FP1 Mark Schemes from old P4, P5, P6 and FP1, FP2, FP3 papers (back to June 2002)

Please note that the following pages contain mark schemes for questions from past papers which were not written at an AS standard and may be less accessible than those you will find on future AS FP1 papers from Edexcel. Some questions would certainly worth more marks at AS level.

The standard of the mark schemes is variable, depending on what we still have - many are scanned, some are handwritten and some are typed.

The questions are available on a separate document, originally sent with this one.

[P4 January 2002 Qi 3]

[P4 January 2002 Qn 4]

[*P4 January 2002 Qn 5]

5.	$\Sigma 6 r^{2}-\Sigma 6$ $=n(n+1)(2 n+1),-6 n$ $=n\left(2 n^{2}+3 n-5\right)$ $=n(n-1)(2 n-5)$ $\left({ }^{*}\right)$	M1, A1 M1 A1
(4 marks)		

6. (a)	$\|w\|=\sqrt{ } 50$ (or equivalent)	B1 (1)
(b)		B1 (1)
(c)	$\|\overrightarrow{O A}\|=5$	B1
	$\overrightarrow{B A}=\binom{4}{-3} \quad\|\overrightarrow{B A}\|=5, \quad \therefore \text { isosceles }$	M1, A1
	$5^{2}+5^{2}=(\sqrt{50})^{2}, \therefore$ right-angled (or gradient method)	M1, A1 (5)
(d)	$\arg \left(\frac{z}{w}\right)=\arg z-\arg w$	M1
	$=(-) \angle A O B=\frac{\pi}{4}$	M1, A1 (3)
		(10 marks)

[P4 June 2002 Qn 5]

7.	$\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{4}{x^{2}} ; \text { at } x=2 p \frac{\mathrm{~d} y}{\mathrm{~d} x}=-\frac{1}{p^{2}}$	M1, A1
	Equation of tangent at $P, y-\frac{2}{p}=-\frac{1}{p^{2}}(x-2 p)$ $\left(y=-\frac{1}{p^{2}} x+\frac{4}{p}, \quad p^{2} y+x=4 p \quad \text { etc }\right)$	M1
	$\text { At } Q \quad q^{2} y+x+4 q$ Two correct equations in any form $\left(p^{2}-q^{2}\right) y=4(p-q)$	A1 M1
	$\begin{equation*} y=\frac{4}{p+q} \tag{*} \end{equation*}$	A1
	$\begin{equation*} x=4 p-\frac{4 p^{2}}{p+q}=\frac{4 p q}{p+q} \tag{*} \end{equation*}$	M1, A1 (8)

8. (a)	For $n=1 \quad 2^{5}+5^{2}=57$, which is divisible by 3	M1, A1
	Assume true for $n=k \quad(k+1)$ th term is $2^{3 k+5}+5^{k+2}$	B1
	$(k+1)$ th term $\pm k$ th term $=2^{3 k+5}+5^{k+2} \pm 2^{3 k+2}+5^{k+1}$	M1
	$=2^{3 k+2}\left(2^{3} \pm 1\right)+5^{k+1}(5 \pm 1)$	M1, A1
	$=6\left(2^{3 k+2}+5^{k+1}\right)+3.2^{3 k+2}$ or $=4\left(2^{3 k+2}+5^{k+1}\right)+3.22^{3 k+2}$	M1
	which is divisible by $3 \Rightarrow(k+1)$ th term is divisible by 3	A1
	Thus by induction true for all n cso	B1 (9)
	For $n=1 \quad$ RHS $=\left(\begin{array}{cc}-2 & -1 \\ 9 & 4\end{array}\right)$	B1
(b)	Assume true for $n=k$	
	$\left(\begin{array}{cc} -2 & -1 \\ 9 & 4 \end{array}\right)^{k+1}=\left(\begin{array}{cc} -2 & -1 \\ 9 & 4 \end{array}\right)\left(\begin{array}{cc} 1-3 k & -k \\ 9 k & 3 k+1 \end{array}\right)=\left(\begin{array}{cc} -2-3 k & 2 k-3 k-1 \\ 9+9 k & -9 k+12 k+4 \end{array}\right)$	M1 A3/2/1/0 (-1 each error)
	$=\left(\begin{array}{cc} 1-3(k+1) & -(k+1) \\ 9(k+1) & 3(k+1)+1 \end{array}\right)$	B1
	\therefore If true for k then true for $k+1 \quad \therefore$ by induction true for all n	B1 (7)
		(16 marks)

