θ

θ θ
θ θ θ θ θ

θ θ
θ

θ π

θ
θ θ

θ π

=

=

= =

⎛ ⎞ ⎛ ⎞= − = = +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒ = + =

⇒ = =

⎛ ⎞= ⇒ = + = ⇒ =⎜ ⎟
⎝ ⎠

= =

∫

2 2

2 2

Parametric coordinates: f( ), f( )

d d d
d d d

d d d
d d

b

a

x y

s x y

x ys
θ

θ

θ θ

θ θ θ

θ
θ θ

=

=

= =

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟⇒ = +⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠
∫

Example 3.3 
Page 89 

2

The volume of the solid swept out when the 
curve f( ) is rotated through 2 about 

the -axis is given by  d .

The volume of the solid swept out when the 
curve f( ) is rotated through 2 ab

x b

x a

y x

x V y x

x y

π

π

π

=

=

=

=

=

∫

2

out 

the -axis is given by  d .
y b

y a

y V x yπ
=

=

= ∫
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Exercise 3C 
Q. 1(i), 5 

The surface area of the solid swept out when 
the curve f( ) is rotated through 2 about 

the -axis is given by  2 d .

In cartesian coordinates this becomes 

d2 d
d

x b

x a

x b

x a

y x

x S y s

sS y x
x

π

π

π

=

=

=

=

=

=

=

∫

∫
The surface area of the solid swept out when 
the curve f( ) is rotated through 2 about 

the -axis is given by  2 d .

In caresian coordinates this becomes 

d2 d
d

y b

y a

y b

y a

x y

y S x s

sS x y
y

π

π

π

=

=

=

=

=

=

=

∫

∫

0

2 2 2

2

2 2 2

E.g. To find the surface area of a sphere.
Rotate a circle through 360  about the -axis.

 between  and 

d d d2 d  where 1
d d d

d d 2 2 0
d d

d1
d

a

a

x
x y a x a x a

s s yS y x
x x x

y y xx y a x y
x x y

y
x

π
−

+ = = − =

⎛ ⎞⇒ = = + ⎜ ⎟
⎝ ⎠

+ = ⇒ + = ⇒ = −

⎛ ⎞⇒ + ⎜
⎝ ⎠

∫

[ ]

22 2 2 2

2 2

2

1

d 2 . d 2 d 2
d

4

a a
a

a
a a

x x y a
y y y

s a aS y x a x a x
x y y

S a

π π π

π

−
− −

⎛ ⎞ +
= + = =⎜ ⎟⎟

⎝ ⎠

⇒ = ⇒ = = =

⇒ =

∫ ∫

Envelopes 
The family of lines obeying a rule is the set of 
equations f(x,y,p) = 0. 
The equation of the envelope is given by the 
two equations 

 
 

 
If p can be eliminated then the Cartesian equa-
tion results. Alternatively rearrange to give 
parametric equations x = g(p), y = h(p). 

f( , , ) 0, f ( , , ) 0x y p x y p
p
∂

= =
∂

Example 3.4 
Page 96 

References: 
Chapter 3 

Pages 100-102  

Example 3.6 
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Intrinsic Equations 
An alternative way to describe a curve is in 
terms of  the arc length, s, with the angle ψ, 
which its tangent makes with a fixed direction. 
We determine the equation uniquely we also 
need the point of the curve where s = 0, the 
direction where ψ = 0 and also a sense of  
direction. (ψ is usually measured in radians 
anticlockwise.) 

 
 
 

 

References: 
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Exercise 3D 
Q. 1, 3 

Exercise 3E  
Q. 1, 6 

Centre of curvature 
The circle of curvature of a curve at a point P 
is the circle with centre on the normal at P.  

 

Curvature 
The curvature of a curve at a point P is the rate 
of change of ψ  with s at P. 
 
 
 
If κ is positive , then ψ  increases with s and 
the curve curves to the left. 
 
