

MEI Structured Mathematics

Module Summary Sheets

FP1, Further Concepts for Advanced Mathematics

Topic 1: Matrices

Topic 2: Complex Numbers

Topic 3: Curve Sketching

Topic 4: Algebra

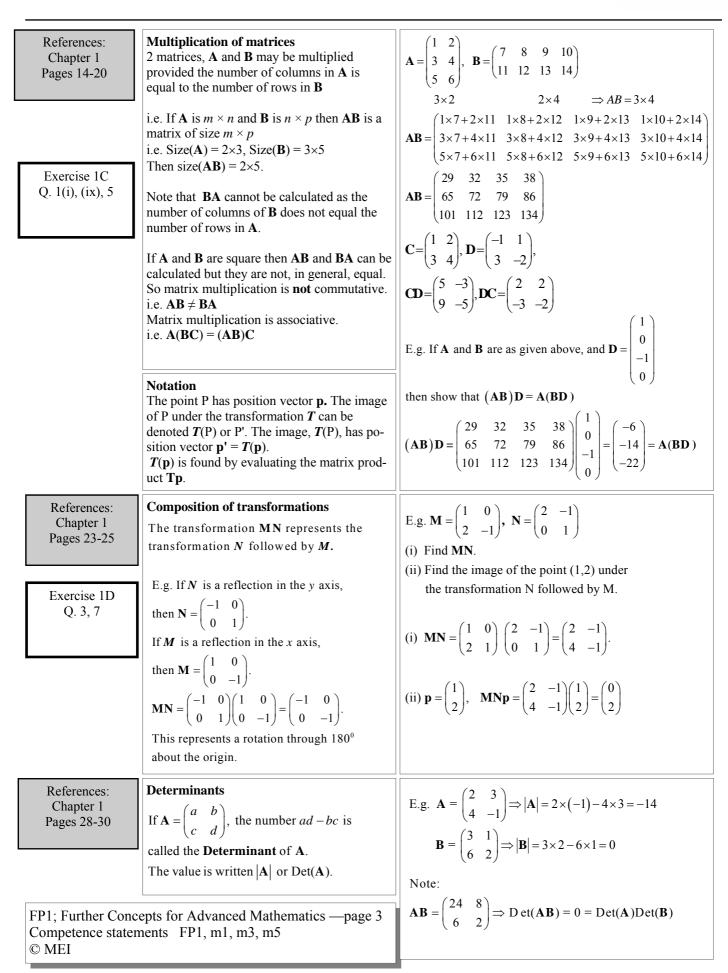
Purchasers have the licence to make multiple copies for use within a single establishment

© MEI November, 2004

MEI, Oak House, 9 Epsom Centre, White Horse Business Park, Trowbridge, Wiltshire. BA14 0XG. Company No. 3265490 England and Wales Registered with the Charity Commission, number 1058911 Tel: 01225 776776. Fax: 01225 775755.

References: Chapter 1 Pages 2-3 Exercise 1A Q. 2, 5	Matrices are rectangular arrays of numbers which can be used to convey information. A matrix with <i>n</i> rows and <i>m</i> columns is known as an $n \times m$ matrix. A matrix with equal numbers of rows and columns is square. The entries in a matrix are called elements . If all elements are 0 then matrix is known as the zero matrix. The Identity Matrix for any sized square matrix is one where all elements in the leading diagonal are 1 and all other elements are 0. i.e., for a 2×2 matrix $\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ If a matrix is multiplied by a number then every ele- ment is multiplied by that number.	E.g. $\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \mathbf{B} = \begin{pmatrix} 5 & 6 \\ 7 & 8 \end{pmatrix}, \mathbf{C} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$ (i) Find, if possible, $\mathbf{A} + \mathbf{B}, \mathbf{A} + \mathbf{C}$ (ii) Show that $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$. (i) $\mathbf{A} + \mathbf{B} = \begin{pmatrix} 1+5 & 2+6 \\ 3+7 & 4+8 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix}$ $\mathbf{A} + \mathbf{C}$ is not possible as \mathbf{A} and \mathbf{C} are not conformable. (ii) $\mathbf{B} + \mathbf{A} = \begin{pmatrix} 5+1 & 6+2 \\ 7+3 & 8+4 \end{pmatrix} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} = \mathbf{A} + \mathbf{B}$ E.g. $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix}, \mathbf{A} + \mathbf{A} = 2\mathbf{A} = 2 \begin{pmatrix} 2 & 3 \\ 1 & 4 \end{pmatrix} = \begin{pmatrix} 4 & 6 \\ 2 & 8 \end{pmatrix}$ E.g. $2\mathbf{I} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$
	Matrices are conformable if they are the same size. Conformable matrices may be added or subtracted. Matrix addition is commutative i.e. $\mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$ Matrix addition is associative. i.e. $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$	E.g. If A and B are as given above, and $\mathbf{D} = \begin{pmatrix} 2 & -2 \\ -1 & 0 \end{pmatrix}$ then show that $(\mathbf{A} + \mathbf{B}) + \mathbf{D} = \mathbf{A} + (\mathbf{B} + \mathbf{D})$ $(\mathbf{A} + \mathbf{B}) + \mathbf{D} = \begin{pmatrix} 6 & 8 \\ 10 & 12 \end{pmatrix} + \begin{pmatrix} 2 & -2 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ 9 & 12 \end{pmatrix}$ $= \mathbf{A} + (\mathbf{B} + \mathbf{D}) = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} + \begin{pmatrix} 7 & 4 \\ 6 & 8 \end{pmatrix} = \begin{pmatrix} 8 & 6 \\ 9 & 12 \end{pmatrix}$
References: Chapter 1 Pages 6-12	Transformations may be represented by matrices. If $\mathbf{X}, \begin{pmatrix} x \\ y \end{pmatrix}$ represents the position vector of the point (x, y) and $\mathbf{X}', \begin{pmatrix} x' \\ y' \end{pmatrix}$ represents the position vector of the point (x', y) and if $\mathbf{M} = \begin{pmatrix} a & c \\ b & d \end{pmatrix}$ then \mathbf{X} is transformed to \mathbf{X}' by \mathbf{M} if $\mathbf{X}' = \mathbf{M}\mathbf{X}$. $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ is transformed to $\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ is transformed to $\begin{pmatrix} c \\ d \end{pmatrix}$. $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ is the matrix for a reflection in the line $y = x$. $\begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$ is the matrix for a rotation of θ anticlockwise about the origin.	$\Rightarrow \mathbf{M} \text{ represents a stretch parallel to the } x \text{ axis.}$ \mathbf{A} \mathbf{I}
Exercise 1B Q. 3(i), 4(i)	$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ is the matrix for an enlargement, centre the origin and scale factor 2.	$ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} 0.8 \\ 0.6 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow \begin{pmatrix} -0.6 \\ 0.8 \end{pmatrix} $ i.e. rotation of 53.1° anticlockwise about the origin.
	NotationA transformation is described by a bold italic letter;e.g. T.The matrix that represents this transformation isdenoted by a bold upright capital letter; e.g.T.	FP1; Further Concepts for Advanced Mathematics —page 2 Competence statements FP1, m1, m2, m4 © MEI