9.	$\begin{aligned} & \mathrm{f}(2)=-1.514 \\ & \mathrm{f}(\pi)=1.142 \\ & \frac{\pi-\alpha}{\alpha-2}=\frac{1.142}{1.514} \\ & \pi \times 1.514+2 \times 1.142=(1.142+1.514) \alpha \\ & \alpha=2.65 \end{aligned}$	B1 B1 M1 A1 (4)

[*P4 January 2003 Qn 4]

11. (a)	$x^{3}-27=(x-3)\left(x^{2}+3 x+9\right)$ $\left(x=3\right.$ is one root). Others satisfy $\left(x^{2}+3 x+9\right)=0\left({ }^{*}\right)$		M1
			A1 (2)
(b)	Roots are $x=3$ and $x=\frac{-3 \pm \sqrt{9-36}}{2}$		B1
			M1
	$\begin{equation*} =-\frac{3}{2}+\frac{3 \sqrt{3}}{2} i,-\frac{3}{2}-\frac{3 \sqrt{3}}{2} i \tag{3} \end{equation*}$		A1
(c)		3 and one other root in	B1
		correct quad	$\begin{equation*} \mathrm{B} 1 \mathrm{ft} \tag{2} \end{equation*}$
		Root in complex conjugate posn.	
			(7 marks)

[\#P4 June 2003 Qn 3]

12. (a) (b)	$f(1)=-4 \quad f(2)=1$ Change of sign (and continuity) implies $\alpha \in(1,2)$ $\begin{array}{ll} \mathrm{f}(1.5)=-2.3 \ldots & \Rightarrow 1.5<\alpha<2 \\ \mathrm{f}(1.75)=-0.9 \ldots & \Rightarrow 1.75<\alpha<2 \\ \mathrm{f}(1.875)=-0.03 \ldots & \Rightarrow 1.875<\alpha<2 \end{array}$ NB Exact answer is $1.8789 .$. .	M1 A1 B1 B1
Alt to (a)	 Two graphs with single point of intersection $(x>0)$ Two calculations at both x $=1$ and $x=2$	M1 A1

13. (a) (b)	$\begin{aligned} & \frac{4+3 \mathrm{i}}{2+4 \mathrm{i}}=\frac{(4+3 \mathrm{i})(2-4 \mathrm{i})}{20}=\frac{20-10 \mathrm{i}}{20}\left(=1-\frac{1}{2} \mathrm{i}\right) \\ & \|\mathrm{z}\|=\sqrt{1^{2}+\left(-\frac{1}{2}\right)^{2}},=\frac{\sqrt{5}}{2} \\ & \begin{array}{l} \frac{(a+3 \mathrm{i})(2-a \mathrm{i})}{(2+a \mathrm{i})(2-a \mathrm{i})}=\frac{5 a+\left(6-a^{2}\right) \mathrm{i}}{4+a^{2}} \\ \begin{array}{l} \left(\tan \frac{\pi}{4}=\right) 1=\frac{6-a^{2}}{5 a} \\ a^{2}+5 a-6=(a+6)(a-1) \\ \quad a \end{array} \\ \text { Reject } a=-6,12 \text { accept in }(a) \text { if clearly applied to }(b) \\ \text { Re wrong quadrant/ }-\frac{3 \pi}{4}, \Rightarrow \text { one value equivalents } \end{array} \end{aligned}$	M1 M1, A1 (3) M1 M1 A1 M1 A1 A1 (6) (9 marks)
Alt. (a) (b)	$\begin{aligned} & \|4+3 \mathrm{i}\|=5,\|2+4 \mathrm{i}\|=\sqrt{20} \\ & \|z\|=\frac{5}{\sqrt{20}}\left(=\frac{\sqrt{5}}{2}\right) \\ & \arg z=\arg (a+3 \mathrm{i})-\arg (2+a \mathrm{i}) \\ & \frac{\pi}{4}=\arctan \frac{3}{a}-\arctan \frac{a}{2} \\ & 1=\frac{\frac{3}{a}-\frac{a}{2}}{1+\frac{3}{2}} \end{aligned}$ leading to $a^{2}+5 a-6=0$, then as before	M1 M1 A1 (3) M1 M1 A1 (3)