For a curve given in intrinsic form the formula 
above can be used. 
If the equation is given in Cartesian  
coordinates, y = f(x) then 
  

Example 3.9 
Page 108 

d d dtan , cos , sin
d d d

y x y
x s s

ψ ψ ψ= = =

d
ds
ψκ =

2

2

3
2 2

d
d

d1
d

y
x

y
x

κ =
⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

1 dThe radius is 
d

We define unit vectors in the direction of the 
ˆpositive tangent and positive normal to be  

cos sinˆˆ ˆand where   = and 
sin cos

Then, if the vector for P is 

sρ
κ ψ

ψ ψ
ψ ψ

= =

−⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

t

n t n

r  and the vector 
ˆfor the centre, C, is  then  =   +ρc c r n

The Evolute of a Curve 
As the point P moves along a curve , the  
centre of curvature, C, also moves. The locus 
of C is called the evolute of the curve. 
As shown, the centre of curvature can be 
found for a specific point. If, instead, the  
parametric point is used then the form of c 
will be in parametric form, which will be the 
equation of the evolute. 
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Exercise 3F  
Q. 1, 2 
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Exercise 3G  
Q. 1, 4 

d d ˆAn alternative form is = . 
d dss

ρc n

Example 3.11 
Page 111 

Example 3.12 
Page 116 

Example 3.13 
Page 118 

2 3

2 2

2

1E.g. For the point P ,  on the curve 4  (where
4

 is a positive constant), find
(i)  the radius of curvature, 
(ii) the coordinates of the centre of curvature.

d 3 3 d(i)  At P, ,
d 4 4 d

a a a y x

a

y x y
x a x

⎛ ⎞ =⎜ ⎟
⎝ ⎠

= = 2 2

3 3
2 22 2

2

2

3

6 3
4 2

d 31 1
d 4

3d
2d

5
125 2 1254

3 64 3 96
2

3 31ˆ(ii) Normal vector is 
4 45

3125 1 Centre of curvature is 1 496 5
4

x
a a

y
x
y

ax

a a

a

n

a
a

a

ρ

= =

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⇒ = =

⎛ ⎞
⎜ ⎟
⎝ ⎠= = × =

− −⎛ ⎞ ⎛ ⎞
⇒ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞ −⎛ ⎞⎜ ⎟⇒ + × ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

75
7 3196i.e.    which is ,

1 100 32 24
4 96

aa
a a

aa

⎛ ⎞−⎜ ⎟ ⎛ ⎞⎜ ⎟ ⎜ ⎟
⎝ ⎠⎜ ⎟+⎜ ⎟

⎝ ⎠

E.g. The curve with intrinsic equation 4 (1 cos ) 
has a stationary point at the origin.
Find the paramtric equations for the curve.
d d dcos , sin .  From the curve  4 sin
d d d
d d d cos
d d d

s a

x y s a
s s
x x s

s

ψ

ψ ψ ψ
ψ

ψ
ψ ψ

= −

= = =

= × = 4 sin 2 sin 2

cos 2 ;   0 when 0
(1 cos 2 )

d d d sin 4 sin 2 (1 cos 2 )
d d d

2 sin 2 ; 0 when 0 0
(2 sin 2 )

Writing 2  gives parametric equations
(1 cos ), ( s

a a

x k a x k a
x a

y y s a a
s

y k a a y k
y a

x a y a

ψ ψ

ψ ψ
ψ

ψ ψ ψ
ψ ψ

ψ ψ ψ
ψ ψ
ψ θ

θ θ

× =

⇒ = − = = ⇒ =
⇒ = −

= × = × = −

⇒ = + − = = ⇒ =
⇒ = −

=
= − = − in )θ



Summary  FP3 Option 4:  Groups - 1         

FP3; Further Applications of Advanced 
Mathematics  
Version B: page 10 
Competence statements a1, a2, a4 
© MEI 