Summary FP1 Topic 1: Matrices



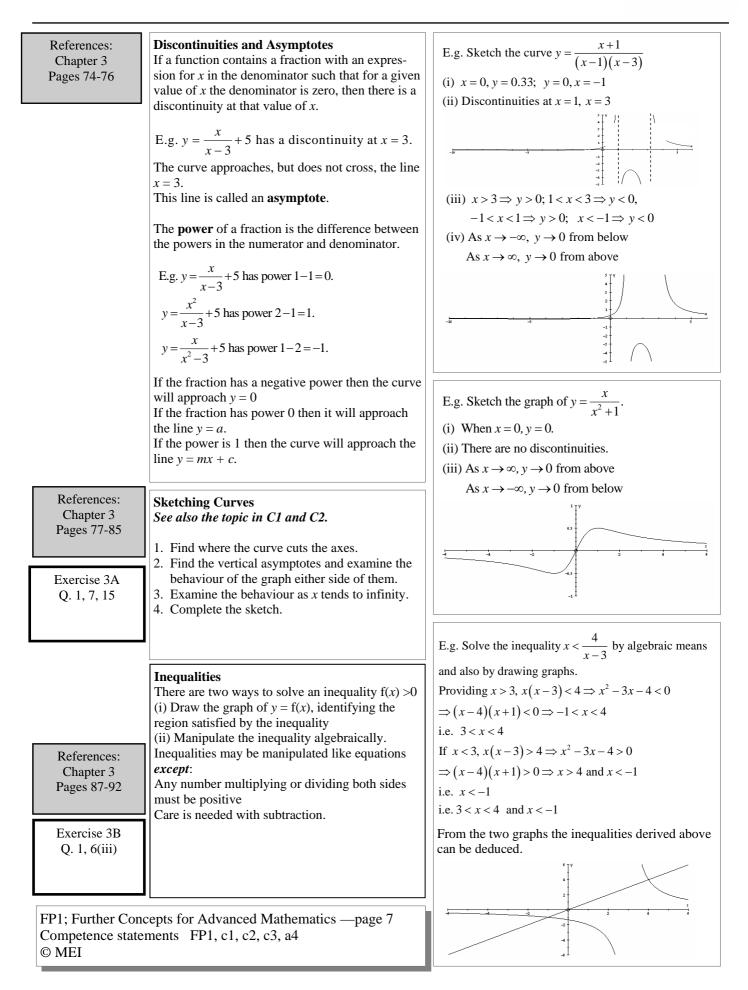
Summary FP1 Topic 1: Matrices

References: Chapter 1 Pages 28-30	Inverse Matrices The inverse of a square matrix A is written \mathbf{A}^{-1} and is such that $\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}$ If $\mathbf{A} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, then $\mathbf{A}^{-1} = \frac{1}{ \mathbf{A} } \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$ Note that the inverse of the 2×2 matrix A can be written as follows: Interchange the two elements of the leading diagonal Change the sign of each element in the trailing diagonal Divide each term by the determinant of A .	E.g. Given that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix}$ find \mathbf{A}^{-1} and \mathbf{B}^{-1} $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ 4 & -1 \end{pmatrix} \Rightarrow \mathbf{A} = -14$ $\Rightarrow \mathbf{A}^{-1} = \frac{1}{-14} \begin{pmatrix} -1 & -3 \\ -4 & 2 \end{pmatrix} = \frac{1}{14} \begin{pmatrix} 1 & 3 \\ 4 & -2 \end{pmatrix}$ $\mathbf{B} = \begin{pmatrix} 3 & 1 \\ 6 & 2 \end{pmatrix} \Rightarrow \mathbf{B} = 0 \Rightarrow \mathbf{B}^{-1}$ does not exist. Exercise: Take any \mathbf{A} and \mathbf{B} and show that $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
Exercise 1E Q. 1(v),(vii)	Only square matrices have inverses. An inverse of a matrix only exists if $ \mathbf{A} \neq 0$. If $ \mathbf{A} = 0$ then the matrix is said to be singular .	E.g. A transformation is a shear parallel to the y axis such that each point is moved by 3 times its distance from the x axis. Give the matrix that represents this transfor- mation and show that area is preserved. (i.e. the area of the parallelogram that results from
References: Chapter 1 Pages 31-34	Use of determinants The determinant of the matrix A is the (signed) area scale factor of the transformation represented by A. i.e. the matrix $\mathbf{M} = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ transforms the unit square	transforming a square has the same area. $\mathbf{M} = \begin{pmatrix} 1 & 0 \\ 3 & 1 \end{pmatrix} \Rightarrow \mathbf{M} = 1$
Exercise 1F Q. 2, 7	$\begin{pmatrix} c & d \end{pmatrix}$ into a parallelogram with area $ad - bc$. A singular matrix tranforms all points into a line through the origin.	E.g. Solve $2x + 5y = 17$, $4x - y = 1$ $\mathbf{AX} = \mathbf{B}$ where $\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 4 & -1 \end{pmatrix}$, $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$,
References: Chapter 1 Pages 36-39	Simultaneous Equations The simultaneous equations ax + by = c dx + ey = f	$\mathbf{B} = \begin{pmatrix} 17\\1 \end{pmatrix}$ $ \mathbf{A} = -2 - 20 = -22 \Longrightarrow \mathbf{A}^{-1} = \frac{1}{-22} \begin{pmatrix} -1 & -5\\-4 & 2 \end{pmatrix}$ $\mathbf{A}^{-1} = \frac{1}{-22} \begin{pmatrix} -1 & -5\\-4 & 2 \end{pmatrix}$
Exercise 1G Q. 3(i), 5	can be written $\begin{pmatrix} a & b \\ d & e \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} c \\ f \end{pmatrix}$ As a matrix equation this can be written $\mathbf{A}\mathbf{X} = \mathbf{B}$ Multiply both sides by the inverse of $\mathbf{A} \Rightarrow \mathbf{A}^{-1}\mathbf{A}\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$ i.e. $\mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$.	$\mathbf{AX} = \mathbf{B} \Rightarrow \mathbf{X} = \mathbf{A}^{-1}\mathbf{B} = \frac{1}{-22} \begin{pmatrix} -1 & -5 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} 17 \\ 1 \end{pmatrix}$ $= \frac{1}{-22} \begin{pmatrix} -22 \\ -66 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$ i.e. $x = 1, y = 3$
	A solution can be found if $ \mathbf{A} \neq 0$	$\mathbf{M} = \begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix}$
References: Chapter 1 Pages 41-43	Invariant points and lines If a matrix represents a reflection in a line, then any point on the line remains on the line. If all points on a line AB are mapped onto points in AB (not necessarily the same point) then the line AB is known as an invariant line .	(i) Show that $(1, -3)$ is an invariant point. (ii) Find the equation of the invariant line. (i) $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ -3 \end{pmatrix} = \begin{pmatrix} 4-3 \\ 3-6 \end{pmatrix} = \begin{pmatrix} 1 \\ -3 \end{pmatrix}$
Exercise 1H Q. 1(i), (iii), 4(i)	If a point is transformed onto itself then the point is known as an invariant point .	(ii) For any point (x, y) , $\begin{pmatrix} 4 & 1 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$ $\Rightarrow 4x + y = x \Rightarrow y = -3x$
-	cepts for Advanced Mathematics —page 4 ments FP1 m6, m7, m8, m9, m10, m11, m12,	Note that $(1, -3)$ lies on this line. Alternatively, we have already found that $(1, -3)$ is an invariant point; so also is $(0, 0)$ and so the invariant line is the line joining these two points.