14.	$f(1)=3 \times 7-1=20 ;$ divisible by 4	B1
	$\mathrm{f}(k+1)=(2 k+3) 7^{k+1}-1$	B1
	Showing that $\mathrm{f}(k+1)=\mathrm{f}(k)+4 m$ or equivalent e.g. $\mathrm{f}(k+\mathrm{I})-\mathrm{f}(k)=(2 k+3) 7^{k+1}-1-\left\{(2 k+1) 7^{k}-1\right\}$	M1 A1
	$=(12 k+20) 7^{k}=4(3 k+5) 7^{k}$	
	If true for $n=k$, then true for $n=k+1$	M1
	Conclusion, with no wrong working seen.	A1

[P6 June 2003 Qn 2]

15. (a)	$\|z\|=2 \sqrt{ } 2 \quad\|w\|=2$	M1, A1
	$\therefore\left\|w z^{2}\right\|=(2 \sqrt{ } 2)^{2} \times 2=16$	M1, A1
	$\arg z=-\frac{\pi}{4} \quad \arg w=\frac{5 \pi}{6} ; \quad \therefore \quad \arg w z^{2}=-\frac{\pi}{4}-\frac{\pi}{4}+\frac{5 \pi}{6}=\frac{\pi}{3}, 60^{\circ}$	M1, A1 (6)
ALT	$z^{2}=-8 i ; \quad \therefore z^{2} w=8+8 \sqrt{ } 3 \mathrm{i}$	M1, A1
	$\left\|z^{2} w\right\|=\sqrt{8^{2}+8^{2} \times 3}$	M1
	$=16$	A1
	$\arg z^{2} w=\tan ^{-1} \sqrt{ } 3$	M1
	$=\frac{\pi}{3}$	A1
	$\uparrow \quad$ Points A and B	B1
	$B \quad$ Point C	B1ft
	angle $B O C=\frac{5 \pi}{6}-\frac{\pi}{3}$	M1
	$=\frac{\pi}{2}, 90^{\circ}$	A1 (4)
		(10 marks)

| 17. | $\mathrm{f}(1)=-1$ and $\mathrm{f}(2)=2$ |
| :--- | :--- | :--- |
| $\frac{2}{1}=\frac{2-\alpha}{\alpha-1} \Rightarrow \alpha=1 \frac{1}{3}$ | B1 |

[*P4 June 2004 Qn 2]

18. (a)	$z=a+i b \rightarrow\left(a^{2}-b^{2}\right)+2 a b i=-16+30 i$ Equating imaginary parts $2 a b=30$ and thus $a b=15 *$ (b)	A1	
Also $\left(a^{2}-b^{2}\right)=-16$ Attempt to solve by valid method involving elimination of unknown $\therefore z=3+5 i$ or $z=-3-5 i$	B1	(2)	
$\therefore z 1$		A1 A1	

[P4 June 2004 Qn 5]

20.	$\frac{d y}{\mathrm{~d} x}=\frac{d y}{\frac{d x}{d t}}=\frac{-\frac{c}{t^{2}}}{c}=-\frac{1}{t^{2}}$	M1 A1
The normal to the curve has gradient t^{2}.	B1	
The equation of the normal is $y-\frac{c}{t}=t^{2}(x-c t)$		
The equation may be written $y=t^{2} x+\frac{c}{t}-c t^{3} \quad *$	M1	

21.

