Further Pure 1

Summary Notes

1. Roots of Quadratic Equations

For a quadratic equation $ax^2 + bx + c = 0$ with roots α and β

Sum of the roots

Product of roots

$$\alpha + \beta = -\frac{b}{a}$$

$$\alpha\beta = \frac{c}{a}$$

• If the coefficients a,b and c are real then either α and β are real or α and β are complex conjugates

Once the value α + β and $\alpha\beta$ have been found, new quadratic equations can be formed with roots :

Roots		
α^2 and β^2	Sum of roots $(\alpha + \beta)^2 - 2\alpha\beta$	Product of roots $(\alpha\beta)^2$
α^3 and β^3	Sum of roots $(\alpha + \beta)^3 - 3\alpha\beta(\alpha + \beta)$	Product of roots $(\alpha\beta)^3$
$\frac{1}{\alpha}$ and $\frac{1}{\beta}$	Sum of roots $\frac{\alpha + \beta}{\alpha\beta}$	Product of roots $\frac{1}{\alpha\beta}$

The new equation becomes

 x^2 - (sum of new roots)x + (product of new roots) = 0

The questions often ask for integer coefficients!

Don't forget the "= 0"

Example

The roots of the quadratic equation $3x^2 + 4x - 1 = 0$ are α and β . Determine a quadratic equation with integer coefficients which has roots $\alpha^3\beta$ and $\alpha\beta^3$

Step 1:
$$\alpha + \beta = -\frac{4}{3}$$
 $\alpha\beta = -\frac{1}{3}$

Step 2: Sum of new roots

$$\alpha^{3}\beta + \alpha\beta^{3} = \alpha\beta(\alpha^{2} + \beta^{2})$$

$$= -\frac{1}{3} \times ((\alpha + \beta)^{2} - 2\alpha\beta)$$

$$= -\frac{1}{3} \times \left(\frac{16}{9} + \frac{2}{3}\right)$$

$$= -\frac{22}{27}$$

$$\alpha^3 \beta \times \alpha \beta^3 = \alpha^4 b^4 = (\alpha \beta)^4 = \frac{1}{81}$$

Step 4: Form the new equation

$$x^2 + \frac{22}{27}x + \frac{1}{81} = 0$$

$$81x^2 + 66x + 1 = 0$$

2. Summation of Series

These are given in the formula booklet

$$\sum_{n=1}^{n} r = \frac{1}{2}n(n+1)$$

$$\sum_{r=1}^{n} r^2 = \frac{1}{6}n(n+1)(2n+1)$$

$$\sum_{r=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

REMEMBER:

$$\sum_{r=1}^{n} 1 = n$$

$$\sum 5r^2 = 5\sum r^2$$

Always multiply brackets before attempting to evaluate summations of series

Look carefully at the limits for the summation

$$\sum_{r=7}^{20} = \sum_{r=1}^{20} -\sum_{r=1}^{6} \qquad \sum_{r=n+1}^{2n} = \sum_{r=1}^{2n} -\sum_{r=1}^{n}$$

$$\sum_{r=n+1}^{2n} = \sum_{r=1}^{2n} - \sum_{r=1}^{n}$$

Summation of ODD / EVEN numbers Example: Find the sum of the odd square numbers from 1 to 49

Sum of odd square numbers

= Sum of all square numbers – Sum of even square numbers

Sum of even square numbers

$$= 2^{2}+4^{2}+\dots 48^{2}$$

$$= 2^{2} (1^{2}+2^{2}+3^{2}+\dots 24^{2})$$

$$= 4\sum_{r=1}^{24} r^{2}$$

Sum of odd numbers between 1 and 49 is $\sum_{1}^{49} r^2 - 4 \sum_{1}^{24} r^2$

$$= \left(\frac{1}{6} \times 49 \times 50 \times 99\right) - 4\left(\frac{1}{6} \times 24 \times 25 \times 49\right)$$

3. Matrices

Addition and Subtraction – must have the same order

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \pm \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a \pm e & b \pm f \\ c \pm g & d \pm h \end{bmatrix}$$