Summary FP1 Topic 2: Complex Numbers

References:	Complex Numbers	E.g. $(3+2j)+(4-3j)=(3+4)+(2-3)j$
Chapter 2 Pages 46-49	The complex number, j , is such that $\mathbf{j}^2 = -1$. Thus $\mathbf{j} = \sqrt{-1}$.	$=7-\mathbf{j}$
1 ages 40-49	A complex number takes the general form $a + b\mathbf{j}$.	E.g. $(3+2j)-(4-3j)=(3-4)+(2+3)j$
	Complex numbers can be added and subtracted in the usual algebraic way:	= -1 + 5j
	E.g. $(a + b\mathbf{j}) + (c + d\mathbf{j}) = (a + c) + (b + d)\mathbf{j}$	E.g. $(3+2j) \times (4-3j)$
	Complex numbers can be multiplied in the usual	$= 3 \times 4 + 3 \times (-3\mathbf{j}) + 2\mathbf{j} \times 4 + 2\mathbf{j} \times (-3\mathbf{j})$
Exercise 2A	way, using $\mathbf{j}^2 = -1$.	$= 12 + 8j - 9j - 6j^{2}$ = 12 - j + 6 = 18 - j
Q. 1(ii), (vi), 2(ii), (vi)	E.g. $(a + b\mathbf{j})(c + d\mathbf{j}) = ac + ad\mathbf{j} + bc\mathbf{j} + bd\mathbf{j}^2$ = $(ac - bd) + (ad + bc)\mathbf{j}$.	E.g. Solve the equation $z^2 + 4z + 7 = 0$
	A quadratic can now be described as always having	
	two roots, though they may be complex. (Note that if one is complex then so is the other.)	$z = \frac{-4 \pm \sqrt{4^2 - 4 \times 7}}{2} = \frac{-4 \pm \sqrt{-12}}{2}$
	E.g. $z^2 + 4z + 13 = 0 \Rightarrow z = \frac{-4 \pm \sqrt{16 - 52}}{2} = \frac{-4 \pm \sqrt{-36}}{2}$	$= -2 \pm \sqrt{3}\mathbf{j}$ Solution by the method of completing
		the square:
	$=\frac{-4\pm 6\mathbf{j}}{2}=-2\pm 3\mathbf{j}$	$z^2 + 4z + 7 = 0 \Longrightarrow z^2 + 4z = -7$
	Note that two complex numbers can be added to give a real number	$\Rightarrow z^2 + 4z + 4 = 4 - 7 = -3 \Rightarrow (z+2)^2 = -3$
	E.g. $(3 + 2j) + (3 - 2j) = 6$	$\Rightarrow z + 2 = \pm \sqrt{-3} \Rightarrow z = -2 \pm \sqrt{3}\mathbf{j}$
	Two complex numbers may also be multiplied to give a real number.	E.g. A root of a quadratic equation is $-5-3\mathbf{j}$
	E.g. $(3+2j) \times (3-2j) = 9 + 4 = 13$	(i) State the other root,
References:	Complex conjugates	(ii) Find the equation.
Chapter 2 Page 49	If $z = x + y\mathbf{j}$, then $z^* = x - y\mathbf{j}$ is called the complex conjugate of z .	(i) One root is $-5-3\mathbf{j}$ so the other is $-5+3\mathbf{j}$
1 age 47		(ii) The equation is $(z-(-5-3\mathbf{j}))(z-(-5+3\mathbf{j}))=0$
Exercise 2A	Complex roots of a quadratic equation occur in conjugate pairs.	$\Rightarrow z^{2} - z(-5+3\mathbf{j}) - z(-5-3\mathbf{j}) + (-5-3\mathbf{j})(-5+3\mathbf{j}) = 0$
Q. 5	E.g. If $2 + 3\mathbf{j}$ is a root then the other one is $2 - 3\mathbf{j}$	$\Rightarrow z^2 + 10z + (25 + 9) = 0$
	-	$\Rightarrow z^2 + 10z + 34 = 0$
References:	Division	E.g. Rationalise $\frac{2+3j}{3+4j}$
Chapter 2 Pages 49-52	Remember that $(x + y\mathbf{j})(x - y\mathbf{j}) = x^2 + y^2$	5 · · · j
1 ages 49-52	Then $\frac{1}{x+y\mathbf{j}} = \frac{x-y\mathbf{j}}{(x+y\mathbf{j})(x-y\mathbf{j})} = \frac{x-y\mathbf{j}}{x^2+y^2}$	$\frac{2+3j}{3+4j} = \frac{(2+3j)(3-4j)}{(3+4j)(3-4j)}$
Exercise 2B	Therefore a fraction with a complex number in the	$= \frac{6 - 8j + 9j + 12}{9 + 16}$
Q. 1(ii), 2(ii)	Therefore a fraction with a complex number in the denominator may be "rationalised" by multiplying	$=\frac{1}{25}(18+\mathbf{j})$
4(iii),9	top and bottom of the fraction by the complex conju- gate of the denominator.	25
	N.B. The process is the same as for surds:	E.g. Solve the equation $2x + \mathbf{j} = 2 - \mathbf{j}x$ $2x + \mathbf{j} = 2 - \mathbf{j}x \Rightarrow 2x + \mathbf{j}x = 2 - \mathbf{j}$
	Then $\frac{1}{4+\sqrt{3}} = \frac{4-\sqrt{3}}{(4+\sqrt{3})(4-\sqrt{3})} = \frac{4-\sqrt{3}}{16-3} = \frac{1}{13}(4-\sqrt{3})$	$\Rightarrow (2+\mathbf{j}) x = (2-\mathbf{j}) \Rightarrow x = \frac{2-\mathbf{j}}{2+\mathbf{i}}$
	$(4+\sqrt{3})(4+\sqrt{3})(4-\sqrt{3})$	2 ' J
FP1; Further Concepts for Advanced Mathematics —page 5		$=\frac{(2-\mathbf{j})(2-\mathbf{j})}{(2+\mathbf{j})(2-\mathbf{j})}=\frac{4-2\mathbf{j}-2\mathbf{j}-1}{4+1}$
Competence statements FP1, j1, j2, j3, j4 © MEI		$=\frac{1}{5}(3-4\mathbf{j})$

References:	The Argand diagram	E.g. Show the number $r = 2 + 3j$ on an
Chapter 2 Pages 55-57	The complex number $x + y\mathbf{j}$ can be represented geometrically on a coordinate system by the point (x, y) . Real numbers (i.e. $(x, 0)$) form the x axis which is therefore called the real axis. Imaginary numbers (i.e. $(0, y)$) form the y axis which is therefore called the imaginary axis.	argand diagram. Im r $(2, 3)$
	Such a representation is called an Argand diagram . Complex conjugates are reflections in the imaginary (y)	Re Re
	axis.	$z_1 = 2 + 2\mathbf{j}, z_2 = 2 - \mathbf{j}$
Exercise 2C Q 1(iii), 2(ii),(v)	$x + y\mathbf{j}$ can be described by the vector $\begin{pmatrix} x \\ y \end{pmatrix}$. The sum of complex numbers can therefore be seen as the sum of vectors.	z_1 z_2 $z_1 + z_2$
	The modulus is the length of the complex number, $\sqrt{x^2 + y^2}$	~1 + ~2
References: Chapter 2	Loci	E.g. The locus of all points satisfying
Pages 58-59	The distance between z_1 and z_2 is $ z_1 - z_2 $. $ z - z_1 = k$ is satisfied by all points, <i>z</i> , which	$ z-2-3\mathbf{j} = 5$ is a circle, centre 2 + 3 \mathbf{j} radius 5
Exercise 2D Q. 1(v), 2	are k units from z_1 . i.e. the locus of z is a circle, centre z_1 and radius k	
References: Chapter 2 Pages 61-65	Modulus and Argument form for complex numbers. A complex number can be described in Cartesian form. i.e. $z = x + y\mathbf{j}$ describes the position vector from the origin to the point (<i>x</i> , <i>y</i>).	E.g. the point $(1, \sqrt{3})$ can be written in modulus-argument form as $\left(2, \frac{\pi}{3}\right)$.
	It can also be described by means of the length of the number together with the angle it makes with the positive real axis. r (x, y)	$2/\sqrt{3}$
Exercise 2E Q 1(ii), 2(ix), 3(iii)	The distance, <i>r</i> , is the modulus of <i>z</i> . The angle is measured anticlockwise from the real axis and is measured in radians. Without restricting the range of θ this is not unique, so it is usual to define θ as the principal angle in the range $-\pi < \theta \le \pi$.	
References: Chapter 2 Pages 66-67	Loci $\arg z = \text{const.}$ is a straight line.	E.g. Solve the equation $z^3 + 2z - 3 = 0$. By inspection $f(1) = 0$ so one root is $z = 1$
	Equations On page 6 it was seen that if a quadratic equation has no	$\Rightarrow (z-1)(z^2+z+3) = 0$
Exercise 2F Q. 1(ii), 3	real roots then the two complex roots occur in complex conjugate pairs.	The roots of $z^2 + z + 3 = 0$ are $z = \frac{-1 \pm \sqrt{1-12}}{2}$ $\Rightarrow z = \frac{1}{2} \left(-1 \pm \sqrt{11} \mathbf{j} \right)$ and $z = 1$
References: Chapter 2	i.e. if one root is $a + b\mathbf{j}$ then the other is $a - b\mathbf{j}$. This applies more generally to a polynomial equation of degree <i>n</i> .	
Pages 69-71	If a polynomial equation has real coefficients then complex roots occur in complex conjugate pairs.	FP1; Further Concepts for Advanced Mathematics — page 6 Competence statements FP1, j5, j6, j7
Exercise 2G Q. 3, 9	i.e. a cubic equation has either three real roots or one real root and two complex roots which are a conjugate pair.	j8, j9 © MEI



