FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Please note that the following pages contain mark schemes for questions from past papers which were not written at an AS standard and may be less accessible than those you will find on future AS FP1 papers from Edexcel. Some questions would certainly worth more marks at AS level.

The standard of the mark schemes is variable, depending on what we still have – many are scanned, some are handwritten and some are typed.

The questions are available on a separate document, originally sent with this one.

PMT

Question number	Scheme	Marks
1. (a)	$W = \frac{22 + 4i}{6 - 8i} \times \frac{6 + 8i}{6 + 8i}$	Mi
	$=\frac{100+200i}{(m)}=1+2i$	Αι, Αι
	Al for a correct as 100+2001 or for 1 or for 2i	
-	final AI for 1+2i only.	(3)
	OR 22+44i = $(a+bi)(b-8i)$ with ba+8b=22, $bb-8a=44\Rightarrow a=1, b=2$	M1 A1 + A1 (3)
(4)	arg $2 = \arctan \frac{4t}{22}$ or $ton(org 2) = \frac{4t}{22}$ arg $2 = 0.18$ only	M1 A1 (2)
	27.7	P4 January 2002 Qr

[P4 January 2002 Qn 3]

3. (a) $f'(x) = 3x^{2} + i_{3}(70)$ or <u>no solutions of f'(x) = 0 Mi, A1</u> No turning paits, so f(x) only cross straining and Hence d is only root of f(x) = 0 A1 cso (3) (4) Using $d = -\frac{f(d)}{f'(d)}$ with $d = 1.2 \rightarrow \frac{1.21}{1.21}$ only M1 A1 (2) f'(d)(c) $f(1.205) = -0.045 \ CO$, $f(1.215) = 0.0086 \ 70$ M1 d lies in interval (1.205, 1.215) and is 1.21 to 35. f. A1 (2)

[P4 January 2002 Qn 4]

[*P4 January 2002 Qn 5]

5.	$\Sigma 6r^2 - \Sigma 6 = n(n+1)(2n+1), -6n$	M1, A1
	$=n(2n^2+3n-5)$	M1
	= n(n-1)(2n-5) (*)	A1
		(4 marks)
	נש	4 Juna 2002 On 11

[P4 June 2002 Qn 1]

r			
6.	<i>(a)</i>	$ w = \sqrt{50}$ (or equivalent)	B1 (1)
	(<i>b</i>)	$B \times $ $\times A$	B1 (1)
	(<i>c</i>)	$ \overrightarrow{OA} = 5$	B1
	(0)	OA - 5	DI
		$ \overrightarrow{OA} = 5$ $\overrightarrow{BA} = \begin{pmatrix} 4 \\ -3 \end{pmatrix}$ $ \overrightarrow{BA} = 5$, \therefore isosceles $5^2 + 5^2 = (\sqrt{50})^2$, \therefore right-angled (or gradient method)	M1, A1
			M1, A1 (5)
	(<i>d</i>)	$\operatorname{arg}\left(\frac{z}{w}\right) = \operatorname{arg} z - \operatorname{arg} w$	M1
		$=(-)\angle AOB = \frac{\pi}{4}$	M1, A1 (3)
			(10 marks)
		[P4	4 June 2002 Qn 5]

7. $\frac{dy}{dx} = -\frac{4}{x^2}$; at $x = 2p$ $\frac{dy}{dx} = -\frac{1}{p^2}$	M1, A1
Equation of tangent at P, $y - \frac{2}{p} = -\frac{1}{p^2}(x - 2p)$	M1
$(y = -\frac{1}{p^2}x + \frac{4}{p}, p^2y + x = 4p \text{ etc})$	
At $Q = q^2y + x + 4q$ Two correct equations in any form $(p^2 - q^2)y = 4(p - q)$	A1
$(p^2 - q^2)y = 4(p - q)$	M1
$y = \frac{4}{p+q} \qquad (\clubsuit)$	A1
$x = 4p - \frac{4p^2}{p+q} = \frac{4pq}{p+q} \qquad (\clubsuit)$	M1, A1 (8)

[*P5 June 2002 Qn 7]

8.	(<i>a</i>)	For $n = 1$ $2^5 + 5^2 = 57$, which is divisible by 3	M1, A1
		Assume true for $n = k$ $(k + 1)$ th term is $2^{3k+5} + 5^{k+2}$	B1
		$(k + 1)$ th term $\pm k$ th term $= 2^{3k+5} + 5^{k+2} \pm 2^{3k+2} + 5^{k+1}$	M1
		$= 2^{3k+2}(2^3 \pm 1) + 5^{k+1}(5 \pm 1)$	M1, A1
		$= 6(2^{3k+2} + 5^{k+1}) + 3 \cdot 2^{3k+2} \text{ or } = 4(2^{3k+2} + 5^{k+1}) + 3 \cdot 2^{3k+2}$	M1
		which is divisible by $3 \Rightarrow (k + 1)$ th term is divisible by 3	A1
		Thus by induction true for all n cso	B1 (9)
	(<i>b</i>)	For $n = 1$ RHS = $\begin{pmatrix} -2 & -1 \\ 9 & 4 \end{pmatrix}$	B1
		Assume true for $n = k$	
		$ \begin{pmatrix} -2 & -1 \\ 9 & 4 \end{pmatrix}^{k+1} = \begin{pmatrix} -2 & -1 \\ 9 & 4 \end{pmatrix} \begin{pmatrix} 1-3k & -k \\ 9k & 3k+1 \end{pmatrix} = \begin{pmatrix} -2-3k & 2k-3k-1 \\ 9+9k & -9k+12k+4 \end{pmatrix} $	M1 A3/2/1/0 (-1 each error)
		$ = \begin{pmatrix} 1 - 3(k+1) & -(k+1) \\ 9(k+1) & 3(k+1) + 1 \end{pmatrix} $	
		$\left(\begin{array}{cc}9(k+1) & 3(k+1)+1\right)$	B1
		\therefore If true for k then true for $k + 1$ \therefore by induction true for all n	B1 (7)
			(16 marks)
		[P6	June 2002 Qn 6]