References: 
Chapter 4 

Page 135-143 

Sets and operations 
A set is a collection of items having a common  
property. 
A binary operation is an operation combining two 
items of a set to form a third item. 
The result of a binary operation is often referred to as 
the product (though most people restrict this word to 
the result of the binary operation “multiply”.) 
The operation is closed with respect to a set if, for all 
elements x, y of the set, the product x*y lies in the set.  
The operation is commutative if, for all x, y є S, x*y  
= y*x . 
The operation is associative if, for all x, y, z є S  
x*(y*z) = (x*y)*z  
An identity element, e є S, is an element such that  
e*x = x * e = x for all x є S. 
The inverse x−1 , of an element x is an element such 
that x * x−1= x−1 * x = e 

E.g. The binary operation “add” is closed with  
respect to the set of positive numbers because 
the addition of any two positive numbers is 
positive. The binary operation “subtract” how-
ever is not closed. For example 4 − 5 is not a 
positive number. 
 

E.g. The binary operation “add” is commutative 
because the addition of any two positive num-
bers is same whichever way round you combine 
the numbers. I.e. 4 + 5 = 5 + 4. The binary  
operation “subtract” however is not  
commutative. For example 4 − 5 ≠ 5 − 4.   
 

E.g. The binary operation “add” is associative: 
E.g. 6 + (5 + 4) =   6 + 9 = 15  
and  (6 + 5) + 4 = 11 + 4 = 15   
The binary operation “subtract” however is not 
associative: 
E.g. 6 − (5 − 4) =  6 − 1 =   5  
and  (6 − 5) − 4 = 1 − 4 = −3   
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Exercise 4A 
Q. 2, 3 

Exercise 4B 
Q. 1, 2 

E.g. Consider the set G and the binary operation 
of multiplication modulo 20, where 
G  = {1, 3, 7, 9, 11, 13, 17, 19}  
Show that G is a group under this operation. 
 

The combination table is  
 
         1      3      7      9    11    13    17    19 
1       1      3      7      9    11    13    17    19 
3       3      9      1      7    13    19    11    17 
7       7      1      9      3    17    11    19    13 
9       9      7      3      1    19    17    13    11 
11   11    13    17    19      1      3      7      9 
13   13    19    11    17      3      9      1      7 
17   17    11    19    13      7      1      9      3 
19   19    17    13    11      9      7      3      1 
 

(i)   The set is closed under the operation 
(ii)  Multiplication is associative 
(iii) The identity element is 1 
(iv) There is an inverse for each element (i.e. 1  
       appears in each row and each column). 

Groups 
A Group (S,*) is a non-empty set S with a binary  
operation * such that 
*  is closed in S - i.e. for all x, y є S ,  x*y є S  
*  is associative in S i.e. for all x, y, z є S , 
    x*(y*z) = (x*y)*z 
There is an identity element, e є S  such that  
e*x = x * e = x for all x є S  
For every element of the set, x, there exists an  
inverse element x−1 є S such that x * x−1= x−1 * x = e 
An element that is its own inverse is said to be  
self-inverse. 
 
If, in addition, the operation is commutative, then the 
group is said to be Abelian. 
 
The table showing the combination of elements is 
called the Cayley Table. In each row and column each 
element will occur once and once only. 

E.g. State the order of G and find the order of 
each element. 
The order of the group is the number of  
elements i.e. 8. 
The order of each element, x, is the smallest  
integer, n, such that xn = 1 
For 1 the order is 1. 
For 9, 11, 19, the order is 2 (These are the  
elements where 1 is in the leading diagonal) 
For 3, 7, 13, 17, the order is 4. 
(i.e. 3×3 = 9, 9×3 = 7, 7×3 = 1) 

Modular arithmetic 
Within the set of integers, two numbers are said to be 
congruent modulo m if the difference between them 
is a multiple of m. 
E.g. 37 = 1(mod 3) because 37 − 1 = 3 × 12. 
In modulo 3 arithmetic all integers can be reduced to 
the numbers 0, 1 or 2. 
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The order of a Group 
The order of a finite group is the number of elements 
in the group. 
 