Summary FP1 Topic 4: Algebra

ME

References: Chapter 4 Pages 97.99Identities Two different vays of writing the same expression are identically equal. The expressions will have the same value for all values of x.E.g. (fx ² + 2x - 5 = (x - 1)(x - a) + b, find a and b.Exercise 4A Q. 4, 5E.g. 2(x + 3) = 2x + 6 x ² - 4x + 3 = (x - 3)(x - 1) In an identity the coefficient of equal powers on each side will be the same.E.g. 2(x + 3) = 2x + 6 x ² - 4x + 3 = (x - 3)(x - 1) In an identity the coefficient of equal powers on each side will be the same.E.g. 2(x + 3) = 2x + 6 x ² - 4x + 3 = (x - 3)(x - 1) In an identity the coefficient of equal powers on each side will be the same.E.g. 1x + (a + b) Compare with coefficients on LHS $\Rightarrow a + 1 = -2 \Rightarrow a = -3,$ $a + b = -5 \Rightarrow b = -2$ i.e. $x^2 + 2x - 5 = (x - 1)(x + 3) - 2$ References: Chapter 4 Pages 105-107References: Chapter 4 Pages 111-12References: $a + \beta = -\frac{b}{a}, \alpha \beta = \frac{c}{a},$ $a\beta + \gamma = \gamma = \alpha = -\frac{b}{a},$ $a\beta + \beta + \gamma = \gamma = \alpha = -\frac{b}{a},$ $a\beta + \beta + \gamma = \gamma = \alpha = -\frac{b}{a},$ $a\beta + \beta + \gamma = \gamma = $			
Pages 97-99Identically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expressions will have the same value for all values of x.Indically equal. The expression of the equation with the expression of equation or complex (in which case they are a complex conjugate pair.)Exercise 4C Q 1, 8, 9If the three roots of $ax^2 + bx^2 + cx + d = 0$ are a, β and γ and $a + \beta + \gamma = \sum a = -\frac{b}{a}$.If the three roots of $ax^2 + bx^2 + cx + d = 0$ are a, β and γ and the roots of a equation are a, β and γ and the roots of a equation are a, β and γ and the roots of a equation are a, β and γ and the roots of a equation are a, β and γ and the roots of a second equation are a, β and γ and the root of a equation ar			E.g. If $x^2 + 2x - 5 \equiv (x - 1)(x - a) + b$,
Exercise 4A Q. 4, 5For all values of x. E.g. $2(x+3) = 2x+6$ $x^2 - 4x + 3 = (x-3)(x-1)$ In an identry the coefficient of equal powers on each sideR.H.S = $x^* - (a+1)x + (a+b)$ Compare with coefficients on L.H.S $\Rightarrow a+1=-2\Rightarrow a=-3$, $a+b=-5\Rightarrow b=-2$ i.e. $x^2 + 2x - 5 = (x-1)(x+3) - 2$ References: Chapter 4 Pages 100-104 Roots of polynomials 1. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). If the two roots of $ax^2 + bx + c = 0$ are a and β $a + \beta = -\frac{b}{a}$, $a\beta = \frac{c}{a}$ E.g. The roots of $x^2 + 2x + 5 = 0$ are a and β . Find the equation with roots a^2 and β^2 . $\Rightarrow a + \beta = -2$, $a\beta = 4 - 10 = -6$ $a^2\beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^3 + bx^2 + cx + d = 0$ are a , β and γ $a^2 + \beta^2 = -2$, $a\beta = 4 - 10 = -6$ $a^2\beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^2 + bx^2 + cx + d = 0$ are a , β and γ $a\beta + \beta - \gamma = x = -\frac{b}{a}$. $a\beta - \frac{c}{a} = \frac{c}{a}$ $a\beta - \frac{c}{a} = \frac{c}{a}$. $a\beta - \frac{c}{a} = \frac{c}{a}$ $a\beta -$	1		find a and b .
Exercise 4A Q. 4, 5F.g. $2(x+3) = 2x+6$ $x^2 - 4x + 3 = (x-3)(x-1)$ In an identity the coefficient of equal powers on each side will be the same.Compare with coefficients on L.H.S $\Rightarrow a+1=-2\Rightarrow a=-3$, $a+b=-5\Rightarrow b=-2$ $i.e. x^2 + 2x - 5 = (x-1)(x+3)-2References:Chapter 4Pages 100-104Roots of polynomialsI. A quadratic equation has two roots. They may be realand distinct, real and coincident, or complex (in whichcase they are a complex conjugate pair).If the two roots of ax^2 + bx + c = 0 are a and \betaFind the equation with roots a^2 and \beta^2.\Rightarrow a+\beta = -2, a\beta = 5,a^2 + \beta^2 = (a + \beta)^2 - 2a\beta = 4 - 10 = -6a^2 + \beta^2 = 25i.e. x^2 + 6x + 25 = 0References:Chapter 4Pages 105-1072. A cubic has 3 roots, at least one of which is real. Theother two roots may be real and coincident or complex (inwhich case they are a complex conjugate pair.)If the three roots of ax^3 + bx^2 + cx + d = 0 are a, \beta and \gammaReferences:Chapter 4Pages 105-1072. A cubic has 3 roots, at least one of which is real. Theother two roots may be real and coincident or complex (inwhich case they are a 2 = a\beta = \frac{c}{a}.a\beta\gamma = -\frac{d}{a} = \sum a\beta\gammaE.g. If the roots of the equationx^2 + 2x + 4 = 0are a\beta and \gamma then find the equationwhose roots are a+1, \beta+1 and \gamma+1.References:Chapter 4Pages 111-112You should be familiar with the process of finding anequation whose roots are a^2, \beta and \gamma^2 wither is a symmetric relationship (e.g. a^2=a+1, etc.)the roots of a second equation are a^2, \beta and \gamma^2.E.g. If the roots of a a second equation are a^2, \beta and \gamma^2.References:Chapter 4Pages 111-112You should be familiar with the process of finding anequation whose roots are a$	Pages 97-99		$R.H.S \equiv x^2 - (a+1)x + (a+b)$
Exercise 4A Q. 4, 5 $x^2 - 4x + 3 \equiv (x-3)(x-1)$ In an identity the coefficient of equal powers on each side will be the same. $\Rightarrow a + 1 = -2 \Rightarrow a = -3$, $a + b = -5 \Rightarrow b = -2$ i.e. $x^2 + 2x - 5 \equiv (x-1)(x+3) - 2$ References: Chapter 4 Pages 100-104Roots of polynomials 1. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). If the two roots of $a^2 + bx + c = 0$ are α and β $a + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ E.g. The roots of $x^2 + 2x + 5 = 0$ are $\alpha = \alpha\beta\beta$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α, β and γ E.g. If the roots of the equation $x^3 + 2x + 4 = 0$ are α, β and γ then find the equation whose roots are $\alpha + 1, \beta + 1$ and $\gamma + 1$.References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of a second equation are α, β and γ . S. A quartic equation has 4 roots. Complex roots occur in the root so f a second equation are α, β and γ .Exercise 4D $\alpha + \beta + \gamma = 0,$ $\alpha \beta + \beta \gamma' + \gamma' \gamma'$ and $\alpha'\beta' \gamma'$ in terms of $\alpha, \beta' = \alpha + \gamma'$. $\alpha + \beta + \gamma = 0,$ $\alpha \beta + \beta \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha'\beta' \beta' + \gamma' + \gamma'$.E.g. If the roots of a second equation are α, β and γ .References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. $a \beta' + \beta' + \beta' + \gamma' + \gamma' \alpha'$ and $\alpha'\beta' \alpha' + \beta' + \gamma'$. $\alpha' \beta' + \beta' + \gamma' + \gamma' \alpha'$ and $\alpha'\beta'$			
Q. 4, 5 $X = A_x + 3 = (x = 3)(x = 1)$ In an identity the coefficient of equal powers on each side will be the same. $a + b = -5 = b = -2$ i.e. $x^2 + 2x - 5 = (x - 1)(x + 3) - 2$ References: Chapter 4 Pages 100-104 Roots of polynomials 1. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). If the two roots of $ax^2 + bx + c = 0$ are α and β $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ E.g. The roots of $x^2 + 2x + 5 = 0$ are $\alpha = \alpha = \beta$ $\alpha + \beta = -2, \alpha\beta = 5$, $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 \beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^3 + bx^3 + cx + d = 0$ are α , β and γ $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{\alpha}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ E.g. If the roots of the equation $x^3 + 2x + 4 = 0$ are $\alpha\beta\beta$ and γ the ther otos of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha^{+}\alpha^{-1}$, e.g. $\beta^{+}\beta' + \gamma'\alpha' = 2, \alpha\beta\gamma = -4$ $= 2, \alpha\beta\gamma = -4$ $= 2, \alpha\beta\gamma = -4$ $= 2, \alpha\beta\gamma = -4, \alpha' = 2, \alpha\beta\gamma' = -4$ $= 2, \alpha^{+}\beta' + \beta' + \gamma' + \gamma' \alpha'$ and $\alpha', \beta'' + \gamma' + \gamma'', \alpha'' = \alpha'', \beta'' = \alpha'' + \beta'' = \alpha''' = \alpha''' = \alpha''' = \alpha''' = \alpha''''''''$	Exercise 4A		