[*P4 January 2003 Qn 4]

10. (a) $z^2 = (3 - 3i)(3 - 3i) = -18i$		M1 A1	(2)
(b) $\frac{1}{z} = \frac{(3+3i)}{(3-3i)(3+3i)} = \frac{3+3i}{18} = \frac{1+i}{6}$		M1 A1	(2)
(c) $ z = \sqrt{(9+9)} = \sqrt{18} = 3\sqrt{2}$			
z = 18	two correct	M1	
$\left \frac{1}{z}\right = \sqrt{\frac{1}{18}} = \frac{1}{3\sqrt{2}} = \frac{\sqrt{2}}{6}$	all three correct	A1	(2)
$(d) \qquad \qquad \underbrace{\uparrow}_{ED} \\ O \qquad \xrightarrow{de} \\ \hline O \qquad \xrightarrow{de} \hline O \qquad \xrightarrow{de} \\ \hline O \qquad \xrightarrow{de} \hline O \ \xrightarrow{de} \hline O \qquad \xrightarrow{de} \hline O \qquad \xrightarrow{de} \hline O \ $			
A	two correct	B1	
×A	four correct	B1	(2)
B			
(e) $\frac{OB}{OD} = 18$, $\frac{OA}{OC} = \frac{3\sqrt{2}}{\sqrt{2}/6} = 18$		M1 A1	
$\angle AOB = \angle COD = 45$ \therefore similar		B 1	(3)
	D4 Issues	(11 ma	rks)

[P4 January 2003 Qn 6]

11. (<i>a</i>)	$x^{3} - 27 = (x - 3)(x^{2} + 3x + 9)$		M1	
	(x = 3 is one root). Others satisfy ($(x^2 + 3x + 9) = 0 \ (*)$	A1	(2)
(b)	Roots are $x = 3$		B1	
	and $x = \frac{-3 \pm \sqrt{9 - 36}}{2}$		M1	
	$= -\frac{3}{2} + \frac{3\sqrt{3}}{2}i, -\frac{3}{2} - \frac{3\sqrt{3}}{2}i$		A1	(3)
(<i>c</i>)	•	3 and one other root in	B1	
		correct quad	B1 ft	(2)
	\rightarrow \rightarrow 3	Root in complex		
		conjugate posn.		
			(7 m	arks)

[#P4 June 2003 Qn 3]

12. (<i>a</i>)	f(1) = -4 $f(2) = 1$]	M1
	Change of sign (and continuity) implies $\alpha \in (1, 2)$		A1 (2)
(b)	$f(1.5) = -2.3 \implies 1.5 < \alpha < 2$]	B1
	$f(1.75) = -0.9 \implies 1.75 < \alpha < 2$		D1 (2)
	$f(1.875) = -0.03 \implies 1.875 < \alpha < 2$		B1 (2)
	NB Exact answer is 1.8789		
Alt to (<i>a</i>)	y Two graphs 9 $y = 3^x$ point of inte	with single $rsection (x > 0)$	M1
	y = x + 6 Two calcula = 1 and x =		A1
	0 1 2 x	[*D4_L	2002 0 41

[*P4 June 2003 Qn 4]

13.	(<i>a</i>)	$\frac{4+3i}{2+4i} = \frac{(4+3i)(2-4i)}{20} = \frac{20-10i}{20} (=1-\frac{1}{2}i)$	M1
		$ z = \sqrt{1^2 + (-\frac{1}{2})^2}, = \frac{\sqrt{5}}{2}$ awrt 1.12, accept exact equivalents	M1, A1 (3)
	(<i>b</i>)	$\frac{(a+3i)(2-ai)}{(2+ai)(2-ai)} = \frac{5a+(6-a^2)i}{4+a^2}$ accept in (a) if clearly applied to (b)	M1
		$(\tan \frac{\pi}{4} =) 1 = \frac{6-a^2}{5a}$ obtaining quadratic or equivalent	M1 A1
		$a^{2} + 5a - 6 = (a + 6)(a - 1)$	
		a = -6, 1	M1 A1
		Reject $a = -6$, wrong quadrant/ $-\frac{3\pi}{4}$, \Rightarrow one value	A1 (6)
			(9 marks)
Alt.	(<i>a</i>)	$ 4+3i =5, 2+4i =\sqrt{20}$	M1
		$ z = \frac{5}{\sqrt{20}} (= \frac{\sqrt{5}}{2})$	M1 A1
		$ z = \frac{1}{\sqrt{20}} \left(= \frac{1}{2} \right)$	(3)
	(<i>b</i>)	$\arg z = \arg (a + 3i) - \arg (2 + ai)$	
		$\frac{\pi}{4} = \arctan\frac{3}{a} - \arctan\frac{a}{2}$	M1
		$1 = \frac{\frac{3}{a} - \frac{a}{2}}{1 + \frac{3}{2}}$	M1 A1
		$1 + \frac{3}{2}$	(3)
		leading to $a^2 + 5a - 6 = 0$, then as before	
L		[P4 June	2003 Qn 5]

14.	$f(1) = 3 \times 7 - 1 = 20$; divisible by 4	B1
	$f(1) = 3 \times 7 - 1 = 20; \text{ divisible by 4}$ $f(k+1) = (2k+3)7^{k+1} - 1$	B1
	Showing that $f(k+1) = f(k) + 4m$ or equivalent	M1 A1
	e.g. $f(k+1) - f(k) = (2k+3)7^{k+1} - 1 - \{(2k+1)7^k - 1\}$	
	$= (12k+20)7^{k} = 4 (3k+5)7^{k}$	
	If true for $n = k$, then true for $n = k + 1$	М1
	Conclusion, with no wrong working seen.	A1