Multiplication

$$3\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 3a \\ 3b \end{bmatrix}$$

$$\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 1 & 10 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3x1 + 4x3 & 3x10 + 4x0 \\ 5x1 + 2x3 & 5x10 + 2x0 \end{bmatrix} = \begin{bmatrix} 15 & 30 \\ 11 & 50 \end{bmatrix}$$

NB: Order matters Do not assume that AB = BADo not assume that $A^2 - B^2 = (A-B)(A+B)$

• Identity Matrix
$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
 $AI = IA = A$

4. Transformations

Make sure you know the exact trig ratios

Angle θ	sin θ	cos θ	tan θ
0°	0	1	0
30°	1/2	<u>√3</u> 2	<u>1</u> √3
45°	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1
60°	<u>√3</u> 2	1/2	√3
90°	1	0	Undefined

 To calculate the coordinates of a point after a transformation Multiply the Transformation Matrix by the coordinate

Find the position of point (2,1) after a stretch of Scale factor 5 parallel to the x-axis

$$\begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 10 \\ 1 \end{bmatrix} \tag{10,1}$$

Stretch Scale factor 4 parallel to the x-axis and scale factor 2 parallel to the y-axis

Standard Transformations

REFLECTIONS

$$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$$
 in the y-axis
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 in the x-axis

$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
 in the x-axis

Reflection in y = x $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ Reflection in the line $y = (\tan \theta)x$

ENLARGEMENT

Scale factor k Centre (0,0)

If all elements have the same magnitude then look at $2\theta = 45^{\circ}$ (reflection in y = (tan22.5)x) as one of the transformations

STRETCH

ROTATION

Rotation through θ anti-clockwise about origin (0,0)

$$\begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

Rotation through θ Clockwise about origin (0,0)

If all elements have the same magnitude then a rotation through 45 is likely to be one of the transformations (usually the second)

ORDER MATTERS !!!! – make sure you multiply the matrices in the correct order A figure is transformed by M₁ followed by M₂

Multiply $M_2 M_1$

5. Graphs of Rational Functions

	Linear numerator and linear denominator	
		1 horizontal asymptote
$y = \frac{4x - 8}{x + 3}$		1 vertical asymptote
	2 distinct linear factors in the denominator – quadratic	2 vertical asymptotes
(0)(0 5)	numerator	1 horizontal asymptote
$y = \frac{(x-3)(2x-5)}{(x+1)(x+2)}$		The curve will usually cross the horizontal asymptote
	2 distinct linear factors in the denominator – linear numerator	2 vertical asymptotes
$y = \frac{2x - 9}{3x^2 - 11x + 6}$		1 horizontal asymptote
		horizontal asymptote is y = 0
	Quadratic numerator – quadratic denominator with equal factors	
(x - 3)(x + 3)	denominator with equal ractors	1 vertical asymptote
$y = \frac{(x-3)(x+3)}{(x-2)^2}$		1 horizontal asymptote
	Quadratic numerator with no real roots for denominator (irreducible)	
$y = \frac{x^2 + 2x - 3}{x^2 + 2x + 6}$	100to 101 denominator (irreducible)	The curve does not have a vertical asymptote

Vertical Asymptotes – Solve "denominator = 0" to find x = a, x = b etc

Horizontal Asymptotes — multiply out any brackets — look for highest power of x in the denominator — and divide all terms by this — as x goes to infinity majority of terms will disappear to leave either y = 0 or y = a

To find stationary points

$$k = \frac{x^2 + 2x - 3}{x^2 + 2x + 6}$$
 rearrange to form a quadratic ax² + bx + c = 0 *

$$b^2 - 4ac < 0$$
 $b^2 - 4ac = 0$ $b^2 - 4ac > 0$
the line(s) y = k stationary point(s) the line(s) y =

the line(s) y = k stationary point(s) the line(s) y = k do not intersect occur when y = k intersect the curve subs into * to find x coordinate subs into * to find x coordinate

INEQUALITIES

The questions are **unlikely** to lead to simple or single solutions such as x > 5 so Sketch the graph (often done already in a previous part of the question)

Solve the inequality

$$\frac{(x+1)(x+4)}{(x-1)(x-2)} < 2$$

The shaded area is where y < 2

So the solution is

$$x < 0$$
, $1 < x < 2$, $x > 11$

6. Conics and transformations

- You must learn the standard equations and the key features of each graph type
- Mark on relevant coordinates on any sketch graph