In an identity the coefficient of equal powers on each side will be the same. $a + b = -3 - 2b = -2$ i.e. $x^2 + 2x - 5 = (x-1)(x+3) - 2$ References: Chapter 4 Pages 100-104Roots of polynomials 1. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). If the two roots of $ax^2 + bx + c = 0$ are α and β $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ E.g. The roots of $x^2 + 2x + 5 = 0$ are α and β . Find the equation with roots α^2 and β^2 . $\Rightarrow \alpha + \beta = -2$, $\alpha\beta = 5$, $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 + \beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 9You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the roots of a second equation are α', β' and γ' and the		$x^2 - 4x + 3 \equiv (x - 3)(x - 1)$	
References: Chapter 4 Pages 100-104Roots of polynomialsE.g. The roots of $x^2 + 2x + 5 = 0$ are α and β .Exercise 4B Q. 3, 41. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). If the two roots of $ax^2 + bx + c = 0$ are α and β $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ Find the equation with roots a^2 and β^3 . $\Rightarrow \alpha + \beta = -2, \alpha\beta = 5,$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2 \beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^2 + bx^2 + cx + d = 0$ are α , β and γ $a + \beta + \gamma = \sum \alpha = -\frac{b}{a},$ $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a},$ $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a},$ $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a},$ $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \beta + \gamma + \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha = \beta + \alpha + \beta + \gamma = 1, \beta + 1 + \gamma + 1 = 3$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ .References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of a second equation are α, β and γ .References: Chapter 4 Pages 111-112You should be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' + \gamma' + $	X , , , ,	In an identity the coefficient of equal powers on each side	
Chapter 4 Pages 100-104I. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair).I. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair).I. A quadratic equation has two roots of $ax^2 + bx + c = 0$ are a and β $a + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots of $ax^3 + bx^2 + cx + d = 0$ are a , β and γ Find the equation $x^3 + 2x + 4 = 0$ Exercise 4C Q 1, 8, 92. A cubic has $1 - bx$, $a + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a}$, $a\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ E.g. If the roots of an equation are a,β and γ and the roots of a second equation are a,β and γ and the roots of a second equation are a,β and γ where there is a symmetric relationship (e.g. $a^{\perp}\alpha + 1$, etc) then you need to be able to find $a' + \beta' + \gamma'$, $a'\beta' + \beta' \gamma' + \gamma' a'$ and $a'\beta\gamma'$ in terms of a,β and γ .Exercise 4D Q. 1, 4References: Chapter 4 Pages 111-1123. A quartic equation has 4 roots. Complex roots occurin computate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident).Complex (a, b, b, c,		will be the same.	i.e. $x^2 + 2x - 5 \equiv (x - 1)(x + 3) - 2$
Chapter 4 Pages 100-1041. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair). $a d \beta$.Exercise 4B Q. 3, 41. A quadratic equation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair).Find the equation with roots α^2 and β .References: Chapter 4 Pages 105-1071 for the two roots of $ax^3 + bx + c = 0$ are α , β and γ $a + \beta = -2, \alpha\beta = 5,$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $a^2\beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots of $ax^3 + bx^2 + cx + d = 0$ are α , β and γ Exercise 4C Q 1, 8, 9 $a + \beta + \gamma = \sum \alpha = -\frac{b}{\alpha}$, $a\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ Further 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α', β and γ where there is a symmetric relationship (e.g. $a^{-}\alpha + 1, (et)$ then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta' + \gamma' + \gamma' a'$ and $\alpha'\beta'\gamma'$ in terms of α, β and γ .References: Chapter 4 Pages 111-1123. A quartic equation has 4 roots. Conplex roots occur in onjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $a = \beta, \beta, \beta$ $a = -2, \alpha\beta =$	References:	Roots of polynomials	E.g. The roots of $r^2 + 2r + 5 = 0$ are
Pages 100-1041. A quadratic regulation has two roots. They may be real and distinct, real and coincident, or complex (in which case they are a complex conjugate pair).Find the equation with roots α^2 and β^2 .Exercise 4B Q. 3, 4If the wo roots of $ax^2 + bx + c = 0$ are α and β $\alpha + \beta = -\frac{b}{a}$, $\alpha\beta = \frac{c}{a}$ Find the equation with roots α^2 and β^2 .References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)Find the equation with roots α^2 and β^2 .Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)E. If the roots of the equation $x^3 + 2x + 4 = 0$ are α, β and γ Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma \equiv \sum \alpha \beta = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ $x^3 + \beta\gamma + \gamma\alpha = \sum \alpha\beta = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β and γ and the roots of a second equation are α', β and γ .References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α', β and γ .References: Chapter 4 Pages 111-112S. A quartic equation has 4 roots. Complex roots occur in onjugate pairs, so there are either 0, 2 or 4 real roots isome of which may be coincident).References: Chap	-		
Exercise 4B Q. 3, 4case they are a complex conjugate pair). $\Rightarrow \alpha + \beta = -2, \alpha\beta = 5,$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) $\Rightarrow \alpha + \beta = -2, \alpha\beta = 5,$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = 25$ i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)E. If the roots of the equation $x^3 + 2x + 4 = 0$ are α, β and γ $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{\alpha},$ $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ E. If the roots of the equation whose roots are $\alpha + 1, \beta + 1$ and $\gamma + 1.$ References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α', β and γ where there is a symmetric relationship (e.g. $\alpha^+ = \alpha + 1, \beta + 1$ $\alpha + \beta + \gamma + \alpha^2 = 2, \alpha\beta\gamma = -4$ $\Rightarrow \alpha + 1 + \beta + 1 + \gamma + 1 = 3$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in onjugate pairs, so there are either 0, 2 or 4 real roots isome of which may be coincident). $\Rightarrow \alpha + \beta + \gamma + \alpha + \beta + \gamma + 1 + 1 = 3$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ 	Pages 100-104		,
Exercise 4B Q. 3, 4If the two roots of $ax^2 + bx + c = 0$ are α and β $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ $a^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = 4 - 10 = -6$ $\alpha^2 + \beta^2 + 2x + 4 = 0$ are α, β and γ whose roots are $\alpha + 1, \beta + 1$ and $\gamma + 1$.Exercise 4C Q 1, 8, 9Yercise $\alpha = \alpha + 1, \beta = 1$ and $\alpha + \beta + \gamma = 0, \alpha\beta + \beta\gamma + \gamma\alpha = 2, \alpha\beta\gamma = -4$ $= \alpha + 1, \beta + 1 + 1 + \gamma + 1 = 3$ ($\alpha + 1)(\beta + 1)(\gamma + 1)$ $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ ($\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $= x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		· · · · ·	