[P6 June 2003 Qn 2]

15.	(<i>a</i>)	$ z = 2\sqrt{2} w = 2$	M1, A1
		$\therefore wz^2 = (2\sqrt{2})^2 \times 2 = 16$	M1, A1
		arg $z = -\frac{\pi}{4}$ arg $w = \frac{5\pi}{6}$; \therefore arg $wz^2 = -\frac{\pi}{4} - \frac{\pi}{4} + \frac{5\pi}{6} = \frac{\pi}{3}, 60^{\circ}$	M1, A1 (6)
ALT		$z^2 = -8i; \therefore z^2 w = 8 + 8\sqrt{3}i$	M1, A1
		$ z^2w = \sqrt{8^2 + 8^2 \times 3}$	M1
		= 16	A1
		$\arg z^2 w = \tan^{-1} \sqrt{3}$	M1
		$=\frac{\pi}{3}$	A1
	(<i>b</i>)	\uparrow ς Points A and B	B1
		B Point C	B1ft
		$ \longrightarrow $	
		angle $BOC = \frac{5\pi}{6} - \frac{\pi}{3}$	M1
		$=\frac{\pi}{2}$, 90°	A1 (4)
			(10 marks)

[P4 January 2004 Qn 3]

16.	(a)	Expand brackets and attempt to use appropriate formulae.	M 1	
		$\sum r^2 + 6r + 5 = \frac{n}{6}(n+1)(2n+1) + 6\frac{n}{2}(n+1) + 5n$	A1	
		$=\frac{n}{6}[2n^2+3n+1+18n+18+30]$	M 1	
		$=\frac{n}{6}[2n^2+21n+49]=\frac{n}{6}(n+7)(2n+7)*$	A1	(4)
	(b)	Use S(40) – S(9) = $\frac{40}{6} \times 47 \times 87 - \frac{9}{6} \times 16 \times 25$	M1	
		= 26660	A1	(2)

[P4 June 2004 Qn 1]

17.	f(1) = -1 and $f(2) = 2$	B 1
	$\frac{2}{1} = \frac{2 - \alpha}{\alpha - 1} \implies \alpha = 1\frac{1}{3}$	B1
		(2)

[*P4 June 2004 Qn 2]

18. (a)
$$z = a + ib \rightarrow (a^2 - b^2) + 2abi = -16 + 30i$$
M1Equating imaginary parts $2ab = 30$ and thus $ab = 15 *$ A1(b)Also $(a^2 - b^2) = -16$ B1Attempt to solve by valid method involving elimination of unknownM1 $\therefore z = 3 + 5i$ or $z = -3 - 5i$ A1 A1(4)

[P4 June 2004 Qn 3]

[P4 June 2004 Qn 5]

20.	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{-\frac{c}{t^2}}{c} = -\frac{1}{t^2}$	M1 A1
	The normal to the curve has gradient t^2 .	B1
	The equation of the normal is $y - \frac{c}{t} = t^2(x - ct)$	M1
	The equation may be written $y = t^2 x + \frac{c}{t} - ct^3 *$	A1 (5)

٦

21.	(a) $ z ^2 = (-2\sqrt{2})^2 + (2\sqrt{2})^2 = 1$, $ w ^2 = 1^2 + (\sqrt{3})^2 = 4$ $\left \frac{z}{w}\right = \frac{ z }{ w } = \frac{4}{2} = 2$		M1 M1 A1	(3)
	(b) $\frac{z}{w} = \frac{-2\sqrt{2} + 2\sqrt{2}i}{1 - i\sqrt{3}} = \frac{-2\sqrt{2} + 2\sqrt{2}i}{1 - i\sqrt{3}} \times \frac{1 + i\sqrt{3}}{1 + i\sqrt{3}}$ $= \frac{\sqrt{2}}{4} \left(-1 - \sqrt{3} - i(\sqrt{3} - 1) \right)$		M1	
	$\arctan\frac{\sqrt{3}-1}{\sqrt{3}+1} = 15^{\circ}$		M1	
	In correct quadrant $\arg\left(\frac{z}{w}\right) = -165^{\circ}$	$-\frac{11\pi}{12}$	A1	(3)
		A B C ft	B1 B1 B1ft	(3)
	(d) $\angle BOOB = 60^{\circ}$ Correct method f B r $\angle AOC$ $\angle AOC = 45^{\circ} + 15^{\circ} = 60^{\circ}$		B1 M1 A1	(3)
	(e) ! $AOC = \frac{1}{2} \times 4 \times 2 \times \sin 60^\circ = 2\sqrt{3}$	awrt 3.46	M1 A1	(2)

[#FP1/P4 January 2005 Qn 8]

22.	(a) $z^{3} + 6z + 20 = (z+2)(z^{2} - 2z + 10)$ Long division or any complete method $z = \frac{2 \pm \sqrt{(4-40)}}{2} = 1 \pm 3i$	M1 M1 A1	(3)
	(b) $A \xrightarrow{B}$ In correct quadrants and on negative x - axis only required	B1ft	(1)
	(c) $m_{AB} = \frac{3}{3} = 1$, $m_{AC} = -1$ Full method $m_{AB}m_{AC} = -1 \Rightarrow$ triangle is right angled	M1 A1	(2) (6)
	Alternative to (c) $AB^2 + AC^2 = 18 = 18 = 36 = BC^2$ Result follows by (converse of) Pythagoras, or any complete method.	M1 A1	

[#FP1/P4 June 2005 Qn 2]

$f(1.2) = -0.2937 \dots$ f(1.1) = 0.42, f(1.15) = -2.05	f(1.2) to 1sf or better Attempt at $f(1.1)$, $f(1.15)$	B1 M1	
$\alpha \approx 1.2$	Attempt at $1(1.1), 1(1.13)$	A1	(3)