23.	$\mathrm{f}(1.2)=-0.2937 \ldots$	$\mathrm{f}(1.2)$ to 1 sf or better	B1
	$\mathrm{f}(1.1)=0.42 \ldots, \mathrm{f}(1.15)=-2.05 \ldots$	Attempt at $\mathrm{f}(1.1), \mathrm{f}(1.15)$	M1
	$\alpha \approx 1.2$		A1

26.	(a)(b)	$\frac{6 x+10}{x+3}=6-\frac{8}{x+3}$	B1 (1)
		$u_{1}=5.2>5$	B1
		If result true for $n=k$, i.e. $u_{k}>5$, $u_{k+1}=6-\frac{8}{u_{k}+3}$	
		If $u_{k}>5$, then $\frac{8}{u_{k}+3}<1$ so $u_{k+1}>5$	M1A1
		Hence result is true for $n=k+1$ Conclusion and no wrong working seen	A1 (4)
			[5]

Question number	Scheme	Marks
27.	$\begin{aligned} & \sum_{r=1}^{n}(r-1)(r+2)=\sum_{r=1}^{n} r^{2}+\sum_{r=1}^{n} r-\left(\sum_{r=1}^{n}\right) 2 \\ & =\frac{1}{6} n(n+1)(2 n+1)+\frac{1}{2} n(n+1),-2 n \\ & =\frac{1}{6} n\left(2 n^{2}+6 n-8\right) \quad \text { M: Use factor } n \text { and use common denom. (e.g.3, 6, 12) } \\ & =\frac{1}{3} n\left(n^{2}+3 n-4\right)=\frac{1}{3}(n-1) n(n+4) \text { M: Attempt complete factorisation (*) } \end{aligned}$	A1, A1 M1 M1 A1 cso (6) Total 6 marks

[FP1/P4 January 2006 Qn 1]

28.	(a) $z+2 \mathrm{i}=\mathrm{i} z+\lambda$ $(1-\mathrm{i}) z=\lambda-2 \mathrm{i}, \quad z=\frac{\lambda-2 \mathrm{i}}{1-\mathrm{i}}$	M1, A1
	$z=\frac{\lambda-2 \mathrm{i}}{1-\mathrm{i}} \times \frac{1+\mathrm{i}}{1+\mathrm{i}}, \quad=\frac{1}{2}(\ldots \ldots \ldots)$	M1, A1
	$=\left(\frac{\lambda}{2}+1\right)+\left(\frac{\lambda}{2}-1\right) \mathrm{i}$	Al cso (5)
	(b) $\frac{\frac{\lambda}{2}-1}{\frac{\lambda}{2}+1}=\frac{1}{2}, \quad \lambda=6 \quad 2^{\text {nd }} \mathrm{M}$: Solving $\frac{\frac{\lambda}{2}-1}{\frac{\lambda}{2}+1}=k($ constant $k)$	M1, M1 A1 (3)
	(c) $z=4+2 \mathrm{i}, \quad\|z\|^{2}=4^{2}+2^{2}=20 \mathrm{M}$: Subs. λ value and attempt $\quad\|z\|$ or $\|z\|^{2}$	M1 Al (2)
		Total 10 marks

[FP1/P4 January 2006 Qn 3]

[\#*FP1/P4 January 2006 Qn 5]

30.	(a) Correct method for finding $\frac{\mathrm{d} y}{\mathrm{~d} x} \quad\left[\frac{1}{P}\right]$	M1
	Gradient of normal $=-p$	A1
	Equation of normal: $y-2 a p=(-p)\left(x-a p^{2}\right)$	M1
	$y+p x=2 a p+a p^{3} \quad \mathrm{AG}$	$\mathrm{A} 1^{*}$ (4)
	(b) Using both equations and eliminating x or y	M1
	$(p-q) x=2 a(p-q)+a\left(p^{3}-q^{3}\right) \quad$ may be unsimplified	A1
	$x=2 a+a\left(p^{2}+p q+q^{2}\right)$	A1
	Finding the other coordinate	M1
	$y=-a p q(p+q)$	A1 (5)

31.