Q. 3, 4If the two roots of $ax^{+} + bx + c^{+} = 0$ are a and b References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) $a^{2} + \beta^{2} = (a + \beta)^{*} - 2\alpha\beta = 4 - 10 = -6$ $a^{2}\beta^{2} = 25$ i.e. $x^{2} + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)E.g. If the roots of the equation $x^{3} + 2x + 4 = 0$ are α, β and γ then find the equation whose roots are $\alpha + 1, \beta + 1$ and $\gamma + 1$.Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma = \sum \alpha \beta = \frac{c}{a},$ $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ $a\beta + \beta \gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a},$ $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha' = \alpha + 1,$ etc) then you need to be able to find $\alpha' + \beta' + \gamma',$ $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $\alpha + (\beta + \beta) + (\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= (\alpha \beta + \beta \beta \gamma + \gamma \alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^{3} - 3x^{2} + 5x + 1 = 0$ Notice that this may have also been	Exercise 4B		
References: Chapter 4 Pages 105-107 $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{c}{a}$ $\alpha^2\beta^2 = 25$ 1. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)If the troots of $ax^3 + bx^2 + cx + d = 0$ are α, β and γ If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α, β and γ $x^3 + 2x + 4 = 0$ If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α, β and γ are α, β and γ then find the equation whose roots are $\alpha + 1, \beta + 1$ and $\gamma + 1$.Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma = \sum \alpha \beta = \frac{c}{a},$ $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ $x + \beta + \gamma = 0,$ $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha' = \alpha + 1,$ etc) then you need to be able to find $\alpha' + \beta' + \gamma',$ $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $\alpha + (\beta + \gamma) + (\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		If the two roots of $ax^2 + bx + c = 0$ are α and β	$\alpha^{2} + \beta^{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 4 - 10 = -6$
a a a References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. A cubic has 3 roots, at least one of which is real. The other two roots of $ax^3 + bx^2 + cx + d = 0$ are α , β and γ i.e. $x^2 + 6x + 25 = 0$ Exercise 4C Q 1, 8, 92. $A = -\frac{b}{a}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ i.e. $x^2 + 6x + 25 = 0$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α , β and γ and the roots of a second equation are α , β and γ where there is a symmetric relationship (e.g. $\alpha^+ a + 1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha'\beta' \gamma'$ in terms of α, β and γ .Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur come of which may be coincident).i.e. $x^2 + 6x + 25 = 0$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur come of which may be coincident).i.e. $x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		$\alpha + \beta = -\frac{b}{-}, \ \alpha\beta = \frac{c}{-}$	$\alpha^2 \beta^2 = 25$
References: Chapter 4 Pages 105-1072. A cubic has 3 roots, at least one of which is real. The other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.) If the three roots of $ax^3 + bx^2 + cx + d = 0$ are a , β and γ $a + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $a\beta + \beta\gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a}$, $a\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ E.g. If the roots of the equation whose roots are $\alpha + \beta$ and γ then find the equation whose roots are $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ where there is a symmetric relationship (e.g. $\alpha^+ = \alpha + 1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α, β and γ .Exercise 4D $\alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		a a	,
References: Chapter 4 Pages 105-107other two roots may be real and coincident or complex (in which case they are a complex conjugate pair.)E.g. If the roots of the equation $x^3 + 2x + 4 = 0$ are α, β and γ Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = \frac{c}{a}$, $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ $\alpha + \beta + \gamma = 0$, $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of a second equation are α, β and γ and the roots of a second equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha' = \alpha + 1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ .Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident).E.g. If the roots of the equation $\alpha = \alpha, \beta$ and γ		2. A cubic has 3 roots, at least one of which is real. The	
Chapter 4 Pages 105-107which case they are a complex conjugate pair.) $x^3 + 2x + 4 = 0$ Which case they are a complex conjugate pair.)If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α , β and γ $x^3 + 2x + 4 = 0$ Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha \beta + \beta \gamma + \gamma \alpha = \sum \alpha \beta = \frac{c}{a}$, $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ $x + \beta + \gamma = 0$, $\alpha \beta \gamma = -\frac{d}{a} = \sum \alpha \beta \gamma$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $x^3 + 2x + 4 = 0$ are α, β and γ $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{b}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha - \frac{b}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha - \frac{b}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = \sum \alpha \beta - \frac{c}{\alpha}$, $\alpha + \beta + \gamma = 2, \alpha \beta \gamma = -4$ $\Rightarrow \alpha + 1 + \beta + 1 + \gamma + 1 = 3$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been			E.g. If the roots of the equation
Exercise 4C Q 1, 8, 9If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α , β and γ at $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha + \beta + \gamma = 2, \alpha + \gamma = -4$, $\alpha + \beta + \gamma = 0$, $\alpha + \beta + \gamma + \gamma = 2$, $\alpha + \gamma = -4$ $\Rightarrow \alpha + 1 + \beta + 1 + \gamma + 1 = 3$ ($\alpha + 1)(\beta + 1)(\gamma + 1)$ $+(\gamma + 1)(\alpha + 1)$ $+(\gamma + 1)(\alpha + 1)$ $+(\gamma + 1)(\alpha + 1)$ $=(\alpha + \beta + \beta + \gamma + \alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ ($\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha + \beta + \beta + \gamma + \alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been			$x^3 + 2x + 4 = 0$
Exercise 4C Q 1, 8, 9 $\alpha + \beta + \gamma = \sum \alpha = -\frac{b}{a}$, $\alpha\beta + \beta\gamma + \gamma\alpha = \sum \alpha\beta = \frac{c}{a}$, $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ whose roots are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.References: Chapter 4 Pages 111-112You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha' = \alpha + 1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha'\beta'\gamma'$ in terms of α, β and γ .whose roots are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$. $\alpha + \beta + \gamma = 0$, $\alpha\beta + \beta\gamma + \gamma\alpha = 2$, $\alpha\beta\gamma = -4$ $\Rightarrow \alpha + 1 + \beta + 1 + \gamma + 1 = 3$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4 + 2 + 1 = -1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been	Pages 105-107	If the three roots of $ax^3 + bx^2 + cx + d = 0$ are α , β and γ	are α , β and γ then find the equation
Exercise 4C Q 1, 8, 9 References: Chapter 4 Pages 111-112 References: Chapter 4 Q . 1, 4 References: Chapter 4 Q . 1, 4 References: Chapter 4 Q . 1, 4 References: Chapter 4 Pages 111-112 References: Chapter 4 Pages 11-112 Reference			
Q 1, 8, 9 $\alpha\beta + \beta\gamma + \gamma\alpha = \sum \alpha\beta = \frac{c}{a},$ $\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$ $\alpha+\beta+\gamma=0,$ $\alpha\beta+\beta\gamma+\gamma\alpha=2, \alpha\beta\gamma=-4$ $\Rightarrow \alpha+1+\beta+1+\gamma+1=3$ You should be familiar with the process of finding an equation whose roots are related to a given equation. E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha'+\beta'+\gamma',$ $\alpha'\beta'+\beta'\gamma'+\gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α,β and γ . $\alpha+\beta+\gamma=0,$ $\alpha\beta+\beta\gamma+\gamma\alpha=2, \alpha\beta\gamma=-4$ $\Rightarrow \alpha+1+\beta+1+\gamma+1=3$ $(\alpha+1)(\beta+1)+(\beta+1)(\gamma+1)$ $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$ $=2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $\alpha+\beta+\gamma=0,$ $\alpha\beta+\beta\gamma+\gamma\alpha=2, \alpha\beta\gamma=-4$ $\Rightarrow \alpha+1+\beta+1+\gamma+1=3$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$ $=2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$	Exercise 4C	$\alpha + \beta + \gamma = \sum \alpha =,$	whose roots are $\alpha + 1$, $\beta + 1$ and $\gamma + 1$.