The order of an element, x,  is the smallest positive 
integer n such that xn = e. 

Properties of a Group 
The identity element is unique. 
 
Each element has an unique inverse. 
 
If x*y =x*z then  y =z (known as the cancellation law) 
The equation ax = b has the unique solution x = a−1b. 

Example 4.2 
Page 140 

Exercise 4C 
Q. 1, 2, 3 



Exercise 4D 
Q. 1, 8 

Isomorphism 
Consider two groups with the same order. 
If the mapping of the elements of one group to the 
other preserves the structure then the two groups 
are said to be isomorphic. 
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Subgroups 
A subgroup of a group (S, *) is a non-empty  
subset of S which forms a group under the  
operation *. 
 
Every group has a trivial sub-group {e}. As with  
factors of a number, you may also consider the set 
as a subgroup of itself. 
 
A proper subgroup is a subgroup that is not one 
of the above. 

E.g. List all the sub-groups of G in example on  
previous page. 
 
The identity element {1} always forms a sub-group 
or order 1. 
 
Other proper subgroups are found by scrutinising 
the combination table. 
Any element with order 2 will, with e form  a proper 
subgroup of order 2 if e is in the leading diagonal 
position for the element. 
So {1,9}, {1,11} {1,19}are proper subgroups of  
order 2. 
 
By Lagrange’s Theorem there cannot be any  
subgroups of order 3. 
 
Scrutiny of the combination table will reveal that the 
“top left” block of 4 elements contains only those 4 
elements.  
Therefore {1,3,7,9}is proper subgroups of order 4. 
There are two others: 
{1, 9, 13, 17}, {1, 9, 11, 19} 
Note the combination table for these subgroups 
which are an extraction of the combination table of 
G. 
 

         1    9    13    17                       1      9    11    19 
  1     1    9    13    17               1      1      9    11    19 
  9     9    1    17    13               9      9      1    19    11 
13   13   17     9      1             11    11    19      1      9 
17   17   13     1      9             19    19    11      9      1 
 
 The set G itself is a subgroup of itself, of order 8. 
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Exercise 4F 
Q. 3, 4 

Cyclic groups 
If a member of a group is x then x2, x3, etc are also 
members of the group. 
 
There must be a smallest number, m, such that  
xm = e.  
m must be less than or equal to n, the order of the 
group. 
 
If m = n, then each member of the group is a 
power of x. x is said to generate the group and the 
group is said to be cyclic. 
 
The group {e, a, a2, a3} with a4 = e  is cyclic. 
 
Groups with order a prime number must be cyclic. 
This is because the order of each element is a  
factor of  p, the order of the group (Lagrange’s 
Theorem).  Since e is the only element with order 
1, all others much have order p and so must  
generate the group. 

E.g. List the subgroups of G that are isomorphic to 
one another. 
 
Subgroups of order 2 will always be isomorphic to 
one another. 
I.e. {1, 9}, {1, 11} and {1, 19} 
 
Likewise, subgroups of order 4 will be isomorphic to 
each other providing the identity element is in the 
same place within their tables. 
This is so for {1, 3, 7, 9} and {1, 9, 13, 17}. 
[ The subgroup {1, 9, 11, 19} has the identity  
element in every place of the leading diagonal.] 

Lagrange’s Theorem 
The order of any sub-group is a factor of the order 
of the group. 
 
For instance, a group of order 4 can have  
subgroups only of order 1, 2 or 4, but not 3. 
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E.g. Prove that G is not cyclic. 
 
For all elements in G, there is a least value of n for 
which xn = 1. We have seen above that the values of 
n for the elements are 1, 2 and 4. 
 
In order for G to be cyclic there must be at least one 
element, x, for which x8 = 1 with 8 the smallest such 
value. 
 