Complete method for finding image:
e.g. $\left(\begin{array}{cc}-4 & 2 \\ 2 & -1\end{array}\right)\binom{x}{2 x+1}=\binom{2}{-1}$

The image is the point $(2,-1)$

[*FP3/P6 January 2006 Qn 5]

\begin{tabular}{|c|c|c|c|c|}
\hline 33. \& (a)

(b) \& Adding \& \[
$$
\begin{aligned}
2 z+\mathrm{i} w & =-1 \\
\mathrm{i} z-\mathrm{i} w & =3 \mathrm{i}-3 \\
2 z+\mathrm{i} z & =-4+3 \mathrm{i} \quad \text { Eliminating either variable } \\
z & =\frac{-4+3 \mathrm{i}}{2+\mathrm{i}} \\
z & =\frac{-4+3 \mathrm{i}}{2+\mathrm{i}} \times \frac{2-\mathrm{i}}{2-\mathrm{i}} \\
& =\frac{-8+3+4 \mathrm{i}+6 \mathrm{i}}{5} \\
& =-1+2 \mathrm{i} \\
\arg z & =\pi-\underline{\arctan 2} \\
& \approx 2.03
\end{aligned}
$$

\] \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 (4) |
| M1 |
| A1 |
| (2) |
| (6 marks) |

\hline
\end{tabular}

[FP1 June 2006 Qn 1]

[*FP1 June 2006 Qn 6]

Question Number	Scheme	Marks
35.	(a) Method for finding $z: \quad z=\frac{-2 \pm \sqrt{4-68}}{2},=\frac{-2 \pm \sqrt{64} i}{2}$ [Completing the square: $(z+1)^{2}+16=0, \quad z=-1 \pm \sqrt{16} i \quad$ M1,A1 $z=-1 \pm 4 i \quad(a=-1, b= \pm 4)$ (b)	M1, A1 A1 (3) B1 $\sqrt{ }$ (1) [4]

[FP1 Jan 2007 Qn 3]

[FP1 June 2007 Qn 4]
38.
(a) $z^{*}=\sqrt{3}+\mathrm{i}$
$\frac{z}{z^{*}}=\frac{(\sqrt{3}-\mathrm{i})(\sqrt{3}-\mathrm{i})}{(\sqrt{3}+\mathrm{i})(\sqrt{3}-\mathrm{i})}=\frac{3-2 \sqrt{3} \mathrm{i}-1}{3+1},=\frac{1}{2}-\frac{\sqrt{3}}{2} \mathrm{i}$
(b) $\left|\frac{z}{z^{*}}\right|=\sqrt{\left(\frac{1}{2}\right)^{2}+\left(\frac{ \pm \sqrt{3}}{2}\right)^{2}}, \quad=1 \quad\left[\right.$ Or : $\left.\left|\frac{z}{z^{*}}\right|=\frac{|z|}{\left|z^{*}\right|}=\frac{\sqrt{3+1}}{\sqrt{3+1}}, \quad=1\right]$
(c) $\arg (w)=\arctan \left(\pm \frac{\operatorname{imag}(w)}{\operatorname{real}(w)}\right)$ or $\arg (w)=\arctan \left(\pm \frac{\operatorname{real}(w)}{\operatorname{imag}(w)}\right)$, where w is z or z^{*} or $\frac{z}{z^{*}}$
$\arg \left(\frac{z}{z^{*}}\right)=\arctan \left(\frac{-\sqrt{3} / 2}{1 / 2}\right)$

$$
=-\frac{\pi}{3}
$$

$\arctan \left(\frac{-1}{\sqrt{3}}\right)=-\frac{\pi}{6}$ and $\arctan \left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{6} \quad$ (Ignore interchanged z and z^{*})
$\arg z-\arg z^{*}=-\frac{\pi}{6}-\frac{\pi}{6}=-\frac{\pi}{3}=\arg \left(\frac{z}{z^{*}}\right)$
(d)
(Correct quadrants, approx. symmetrical) z and z^{*} (Ctrictly inside the triangle shown here)
(e) $(x-(\sqrt{3}-i))(x-(\sqrt{3}+i))$