References: Chapter 4 Pages 111-112A $\alpha = 1 + \beta + \gamma + \gamma = 2, \alpha = 1 + \beta + 1 + \gamma + 1 = 3$ $(\alpha + 1)(\beta + 1) + (\beta + 1)(\gamma + 1)$ $+(\gamma + 1)(\alpha + 1)$ References: Chapter 4 Pages 111-112E.g. If the roots of an equation are α, β and γ and the roots of a second equation are $\alpha', \beta' = \alpha + 1, \text{ etc}$ then you need to be able to find $\alpha' + \beta' + \gamma',$ $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $(\alpha + 1)(\beta + 1) + (\beta + 1)(\gamma + 1)$ $+(\gamma + 1)(\alpha + 1)$ $=(\alpha + \beta + \beta + \gamma + \alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2 + 3 = 5$ $(\alpha + 1)(\beta + 1)(\gamma + 1)$ $=\alpha + 2 + 1 = -1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $(\alpha + \gamma + \gamma) = 2, \alpha = 2, \alpha = 1, \alpha$		$\alpha\beta + \beta\gamma + \gamma\alpha = \sum \alpha\beta = \frac{c}{c}$	
$\alpha \beta \gamma'' = a^{-1} \sum \alpha \beta \gamma''$ $\gamma = a^{-1} \sum \alpha \beta \gamma'' = a^{-1} \sum \beta \gamma$	x -, -, -, -	u	, , , ,
You should be familiar with the process of finding an equation whose roots are related to a given equation.($\alpha+1$)($\beta+1$)+($\beta+1$)($\gamma+1$) +($\gamma+1$)($\alpha+1$)E.g. If the roots of an equation are α , β and γ and the roots of a second equation are α' , β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ .($\alpha+1$)($\beta+1$)+($\beta+1$)($\gamma+1$) =($\alpha\beta+\beta\gamma+\gamma\alpha$)+2($\alpha+\beta+\gamma$)+3 =2+3=5Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ = $-4+2+1=-1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		$\alpha\beta\gamma = -\frac{d}{a} = \sum \alpha\beta\gamma$	
equation whose roots are related to a given equation.E.g. If the roots of an equation are α,β and γ and the roots of a second equation are α',β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α,β and γ . $(\alpha'+1)(\beta'+1)(\gamma'+1)$ $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$ $=2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $(\alpha'+1)(\beta'+1)(\gamma'+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$ $\Rightarrow x^3-3x^2+5x+1=0$ Notice that this may have also been		u	$\Rightarrow \alpha + 1 + \beta + 1 + \gamma + 1 = 3$
References: Chapter 4 Pages 111-112E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α, β and γ . $+(\gamma+1)(\alpha+1)$ $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$ $=2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $=(\alpha\beta+\beta\gamma+\gamma\alpha)+2(\alpha+\beta+\gamma)+3$ $=2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma+(\alpha\beta+\beta\gamma+\gamma\alpha)+(\alpha+\beta+\gamma)+1$ $=-4+2+1=-1$ $\Rightarrow x^3-3x^2+5x+1=0$ Notice that this may have also been			$(\alpha+1)(\beta+1)+(\beta+1)(\gamma+1)$
E.g. If the roots of an equation are α, β and γ and the roots of a second equation are α', β' and γ' where there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $= (\alpha\beta + \beta\gamma + \gamma\alpha) + 2(\alpha + \beta + \gamma) + 3$ $= 2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $= -4+2+1=-1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been			$+(\gamma+1)(\alpha+1)$
References: Chapter 4 Pages 111-112Interious of a second equation ate α , β and γ where α , β and γ where α is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha' \beta' + \beta' \gamma' + \gamma' \alpha'$ and $\alpha' \beta' \gamma'$ in terms of α, β and γ . $= 2+3=5$ $(\alpha+1)(\beta+1)(\gamma+1)$ $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha+\beta+\gamma) + 1$ $= -4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $= \alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha+\beta+\gamma) + 1$ $= -4+2+1=-1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been			
Chapter 4 Pages 111-112there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc) then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α,β and γ . $=2+3=3$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha+\beta+\gamma) + 1$ $=-4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $=2+3=3$ $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma + (\alpha\beta+\beta\gamma+\gamma\alpha) + (\alpha+\beta+\gamma) + 1$ $=-4+2+1=-1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been	References:	the roots of a second equation are α',β' and γ' where	
Pages 111-112then you need to be able to find $\alpha' + \beta' + \gamma'$, $\alpha'\beta' + \beta'\gamma' + \gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α,β and γ . $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $=-4+2+1=-1$ Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $(\alpha+1)(\beta+1)(\gamma+1)$ $=\alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$ $=-4+2+1=-1$ $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		there is a symmetric relationship (e.g. $\alpha'=\alpha+1$, etc)	
Exercise 4D Q. 1, 43. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $=-4+2+1=-1$ $\Rightarrow x^3-3x^2+5x+1=0$ Notice that this may have also been	-	then you need to be able to find $\alpha' + \beta' + \gamma'$,	$(\alpha+1)(\beta+1)(\gamma+1)$
Exercise 4D Q. 1, 4 3. A quartic equation has 4 roots. Complex roots occur in conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		$\alpha'\beta'+\beta'\gamma'+\gamma'\alpha'$ and $\alpha'\beta'\gamma'$ in terms of α,β and γ .	$=\alpha\beta\gamma + (\alpha\beta + \beta\gamma + \gamma\alpha) + (\alpha + \beta + \gamma) + 1$
Q. 1, 4 conjugate pairs, so there are either 0, 2 or 4 real roots (some of which may be coincident). $\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$ Notice that this may have also been		2 A quartie equation has 4 reats Complex reats ecour in	= -4 + 2 + 1 = -1
(some of which may be coincident). Notice that this may have also been			$\Rightarrow x^3 - 3x^2 + 5x + 1 = 0$
	Q. 1, 4		
w = r + 1			
$x^{3} + 2x + 4 = 0 \Rightarrow (w-1)^{3} + 2(w-1) + 4 = 0$			
If the four roots of $ax^4 + bx^3 + cx^2 + dx + e = 0$ are α , β , γ and δ $\Rightarrow w^3 - 3w^2 + 3w + 2w - 1 - 2 + 4 = 0$			
$\alpha + \beta + \gamma + \delta = \sum \alpha = -\frac{b}{a}, \qquad \qquad$		$\alpha + \beta + \gamma + \delta = \sum \alpha = -\frac{b}{a},$	
$\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \alpha\delta + \beta\delta = \sum \alpha\beta = \frac{c}{a},$ E.g. If the roots of the equation $x^2 + 3x + 8 = 0$		$\alpha\beta + \beta\gamma + \gamma\delta + \alpha\gamma + \alpha\delta + \beta\delta = \sum \alpha\beta = \frac{c}{c}$	E.g. If the roots of the counting $x^2 + 2x + 9 = 0$
$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \sum \alpha\beta\gamma = -\frac{d}{a}$, are α and then find the equation whose roots		$\alpha\beta\gamma + \alpha\beta\delta + \alpha\gamma\delta + \beta\gamma\delta = \sum \alpha\beta\gamma = -\frac{d}{2},$	-
are and a		Li Li	are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.
ρ $ \mu$ μ $ \mu$ $-$ -		$\alpha\beta\gamma\delta = \frac{e}{a} = \sum \alpha\beta\gamma\delta$, ,
$\alpha\beta\gamma\delta = - = \sum \alpha\beta\gamma\delta$		a	Substitute $x = \frac{1}{z}$. The equation in z will have roots
$\alpha\beta\gamma\delta = \frac{e}{a} = \sum \alpha\beta\gamma\delta$ Substitute $x = \frac{1}{z}$. The equation in z will have roots	FP1: Further Conc	cents for Advanced Mathematics — page 8	$\frac{1}{2}$ and $\frac{1}{2}$
$\alpha\beta\gamma\delta = -\frac{1}{a} \sum \alpha\beta\gamma\delta$ Substitute $x = \frac{1}{z}$. The equation in z will have roots			a β
$\alpha\beta\gamma\delta = - = \sum \alpha\beta\gamma\delta$	Competence state	ments FP1, p1, p2, p3, a5, a6	αρ