[*FP1/P4 June 2005 Qn 4]

Low and the second s				
24. (a).	$\frac{11}{2} + \arctan \frac{4}{6} \text{or} 11 - \arctan \frac{6}{4} \text{or eq}$	quiv. in degrees	MI	
	$\arg z = 2.159$		Alca	°. (2
(6)	$ w = \sqrt{20} \Rightarrow \sqrt{20} = \frac{A}{\sqrt{5}}$	Fall method for A using Iwl = 520	MI	
	\Rightarrow $A = 10$		Aı	
	$\omega = \frac{A}{2-i} \times \left(\frac{2+i}{2+i}\right) , \qquad \omega = 4+2i$	-	HI, AI	(4)
(c)	$\arg\left(\frac{\omega}{2}\right) = \arg \omega - \arg z = \arctan\left(\frac{2}{4}\right)$) - (a)	MI	
	= 0.463 2.159	2 departetter	A1 ♪	(a)
	= -1-695	awrt -1.70	AI	(3)
AUT (C)	7	Attempt w=z and we arctan	мі	9
	$\Rightarrow \arg(\underline{\omega}) = -\left[\Pi - \arctan\left(\frac{0.6\omega_{1}}{0.0764}\right)\right]$	Expression (2dp)	Aı	
	= aurt -1.70		Aι	(3)
	· ·	[FP1/P4 Ji	ine 2005	On 51

[FP1/P4 June 2005 Qn 5]

25.	(a)	$2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4a}{2y} = \frac{1}{p}$			B1	
		$y-2ap=\frac{1}{p}\left(x-ap^2\right),$	$py = x + ap^2$	(*)	M1,A1	(3)
	(b)	At Q , parameter = 4 p	$4py = x + 16ap^2$		M1 A1	(2)

[*FP2/P5 June 2005 Qn 5]

26.	(a) $\frac{6x+10}{x+3} = 6 - \frac{8}{x+3}$	B1 (1)
	(b) $u_1 = 5.2 > 5$	B1
	If result true for $n = k$, i.e. $u_k > 5$, $u_{k+1} = 6 - \frac{8}{u_k + 3}$ If $u_k > 5$, then $\frac{8}{u_k + 3} < 1$ so $u_{k+1} > 5$ Hence result is true for $n = k + 1$ Conclusion and no wrong working seen	M1A1 A1 (4) [5]
	[FP3/P6	June 2005 Qn 1]

Question number	Scheme	Marks
27.	$\sum_{r=1}^{n} (r-1)(r+2) = \sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} r - \left(\sum_{r=1}^{n} \right)^{2}$	M1
	$=\frac{1}{6}n(n+1)(2n+1)+\frac{1}{2}n(n+1),-2n$	A1, A1
	$=\frac{1}{6}n(2n^2+6n-8)$ M: Use factor <i>n</i> and use common denom. (e.g.3, 6, 12)	M1
	$=\frac{1}{3}n(n^2+3n-4)=\frac{1}{3}(n-1)n(n+4)$ M: Attempt complete factorisation (*)	M1 A1 cso (6)
		Total 6 marks

[FP1/P4 January 2006 Qn 1]

PMT

28.	(a) $z + 2i = i z + \lambda$ $(1-i) z = \lambda - 2i$, $z = \frac{\lambda - 2i}{1-i}$	M1, A1
	$z = \frac{\lambda - 2i}{1 - i} \times \frac{1 + i}{1 + i}, = \frac{1}{2}(\dots)$	M1, A1
	$= \left(\frac{\lambda}{2} + 1\right) + \left(\frac{\lambda}{2} - 1\right)i \tag{*}$	A1 cso (5)
	(b) $\frac{\frac{\lambda}{2}-1}{\frac{\lambda}{2}+1} = \frac{1}{2}$, $\lambda = 6$ 2^{nd} M: Solving $\frac{\frac{\lambda}{2}-1}{\frac{\lambda}{2}+1} = k$ (constant k)	M1, M1 A1 (3)
	(c) $z = 4 + 2i$, $ z ^2 = 4^2 + 2^2 = 20$ M: Subs. λ value and attempt $ z $ or $ z ^2$	M1 A1 (2)
		Total 10 marks

[FP1/P4 January 2006 Qn 3]

29.	(a) $f(1.8) = 19.6686 \dots - 20 = -0.3313 \dots$	awrt ±0.33	B1	
	$f(2) = 20.6424 \dots = 0.6424 \dots$	awrt ±0.64	B1	
	$\frac{\alpha - 1.8}{"0.33"} = \frac{2 - \alpha}{"0.64"}$	or equivalent	M1	
	$\alpha \approx 1.87$	cao	A1	(4)
	(b) 112 (min) (1 hr 52 min)		B1	(1) (5)

[#*FP1/P4 January 2006 Qn 5]

PMT

[*FP3/P6 Jan 2006 Qn 3]

32.	When $n = 1$, LHS = 1(2) ¹ = 2; RHS = 2{1 + 0} = 2 \implies true for $n = 1$	B1 ·	
	Suppose true for $n = k$, then $\sum_{1}^{k+1} r 2^{r} = 2\{1 + (k-1)2^{k} + (k+1)2^{k+1}\}$	M1 A1	
	$= 2 + k 2^{k+1} + k 2^{k+1}$ = 2(1 + k 2^{k+1}) = 2[1 + {(k + 1) - 1}2^{k+1}]	M1 A1(cso)	
	So, if true for $n = k$ then true for $n = k + 1$, but true for $n = 1$, \therefore true, by induction, for all values of $n \in Z^+$.	(5)	

[*FP3/P6 January 2006 Qn 5]