Parabola

$$y^2 = 4ax$$

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \qquad \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 = 1$$

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \qquad \left(\frac{x}{a}\right)^2 - \left(\frac{y}{b}\right)^2 = 1$$

Rectangular Hyperbola

$$xy = c^2$$

You may need to complete the square

$$x^{2} - 4x + y^{2} - 6y = -12$$

 $(x - 2)^{2} - 4 + (y - 3)^{2} - 9 = -12$
 $(x - 2)^{2} + (y - 3)^{2} = 1$

Transformations

Translation

$$\begin{bmatrix}
a \\
b
\end{bmatrix}$$
Replace x with $(x - a)$
Replace y with $(y - b)$
Circle radius 1 centre $(2, .3)$

$$(x - 2)^2 + (y - 3)^2 = 1$$

Reflection in the line y = x

Replace x with y and vice versa

Stretch Parallel to the x-axis scale factor a Replace x with $\frac{x}{a}$

Stretch Parallel to the y-axis scale factor b Replace y with $\frac{y}{b}$

Describe a geometrical transformation that maps the curve $y^2=8x$ onto the curve $y^2=8x-16$ x has been replaced by (x-2) to give $y^2=8(x-2)$ Translation $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$

7. Complex Numbers

$$z = a + ib$$
real

imaginary

 $i = \sqrt{-1}$
 $i^2 = -1$

Addition and Subtraction

$$(2+3i)+(5-2i)=7+i$$
 (add/subtract real part then imaginary part)

• Multiplication - multiply out the same way you would (x-2)(x+4)

$$(2-3i)(6+2i) = 12+4i-18i-6i^2$$

= 12-14i+6
= 18-14i

• Complex Conjugate z*

If z = a + ib then its complex conjugate is $z^* = a - ib$

- always collect the 'real' and 'imaginary' parts before looking for the conjugate
- **Solving Equations** if two complex numbers are equal, their real parts are equal and their imaginary parts are equal.

Find z when
$$5z - 2z^* = 3 - 14i$$

Let
$$z = x + iy$$
 and so $z^* = x - iy$
 $5(x + iy) - 2(x - iy) = 3 - 14i$
 $3x + 7iy = 3 - 14i$ Equating real : $3x = 3$ so $x = 1$
Equating imaginary : $7y = -14$ so $y = -2$

$$z = 1 - 2i$$

8. Calculus

Differentiating from first principles

- Gradient of curve or tangent at x is $f'(x) = \frac{dy}{dx} = \lim_{h \to 0} \left(\frac{f(x+h) f(x)}{h} \right)$
- You may need to use the binomial expansion

Differentiate from first principles to find the gradient of the curve $y = x^4$ at the point (2,16)

$$f(x) = 2^{4}$$

$$f(2 + h) = (2 + h)^{4}$$

$$= 2^{4} + 4(2^{3}h) + 6(2^{2}h^{2}) + 4(2h^{3}) + h^{4}$$

$$= 16 + 32h + 24h^{2} + 8h^{3} + h^{4}$$

$$\frac{f(2 + h) - f(2)}{h} = \frac{16 + 32h + 24h^{2} + 8h^{3} + h^{4} - 16}{h}$$

$$= 32 + 24h + 8h^{2} + h^{3}$$

As h approaches zero Gradient = 32

You may need to give the equation of the tangent/normal to the curve – easy to do
once you know the gradient and have the coordinates of the point

Improper Integrals

Improper if

one or both of the limits is infinity

Determine whether the integral $\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$ has a value. If so, find the value of the integral.

As $n \to \infty$, the value of this integral does not approach a finite number, and so the integral cannot be found.

 the integrand is undefined at one of the limits or somewhere in between the limits

Determine
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
.

This is an improper integral since the integral is undefined when x = 0.

Replace the lower limit of integration by p.

$$\int_{p}^{1} \frac{1}{\sqrt{x}} dx = \int_{p}^{1} x^{-\frac{1}{2}} dx$$
$$= \left[2x^{\frac{1}{2}} \right]_{p}^{1}$$
$$= 2 - 2\sqrt{p}$$

As p approaches zero, the value of $2 - 2\sqrt{p}$ approaches 2.