MED

References: Chapter 5 Pages 115-118 Exercise 5A Q. 1, 8, 9	 Induction Given a "conjecture", it is proved by induction as follows: 1. Show that it is true for a particular value of <i>n</i>, typically, <i>n</i> = 0 or 1. 2. Assume it to be true for <i>n</i> = <i>k</i>. 3. Based on this assumption prove that it is also true for <i>n</i> = <i>k</i> + 1. A conjecture can be disproved by a single counter-example. The conjecture might be a formula for the sum of a finite series. 	E.g. Prove that $1 \times 3 + 2 \times 4 + + n \times (n+2) = \frac{1}{6}n(n+1)(2n+7)$ It is true for $n = 1$, for $1 \times 3 = \frac{1}{6}$.1.2.9 Assume true for $n = k$. i.e. $S_k = \frac{1}{6}k(k+1)(2k+7)$ Then $S_{k+1} = \frac{1}{6}k(k+1)(2k+7) + (k+1)(k+3)$ $= \frac{1}{6}(k+1)(k(2k+7) + 6(k+3))$ $= \frac{1}{6}(k+1)(2k^2 + 13k + 18)$ $= \frac{1}{6}(k+1)(k+2)(2k+9)$ which is of the same form as the formula given with <i>k</i> replaced by $k+1$. So if true for $n = k$ then also true for $n = k+1$ But since it is true for $n = 1$, it is true for all positive integers, <i>n</i> .
References: Chapter 5 Page 120	Sequences If a sequence is defined <i>inductively</i> – i.e. if each term is defined by the term before it – then a formula may be derived, or if given may be proved by induction.	E.g. A sequence is defined by $u_{n+1} = 2 u_n + 1$ for positive integers, n with $u_1 = 1$. Prove that $u_n = 2^n - 1$ It is true for $n = 1$, since $u_1 = 2^1 - 1$. Assume true for $n = k$. i.e. $u_k = 2^k - 1$.
References: Chapter 5 Page 120 Exercise 5B	Summation of Series to infinity. A series is said to converge if, as n approaches ∞ , the sum approaches a finite number. You met the condition for a geometric	Then $u_{k+1} = 2$ $u_k + 1 = 2(2^k - 1) + 1 = 2^{k+1} - 2 + 1$ $= 2^{k+1} - 2 + 1$ So if true for $n = k$ then it is also true for $n = k + 1$ But since it is true for $n = 1$, the formula is true for all positive integers, n .
Q. 1, 5	series to converge in C2. $S_{n} = a + ar + ar^{2} + \dots + ar^{n-1} = \frac{a(1-r^{n})}{1-r}$ $S_{n} \rightarrow S = \frac{a}{1-r} \text{ providing } r < 1.$ Other series also converge.	E.g. Show that $\frac{1}{r^2 - 1} = \frac{1}{2} \left(\frac{1}{r - 1} - \frac{1}{r + 1} \right)$. Hence find $S_n = \sum_{2}^{n} \frac{1}{r^2 - 1}$ and deduce the sum to infinity. $\frac{1}{2} \left(\frac{1}{r - 1} - \frac{1}{r + 1} \right) = \frac{1}{2} \left(\frac{r + 1 - (r - 1)}{(r + 1)(r - 1)} \right) = \frac{1}{r^2 - 1}$
References: Chapter 5 Pages 122-124 Exercise 5C Q. 1, 5	The method of differences If the terms of one series can be expressed as the difference of consecutive terms of another series then the series can be summed by the cancellation of middle terms. E.g. If $t_r = s_r - s_{r-1}$	$S_{n} = \sum_{2}^{n} \frac{1}{r^{2} - 1} = \frac{1}{2} \sum_{2}^{n} \left(\frac{1}{r - 1} - \frac{1}{r + 1} \right)$ $= \frac{1}{2} \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{2} - \frac{1}{4} + \frac{1}{3} - \frac{1}{5} + \dots + \frac{1}{n - 2} - \frac{1}{n} + \frac{1}{n - 1} - \frac{1}{n + 1} \right)$ $= \frac{1}{2} \left(1 + \frac{1}{2} - \frac{1}{n} - \frac{1}{n + 1} \right) = \frac{1}{2} \left(\frac{3}{2} - \frac{2n + 1}{n(n + 1)} \right)$ $\Rightarrow S_{\infty} = \frac{3}{4}$
page 9	then $\sum_{1}^{n} t_r = (s_1 - s_0) + (s_2 - s_1) + + (s_n - s_{n-1})$ = $s_n - s_0$ meepts for Advanced Mathematics — ements FP1, p3, p4, a1, a2, a3	Standard results may sometimes be used. E.g. Find $\sum_{r=1}^{n} (2r+1)$. $\sum_{r=1}^{n} (2r+1) = 2\sum_{r=1}^{n} r+n$ Since $\sum_{r=1}^{n} r = \frac{1}{2}n(n+1)$ $\sum_{r=1}^{n} (2r+1) = n(n+1) + n = n(n+2)$