33.	(a)		2z + iw = -1			
			iz-iw=3i-3			
		Adding	2z + iz = -4 + 3i	Eliminating either variable	M1	
			$z = \frac{-4+3i}{2+i}$		A1	
			$z = \frac{-4+3i}{2+i} \times \frac{1}{2}$	$\frac{2-i}{2-i}$	M 1	
			$=\frac{-8+3+4}{5}$	<u>i+6i</u>		
			= -1 + 2i		A1	(4)
	(b)		$\arg z = \pi - \arctan 2$		<u>M1</u>	
			≈ 2.03	cao	A1	(2)
					(6 1	marks)

[FP1 June 2006 Qn 1]

34.	(a)	$f(0.24) \approx -0.058, f(0.28) = 0.089$	accept 1sf	M1	
		Change of sign (and continuity) $\Rightarrow \alpha \in (0.24, 0.28)$		A1	(2)
	(b)	$f(0.26) \approx 0.017 (\Rightarrow \alpha \in (0.24, 0.26))$	accept 1sf	M1	
		$f(0.25) \approx -0.020 (\Rightarrow \alpha \in (0.25, 0.26))$			
		$f(0.255) \approx -0.001 \implies \alpha \in (0.255, 0.26)$		M1 A1	(3)
					(5)
				Juna 2006	

[*FP1 June 2006 Qn 6]

Question Number	Scheme	Marks
35.	(a) Method for finding z : $z = \frac{-2 \pm \sqrt{4-68}}{2}$, $= \frac{-2 \pm \sqrt{64} i}{2}$	M1, A1
	[Completing the square: $(z + 1)^2 + 16 = 0$, $z = -1 \pm \sqrt{16} i$ M1,A1 $z = -1 \pm 4i$ $(a = -1, b = \pm 4)$	A1 (3)
	(d) → ↓ ↓ ↓ → → → → → → → → → → → → → → → →	B1√ (1) [4]
	م ا = ۵. [FP1]	Jan 2007 Qn 1]

36.	(a) $\frac{z_2}{z_1} = \frac{1+pi}{5+3i} \cdot \frac{(5-3i)}{(5-3i)}$	М1	
	$= \frac{5+5pi-3i+3p}{(34)}$ [Multiply out and attempt use of $i^2 = -1$]	M1	
	$= \frac{5+3p}{34} + \frac{5p-3}{34}i \text{or} \qquad \frac{5+3p}{34} - \frac{3-3p}{34}i$	A1	(3)
	(b) For $\frac{z_2}{z_1} = c + id$ using $\frac{d}{c} = \tan \frac{\pi}{4}$:	M1	
	$[5p-3=5+3p] \implies p=4$	A1	(2)
			[5]
	Notes:		
	In (a) if $\frac{z_1}{z_2}$ used treat as MR. Can score (a)M1M1A0 (b)M1A0		
	$\left[(a)\frac{5+3p}{1+p^2} + \frac{3-5p}{1+p^2}i (b) - \frac{1}{4}\right]$		
	Allow A1 if answer "all over" 34, real and imag. collected up)		
	1 + pi = (a + ib)(5 + 3i): M1 compare real and imag. is first M mark		
	If denominator in (a) incorrect, both marks in (b) still available		
	In (b), if use arg z_2 - arg $z_1 = \frac{\pi}{4}$:		
	M1 for $\arctan p - \arctan \frac{3}{5} = \frac{\pi}{4}$ [arctan $p = \frac{\pi}{4} + 0.5404 = 1.3258$]		
	Allow A1 for $p = 4$ without further work or for that shown in brackets, i.e. assume		
	values retained on calculator (no penalty because it looks as though not exact)		
		an 200	7 Qn 3]

[FP1 Jan 2007 Qn 3]