Therefore the improper integral $\int_0^1 \frac{1}{\sqrt{x}} dx$ can be found, and its value is 2.

Very important to include these statements

9. Trigonometry

- **GENERAL SOLUTION –** don't just give one answer there should be an 'n' somewhere!!
- **SKETCH** the graph of the basic Trig function before you start
- Check the question for **Degrees** or **Radians**
- MARK the first solution (from your calculator/knowledge) on your graph mark a few more to see the pattern
- Find the general solution **before rearranging** to get x or θ on it's own.

Example

Find the general solution, in radians, of the equation $2\cos^2 x=3\sin x$

$$x = 2\pi n + \frac{\pi}{6}, \quad x = 2\pi n + \frac{5\pi}{6}$$

You may need to use the fact that $\tan \theta = \frac{\sin \theta}{2}$ to solve equations of the form $\sin (2x - 0.1) = \cos (2x - 0.1)$

10. Numerical solution of equations -

- Rearrange into the form f(x) = 0
- To show the root lies within a given interval evaluate f(x) for the upper and lower interval bounds

One should be positive and one negative change of sign indicates a root within the interval

Interval Bisection

- Determine the **nature** of f(Lower) and f(upper) sketch the graph of the interval
- Investigate f(midpoint)- positive or negative?
- Continue investigating 'new' midpoints until you have an interval to the degree of accuracy required

Linear Interpolation

- Determine the Value of f(Lower) and f(upper) sketch the graph of the interval
- Join the Lower and Upper points together with a straight line
 - Mark "p" the approximate root
 - Use similar triangles to calculate p (equal ratios)

- Newton- Raphson Method
 - given in formula book as

- you may be required to draw a diagram to illustrate your method

NB: When the initial approximation is not close to f(x) the method may fail!

DIFFERENTIAL EQUATIONS

- looking to find y when dy/dx is given

- EULER's FORMULA

$$y_{n+1} = y_n + hf(x_n)$$

Given in formula book

$$\frac{dy}{dx} = f(x) \qquad \text{h = step size}$$

 allows us to find an approximate value for y close to a given point

Example

$$\frac{dy}{dx} = e^{\cos x}$$
, given that when y = 3 when x = 1, use the Euler Formula with step size dx 0.2 to find an approximation for y when x = 1.4

$$x_1 = 1$$
 $y_1 = 3$ $h = 0.2$ $f(x) = e^{\cos \theta}$
 $y_2 = 3 + 0.2(e^{\cos 1})$
 $= 3.343$ (approximate value of y when $x = 1.2$)
 $y_3 = 3.323 + 0.2(e^{\cos 1.2})$
 $= 3.631$ (approximate value of y when $x = 1.4$)

11. Linear Laws

- using straight line graphs to determine equations involving two variables
- remember the equation of a straight line is

y = mx + c where m is the gradient c is the point of interception with the y-axis

- **Logarithms** needed when $y = ax^n$ or $y = ab^x$

Remember : Log ab = Log a + Log b

$$Log a^x = x Log a$$

- equations must be rearranged/substitutions made to a linear form

•
$$y^3 = ax^2 + b$$
 plot y^3 against x^2

•
$$y^3 = ax^5 + bx^2$$
 (÷ x^2)
$$\frac{y^3}{x^2} = ax^3 + b$$
 plot $\frac{y^3}{x^2}$ against x^3

$$\log y = \log a + n \log x$$
 plot $\log y$ against $\log x$

$$\log y = \log a + x \log b$$
 plot $\log y$ against x

if working in logs remember the inverse of $\log x$ is 10^x

EXAMPLE

It is thought that V and x are connected by the equation $V = ax^b$

The equation is reduced to linear from by taking logs

$$Log V = Log a + b log x$$

Using data given Log V is plotted against Log x

The **gradient** b is
$$\frac{1.50}{0.5}$$
 = 3

The **intercept** on the log V axis is 1.3

So Log a = 1.3
a =
$$10^{1.3}$$

= 19.95...

The relationship between V and x is therefore

$$V = 20x^3$$