Example 4.4 
Page 151 

References: 
Chapter 4 

Page 146-149 

Exercise 4E 
Q. 1, 6 

Example 4.5 
Page 160 

Exercise 4G 
Q. 2, 5 
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Terminology 
A sequence of events where the probability of an 
outcome at one stage depends only on the outcome at 
the previous stage is known as a Markov Chain. 
The conditional probabilities of passing from one 
stage to the next are called transition probabilities. 
They are most usefully arranged in a square  transi-
tion matrix, P. Each column of P is a probability 
vector. It follows that the sum of elements of each 
column is 1. 
If the column vector p represents the probabilities at 
one stage and P is the transition matrix then Pp 
represents the probabilities at the next stage. 
E.g. if there are, at any stage, two outcomes then P is 
a 2 × 2 matrix. 
If the two outcomes are A and B, then P is given by  
 
 
 

E.g. Find the Equilibrium probabilities for the 
matrix above. 

 

3×3 Transition Matrices 
If at any stage there are three states, then the transi-
tion matrix P will be a 3×3 matrix. There will be 9 
transition probabilities. 
The calculation of the product of these matrices (and 
those which are larger!) can be tedious so it is impor-
tant that you are able to use your calculator effec-
tively. 
Usually (but not always) the transition matrix from 
stage 1 to stage 2 is the same as that from stage 2 to 
stage 3. 
The transition matrix from stage 1 to stage 3 is 
therefore P2. You may therefore be required to calcu-
late  Pn  for any integer value, n. 
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Exercise 5A 
Q. 1(i), 5 

Equilibrium probabilities 
If, for some given starting state, successive states 
converge to fixed probabilities then those values are 
called equilibrium probabilities. 
This means that at a limiting stage which gives a 
probability vector p then Pp = p. 
 
This may occur in two situations: 
(i) Whatever the initial column probability this stage 
is eventually reached. 
(ii) If the initial column probability is the equilibrium 
probabilities then this state will be constant at all 
stages. This column probability vector can be found 
as follows 

  

P(A A) P(A

P(B A) P(B

⎛ ⎞⏐ ⏐Β)
= ⎜ ⎟⎜ ⎟⏐ ⏐Β)⎝ ⎠

P

Example 5.1 
Page 177 

Exercise 5B 
Q. 1(i), 3 

1

2

1 2 1

1 2 2

1 2

If  and  then  gives

These can be solved simulataneously to find and .

pa b
pc d

ap bp p
cp dp p

p p

⎛ ⎞⎛ ⎞
= = =⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ =
+ =

P p Pp p
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Exercise 5C 
Q. 2, 6 

0.5 0.8
E.g.  find .

0.5 0.2

0.5 0.8 0.5 0.8 0.25 0.4 0.4 0.16
0.5 0.2 0.5 0.2 0.25 0.1 0.4 0.04

0.65 0.56
0.35 0.44

⎛ ⎞
⎜ ⎟
⎝ ⎠

+ +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= × =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞

=⎜ ⎟
⎝ ⎠

2

2

P= P

P

A weather forecaster classifies the weather as dry 
or wet. 
If it is wet on one day then the probability that it 
is wet the next day is 0.7. If it is dry one day then 
the probability that it is dry the next is 0.8. 
(i)  Form the transition matrix. 
(ii) If it is dry one Monday what is the probabil-
ity that it will be wet on Wednesday?           
(i)                           wet    dry  

wet 0.7 0.2
 .

dry 0.3 0.8

0
(ii) The state for Monday is = 

1
The state for Tuesday is 
The state for Wednesday is 

0.7 0.2
0.3 0.8

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

=

=

⎛
⎜
⎝

2

P = 

M 

T  PM
W = PT  P M

W = 
0.7 0.2 0 0.55 0.3 0
0.3 0.8 1 0.45 0.7 1

0.3
0.7

so the probability that it will be wet on Wednesday
is 0.3.