(or, if the M1 A1 has been scored, a <u>reason</u> such as 'crosses x-axis only once'). (b) Calculate f(1) and f(2) (<u>Values</u> must be seen) f(1) = -10, f(2) = 5, Sign change, \therefore Root (c) $x_1 = 2 - \frac{f(2)}{f'(2)}$, $= 2 - \frac{5}{20}$ (=1.75) $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$, $(=1.75 - \frac{0.359375}{17.1875}) = 1.729$ (ONLY) (α) M1, A1 (4) (d) Calculate f(α - 0.0005) and f(α + 0.0005) (or a 'tighter' interval that gives a sign change). f(1.7285) = -0.0077 and f(1.7295) = 0.0092, \therefore Accurate to 3 d.p. A1 (2)				
(or, if the M1 A1 has been scored, a reason such as 'crosses x-axis only once'). (b) Calculate f(l) and f(2) (Values must be seen) f(l) = -10, f(2) = 5, Sign change, \therefore Root (c) $x_1 = 2 - \frac{f(2)}{f'(2)}$, $= 2 - \frac{5}{20}$ (=1.75) $x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$, $(=1.75 - \frac{0.359375}{17.1875}) = 1.729$ (ONLY) (α) M1, A1 (d) Calculate f(α - 0.0005) and f(α + 0.0005) (or a 'tighter' interval that gives a sign change). f(1.7285) = -0.0077 and f(1.7295) = 0.0092, \therefore Accurate to 3 d.p. (a) M: Differentiate and consider sign of f'(x), or equate f'(x) to zero. Alternative: M1: Attempt to rearrange as $x^3 - 19 = -8x$ or $x^3 = 19 - 8x$ (condone sign slips), and to sketch a cubic graph and a straight line graph. A1: Correct graphs (shape correct and intercepts 'in the right place'). B1: Comment such as ''one intersection, therefore one root'''). (c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used. Answer only: No marks. The Newton-Raphson method must be seen. (d) For A1, correct <u>values</u> of f(1.7285) and f(1.7295) must be seen, together with a conclusion. If only 1 s.f. is given in the values, allow rounded (e.g 0.008)	37.			
(c) for all of the formation of the for		(or, if the M1 A1 has been scored, a reason such as 'crosses	11-11	(3)
$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}, \qquad \left(= 1.75 - \frac{0.359375}{17.1875} \right) = 1.729 \text{ (ONLY)}(\alpha) \qquad \text{M1, A1} \qquad (4)$ (d) Calculate $f(\alpha - 0.0005)$ and $f(\alpha + 0.0005)$ (or a 'tighter' interval that gives a sign change). $f(1.7285) = -0.0077$ and $f(1.7295) = 0.0092, \therefore \text{Accurate to 3 d.p.} \qquad \text{A1} \qquad (2)$ (a) M: Differentiate and consider sign of $f'(x)$, or equate $f'(x)$ to zero. <u>Alternative</u> : M1: Attempt to rearrange as $x^{3} - 19 = -8x$ or $x^{3} = 19 - 8x$ (condone sign slips), and to sketch a cubic graph and a straight line graph. A1: Correct graphs (shape correct and intercepts 'in the right place'). B1: Comment such as "one intersection, therefore one root"). (c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used. <u>Answer only</u> : No marks. The Newton-Raphson method must be seen. (d) For A1, correct <u>values</u> of f(1.7285) and f(1.7295) must be seen, together with a conclusion. If only 1 s.f. is given in the values, allow rounded (e.g 0.008)		$f(1) = -10$, $f(2) = 5$, Sign change, \therefore Root	A1	(2)
 (or a 'tighter' interval that gives a sign change). f(1.7285) = -0.0077 and f(1.7295) = 0.0092, ∴ Accurate to 3 d.p. A1 (2) (a) M: Differentiate and consider sign of f'(x), or equate f'(x) to zero. <u>Alternative</u>: M1: Attempt to rearrange as x³ - 19 = -8x or x³ = 19 - 8x (condone sign slips), and to sketch a cubic graph and a straight line graph. A1: Correct graphs (shape correct and intercepts 'in the right place'). B1: Comment such as "one intersection, therefore one root"). (c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used. <u>Answer only</u>: No marks. The Newton-Raphson method must be seen. (d) For A1, correct values of f(1.7285) and f(1.7295) must be seen, together with a conclusion. If only 1 s.f. is given in the values, allow rounded (e.g 0.008) 		- (-)		(4)
 <u>Alternative</u>: M1: Attempt to rearrange as x³ - 19 = -8x or x³ = 19 - 8x (condone sign slips), and to sketch a cubic graph and a straight line graph. A1: Correct graphs (shape correct and intercepts 'in the right place'). B1: Comment such as "one intersection, therefore one root"). (c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used. <u>Answer only</u>: No marks. The Newton-Raphson method must be seen. (d) For A1, correct <u>values</u> of f(1.7285) and f(1.7295) must be seen, together with a conclusion. If only 1 s.f. is given in the values, allow rounded (e.g 0.008) 		(or a 'tighter' interval that gives a sign change).		(2) 11
		 <u>Alternative</u>: M1: Attempt to rearrange as x³ - 19 = -8x or x³ = 19 - 8x (condone sign slips), and to sketch a cubic graph and a straight line graph. A1: Correct graphs (shape correct and intercepts 'in the right place'). B1: Comment such as "one intersection, therefore one root"). (c) 1st A1 can be implied by an answer of 1.729, provided N.R. has been used. <u>Answer only</u>: No marks. The Newton-Raphson method must be seen. (d) For A1, correct <u>values</u> of f(1.7285) and f(1.7295) must be seen, together with a conclusion. If only 1 s.f. is given in the values, allow rounded (e.g 0.008) 		

[FP1 June 2007 Qn 4]

38.	(a) $z^* = \sqrt{3} + i$	B 1	
	$\frac{z}{z^*} = \frac{(\sqrt{3} - i)(\sqrt{3} - i)}{(\sqrt{3} + i)(\sqrt{3} - i)} = \frac{3 - 2\sqrt{3}i - 1}{3 + 1}, = \frac{1}{2} - \frac{\sqrt{3}}{2}i $ (*)	M1, A1cso	(3)
	(b) $\left \frac{z}{z^*} \right = \sqrt{\left(\frac{1}{2}\right)^2 + \left(\frac{\pm\sqrt{3}}{2}\right)^2}, = 1$ $\left[\text{Or} : \left \frac{z}{z^*} \right = \frac{ z }{ z^* } = \frac{\sqrt{3+1}}{\sqrt{3+1}}, = 1 \right]$	M1, A1	(2)
	(c) $\arg(w) = \arctan\left(\pm \frac{\operatorname{imag}(w)}{\operatorname{real}(w)}\right)$ or $\arg(w) = \arctan\left(\pm \frac{\operatorname{real}(w)}{\operatorname{imag}(w)}\right)$,	M1	
	where w is z or z^* or $\frac{z}{z^*}$		
	$\arg\left(\frac{z}{z^*}\right) = \arctan\left(\frac{-\sqrt{3}/2}{\frac{1}{2}}\right) \qquad = -\frac{\pi}{3}$	A1	
	$\arctan\left(\frac{-1}{\sqrt{3}}\right) = -\frac{\pi}{6}$ and $\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$ (Ignore interchanged z and z')	A1	
	$\arg z - \arg z^* = -\frac{\pi}{6} - \frac{\pi}{6} = -\frac{\pi}{3} = \arg\left(\frac{z}{z^*}\right)$	A1	(4)
	(d) z^* z and z^* (Correct quadrants, approx. symmetrical)	B 1	
	$\frac{z}{z^*}$ (Strictly <u>inside</u> the triangle shown here)	B1	(2)
	(e) $\left(x - \left(\sqrt{3} - i\right)\right)\left(x - \left(\sqrt{3} + i\right)\right)$	M 1	
	Or: Use sum of roots $\left(=\frac{-b}{a}\right)$ and product of roots $\left(=\frac{c}{a}\right)$. $x^2 - 2\sqrt{3}x + 4$	A1	(2) 13
	 (a) M: Multiplying both numerator and denominator by √3 - i, and multiplying out brackets with some use of i² = -1. (b) Answer 1 with no working scores both marks. (c) Allow work in degrees: -60°, -30° and 30° 		
	Allow arg between 0 and $2\pi: \frac{5\pi}{3}$, $\frac{11\pi}{6}$ and $\frac{\pi}{6}$ (or 300°, 330° and 30°).	-	
	 Decimals: Allow marks for awrt -1.05 (A1), -0.524 and 0.524 (A1), but then A0 for final mark. (Similarly for 5.24 (A1), 5.76 and 0.524 (A1)). (d) Condone wrong labelling (or lack of labelling), if the intention is clear. 		
i	[FP1 June 200'	7 Qn 6]

39.	(a) Gradient of $PQ = \frac{2ap - 2aq}{ap^2 - aq^2} = \frac{2}{p+q}$ Can be implied	B1
	Use of any correct method or formula to obtain an equation of <i>PQ</i> in any form.	M1
	Leading to $(p+q)y = 2(x+apq)$ *	A1 (3)
	(b) Gradient of normal at P is $-p$. Given or implied at any stage	B1
	Obtaining any correct form for normal at either point. Allow if just written down.	M1 A1
	$y + px = 2ap + ap^3$	
	$y + qx = 2aq + aq^3$	
	Using both normal equations and eliminating <i>x</i> or <i>y</i> . Allow in any unsimplified form.	M1
	$(p-q)x = 2a(p-q) + a(p^3 - q^3)$ Any correct form for x or y	A1
	Leading to $x = a(p^2 + q^2 + pq + 2)$ * cso	A1
	y = -apq(p+q) * cso	A1 (7)

[*FP2 June 2007 Qn8]

40.	$n=1: 1^2 = \frac{1}{3} \times 1 \times 1 \times 3$	B1
	(Hence result is true for $n = 1$.)	
	$\sum_{r=1}^{k+1} (2r-1)^2 = \sum_{r=1}^{k} (2r-1)^2 + (2k+1)^2$	
	$=\frac{1}{3}k(2k-1)(2k+1)+(2k+1)^{2}, \text{ by induction}$	M1
	hypothesis	
	$=\frac{1}{3}(2k+1)(2k^2-k+6k+3)$	
	$=\frac{1}{3}(2k+1)(2k^2+5k+3)$	
	$=\frac{1}{3}(2k+1)(2k+3)(k+1)$	M1 A1
	$=\frac{1}{3}(k+1)[2(k+1)-1][2(k+1)+1]$	
	(Hence, if result is true for $n = k$, then it is true for $n = k+1$.)	
	By Mathematical Induction, above implies the result is true for all $n \in \square^+$.	
	CSO	A1 (5)
		(5 marks)

[FP3 June 2007 Qn5]

41.	(a) $f(k+1)-f(k) = 3^{4k+4} + 2^{4k+6} - 3^{4k} - 2^{4k+2}$		
	$=3^{4k} \left(3^4 - 1\right) + 2^{4k+2} \left(2^4 - 1\right)$	M1	
	$= 3^{4k} \times 80 + 2^{4k+2} \times 15 \qquad \text{can be implied}$	A1	
	$= 3^{4k-1} \times 240 + 2^{4k+2} \times 15 = 15 \left(16 \times 3^{4k-1} + 2^{4k+2} \right)$	M1	
	Hence $15 f(k+1) - f(k) \bigstar$ cso	A1	(4)
	Note: $f(k+1)-f(k)$ is divisible by 240 and other appropriate multiples of 15 lead to the required result.		
	(b) $n=1$: $f(1)=3^4+2^6=145=5\times 29 \implies 5 f(1)$	B1	
	(Hence result is true for $n = 1$.)		
	From (a) $f(k+1)-f(k)=15\lambda$, say. By induction hypothesis $f(k)=5\mu$, say.		
	$f(k+1) = f(k) + 1 \lambda = 5(\mu + 3\lambda) \Rightarrow 5 \mid f(k+1)$	M 1	
	(Hence, if result is true for $n = k$, then it is true for $n = k+1$.)		
	By Mathematical Induction, above implies the result is true for all $n \in \square^+$.		
	Accept equivalent arguments cso	A1	(3)
		(7 ma	rks)

[*FP3 June 2007 Qn6]

42.	Use (2x+1) as factor to give $f(x) = (2x+1)(x^2-6x+10)$ Attempt to solve quadratic to give $x = \frac{6 \pm \sqrt{(36-40)}}{2}$ Two complex roots are $= 3 \pm i$	MI A1 MI A1 MI A1	(6) [6]
	Notes: First M if method results in quadratic expression with 3 terms (even with remainder). Second M for use of correct formula on their quadratic. Third M for using i from negative discriminant.		