⎞⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎠⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

0.7 0.2
Solve 

0.3 0.8
30.7 0.2 0.2 0.3
2

3 2 3Also 1 1
2 5 5

x x
y y

x y x y x y x

x y x x x y

⎛ ⎞⎛ ⎞ ⎛ ⎞
=⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

+ = ⇒ = ⇒ =

+ = ⇒ + = ⇒ = ⇒ =
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E.g. Expected run length of wet days  for  
example on previous page. 
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Run lengths in Markov Chains 
The run length is the number of “no change”  
transitions. This is one less than the number of times 
the state is repeated. 
So for any state A, if p is the probability that the  
system remains in that state at the next stage. Hence 
the probability that it changes from state A to state A׳ 
is 1 – p. 
Let X represent the number of further consecutive 
stages in which the state of the system is A, given 
that it is initially in state A then 

The expected run length is given by  

 
 

Classifying Markov Chains 
Regular chains 
A transition matrix is regular if some power of the 
matrix has only positive entries. A Markov Chain is 
regular if its transition matrix is regular. 
In a regular Markov chain it is possible to pass from 
any state to any other state and there is a unique lim-
iting probability vector. 
 
Random Walks 
This is an expression that describes a process of 
moving between ordered states.  
 
Periodic chains 
A periodic Markov chain is one where successive 
powers of P form a pattern where there is a value of k 
such that Pk  = P. 
The period of the Markov chain is k – 1 where k is 
the smallest value for which this is true. 
 
Reflecting barriers 
A Markov chain has a reflecting barrier if following 
one particular state, the next state is inevitable. In the 
corresponding column of the transition matrix there 
is 0 in each position including position (i,i) except 1 
which has the entry 1. 
 
Absorbing states 
A Markov chain has an absorbing state if the system 
is unable to leave that state once it has reached it. In 
the corresponding column of the transition matrix 
there is an entry of 1 in position (i,i)  and 0 else-
where. 
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Exercise 5D 
Q. 1(i),(iii), 3 

Example 5.2 
Page 192 

Exercise 5E 
Q. 1, 3 

P( ) (1 )    for 0,1, 2,3, 4, .......rX r p p r= = × − =

( )

( )

2 3

2

2

E( ) [ P( )] (1 ) 2 (1 ) 3 (1 ) ....

(1 ) 1 2 3 ...

1(1 )
11

X r X r p p p p p p

p p p p

pp p
pp

= × = = − + − + − +

= − + + +

= − × =
−−

∑

Example 5.3 
Page 198 

Example 5.4 
Page 199 

0.7 1Length = 2
1 1 0.7 3

p
p
= =

− −

E.g. The following matrix represents the transition 
matrix for the purchase by customers of three brands 
of a commodity, ,  and .
                       

3 1 1
4 3 3
1 1 1
8 2 6
1 1 1
8 6 2

(i.

A B C
A B C

A

B

C

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

e. If a cutomer buys brand  then the chance of 
3him buying it again is ;  otherwise there is an equal 
4

chance of buying  or .)
(i) Find the equilibrium probabilities. 
    (i.e. the long-run proportio

A

B C

( )

n of purchases.)
(ii) A customer buys brand .Find the expected 
number of consecutive further occasions on which 
this customer purchased brand .

3 1 1(i) 
4 3 3
1 1 1
8 2 6

4   with 
3

A

A

x y z x

x y z y

x y z x y

⇒ + + =

+ + =

⇒ = + +

PX = X 

1

4 3,
7 14

(ii) Expected run of purchaes of  =  where 
1

 is the probability that  is purchased again after 
3
4 331

4

z

x y z

pA
p

p A A

+ =

⇒ = = =

−

= =
−

 

E.g. The following matrix has an absorbing state.

1 0.5 0.8
0 0.3 0.1
0 0.2 0.1

If the start is at  then it will remain there.
On further steps,  will transfer to  with 
probability 0.5,  with p

A B C

A
B A

B

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

P

robability 0.3 and  
with probability 0.2.
These probabilities will reduce to 0, so  is 
an absorbing state.

C

A
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