[FP1 January 2008 Qn 2]

$f(0.7) = -0.195\ 028\ 497$, $f(x)0.8 = 0.297\ 206\ 781$ 3 dp or better	B1, B1	
Using $\frac{0.8 - \alpha}{\alpha - 0.7} = \frac{f(0.8)}{-f(0.7)}$ to obtain $\alpha = \frac{-0.8f(0.7) + 0.7f(0.8)}{f(0.8) - f(0.7)}$	M1	
$\alpha = 0.739\ 620\ 991$ 3dp or better	A1	(4)

[*FP1 January 2008 Qn 4]

[FP1 January 2008 Qn 6]

+

45.	(a) 4	B1	(1)
	(b) $(x-4)(x^2+4x+16)$	M1 A1	
	(b) $(x - i)(x - i)(x - i)$ $x = \frac{-4 \pm \sqrt{16 - 64}}{2}$, $x = -2 \pm 2\sqrt{3}i$ (or equiv. surd for $2\sqrt{3}$)	M 1, A 1	(4)
	(c) • •		
	 Root on + ve real axis, one other in correct quad. 	B1	
	Third root in conjugate complex position	Blft	(2) 7
	M1 in part (b) needs(x-"their 4") times quadratic($x^2 + ax +$) or times($x^2 + 16$)		
	M1 needs solution of three term quadratic		
	So ($x^2 + 16$) special case, results in B1M1A0M0A0B0B1 possibly		
	Alternative scheme for (b)		
	$(a+ib)^3 = 64$, so $a^3 + 3a^2ib + 3a(ib)^2 + (ib)^3 = 64$ and equate real, imaginary parts	M1	
	so $a^3 - 3ab^2 = 64$ and $3a^2b - b^3 = 0$	A1	
	Solve to obtain $a = -2$, $b = \sqrt{12}$	M1A1	
	Alternative ii		
	(x-4)(x-a-ib)(x-a+ib) = 0 expand and compare coefficients	M1	
	two of the equations $-2a - 4 = 0$, $8a + a^2 + b^2 = 0$, $4(a^2 + b^2) = 64$	Al	
	Solve to obtain $a = -2$, $b = \sqrt{12}$	M1A1	
	(c)Allow vectors, line segments or points in Argand diagram.		
	Extra points plotted in part (c) – lose last B mark	l	
	Part (c) answers are independent of part (b)		
	[F]	P1 June 2008 (On 11

[FP1 June 2008 Qn 1]

46. (a)
$$z = \frac{(a+2i)(a+i)}{(a-i)(a+i)} = \frac{a^2 + 3ai - 2}{a^2 + 1}$$

$$\frac{a^2 - 2}{a^2 + 1} = \frac{1}{2}, \quad 2a^2 - 4 = a^2 + 1 \qquad a = \sqrt{5} \quad (\text{presence of } -\sqrt{5} \text{ also is A0}) \quad \text{M1, A1} \qquad (4)$$
(b) Evaluating their " $\frac{3a}{a^2 + 1}$ ", or " $3a$ " $\left(\frac{\sqrt{5}}{2} \text{ or } 3\sqrt{5}\right)$ (ft errors in part a) B1ft
tan $\theta = \frac{3a}{a^2 - 2}$ ($= \frac{3\sqrt{5}}{3}$), arg $z = 1.15$ (accept answers which round to 1.15) M1, A1 (3)
(b) B mark is treated here as a method mark
The M1 is for tan (argz) = Imaginary part / real part
answer in degrees is A0
Alternative method:
(a) $\left(\frac{1}{2} + iy\right)(a - i) = a + 2i \Rightarrow \frac{1}{2}a + y = a \text{ and } ay - \frac{1}{2} = 2$
M1 A1
 $y = \frac{1}{2}a$ and $ay = \frac{5}{2} \Rightarrow \frac{1}{2}a^2 = \frac{5}{2} \Rightarrow a = \sqrt{5}$
(b) $y = \frac{\sqrt{5}}{2}$ (May be seen in part (a))
tan $\theta = \sqrt{5}$ arg $z = 1.15$
Further Alternative method in (b)
Use arg(a + 2i) - arg(a - i)
 $= 0.7297 - (-0.4205) = 1.15$
M1 A1 (3)

[FP1 June 2008 Qn 3]

L

	~~~		
47.	(a)	$ \begin{pmatrix} k & -2 \\ 1-k & k \end{pmatrix} \begin{pmatrix} t \\ 2t \end{pmatrix} = \begin{pmatrix} t(k-4) \\ t(1+k) \end{pmatrix} $	М1
		$ t(1-k - k)(2t) - (t(1+k))  t(1+k) = 2t(k-4)  k = 9  det A = k^2 + 2(1-k) $ (Must be seen in part (b))	dM1 A1 (3)
	(b)	$\frac{k-2}{\det \mathbf{A} = k^2 + 2(1-k)}$ (Must be seen in part (b))	MI
		$= (k-1)^2 + 1$ , which is always positive	M1
	(c)	A is non-singular $(k-2)$	Alcso (3)
		$\mathbf{A}^{-1} = \frac{1}{k^2 - 2k + 2} \begin{pmatrix} k & 2\\ k - 1 & k \end{pmatrix}$	M1 A1 (2)
	(d)	$k = 3,  \mathbf{A}^{-1} = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}$	B1
		$\mathbf{A}\mathbf{p} = \mathbf{q} \Longrightarrow \mathbf{p} = \mathbf{A}^{-1}\mathbf{q}$ $\mathbf{p} = \frac{1}{5} \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 4 \\ -3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 6 \\ -1 \end{pmatrix}$	M1 A1 (3)
		Alt. $\begin{pmatrix} 3 & -2 \\ -2 & 3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 4 \\ -3 \end{pmatrix} \implies 3x - 2y = 4, -2x + 3y = -3$ B1	
		M1 A1 for solving two sim. eqns. in x and y to give $x = 1.2$ , $y = -0.2$ (o.e.)	(11)
		<ul> <li>(b) 2nd M: Alternative is to use quadratic formula on the quadratic equation, or to use the discriminant, with a <u>comment</u> about 'no real roots', or 'can't equal zero', or a comment about the condition for singularity. (x = 2±√4-8/2) </li> <li>A1 Conclusion. </li> <li>(c) M: Need 1/(their det A), k's unchanged and attempt to change sign for either -2 (leaving as top right) or 1-k (leaving as bottom left). </li> <li>(d) M: Requires an attempt to multiply the matrices.</li> </ul>	
		I F	P3 June 2008 On 5

[FP3 June 2008 Qn 5]