M1
Or: Use sum of roots $\left(=\frac{-b}{a}\right)$ and product of roots $\left(=\frac{c}{a}\right)$.

$$
x^{2}-2 \sqrt{3} x+4
$$

A1
(a) M: Multiplying both numerator and denominator by $\sqrt{3}-\mathrm{i}$, and multiplying out brackets with some use of $\mathrm{i}^{2}=-1$.
(b) Answer 1 with no working scores both marks.
(c) Allow work in degrees: $-60^{\circ},-30^{\circ}$ and 30°

Allow arg between 0 and $2 \pi: \frac{5 \pi}{3}, \frac{11 \pi}{6}$ and $\frac{\pi}{6}$ (or $300^{\circ}, 330^{\circ}$ and 30°).
Decimals: Allow marks for awrt -1.05 (A1), -0.524 and 0.524 (A1), but then
A0 for final mark. (Similarly for 5.24 (A1), 5.76 and 0.524 (A1)).
(d) Condone wrong labelling (or lack of labelling), if the intention is clear.
[FP1 June 2007 Qn 6]

40.	$n=1: \quad 1^{2}=\frac{1}{3} \times 1 \times 1 \times 3$ (Hence result is true for $n=1$.) $\begin{aligned} \sum_{r=1}^{k+1}(2 r-1)^{2} & =\sum_{r=1}^{k}(2 r-1)^{2}+(2 k+1)^{2} \\ & =\frac{1}{3} k(2 k-1)(2 k+1)+(2 k+1)^{2}, \text { by induction } \end{aligned}$ hypothesis $\begin{aligned} & =\frac{1}{3}(2 k+1)\left(2 k^{2}-k+6 k+3\right) \\ & =\frac{1}{3}(2 k+1)\left(2 k^{2}+5 k+3\right) \\ & =\frac{1}{3}(2 k+1)(2 k+3)(k+1) \\ & =\frac{1}{3}(k+1)[2(k+1)-1][2(k+1)+1] \end{aligned}$ (Hence, if result is true for $n=k$, then it is true for $n=k+1$.) By Mathematical Induction, above implies the result is true for all $n \in \square^{+}$.	B1 M1 M1 A1 A1 (5) (5 marks)

42.	Use $(2 x+1)$ as factor to give $f(x)=(2 x+1)\left(x^{2}-6 x+10\right)$ Attempt to solve quadratic to give $x=\frac{6 \pm \sqrt{(36-40)}}{2}$ Two complex roots are $=3 \pm \mathrm{i}$	M1 A1 M1 A1 M1 A1 (6) [6]
	Notes: First M if method results in quadratic expression with 3 terms (even with remainder). Second M for use of correct formula on their quadratic. Third M for using i from negative discriminant.	

43.	$\mathrm{f}(0.7)=-0.195028497, \quad \mathrm{f}(x) 0.8=0.297206781 \quad 3 \mathrm{dp}$ or better	B1, B1	
	Using $\frac{0.8-\alpha}{\alpha-0.7}=\frac{\mathrm{f}(0.8)}{-\mathrm{f}(0.7)}$	to obtain $\alpha=\frac{-0.8 \mathrm{f}(0.7)+0.7 \mathrm{f}(0.8)}{\mathrm{f}(0.8)-\mathrm{f}(0.7)}$	
$\alpha=0.739620991$	M1	Adp or better	A1 (4)

[*FP1 January 2008 Qn 4]

\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{5}{*}{45.} \& (a) 4 \& B1 \& (1) \\
\hline \& (b) \((x-4)\left(x^{2}+4 x+16\right)\) \& M1 A1 \& \\
\hline \& \(x=\frac{-4 \pm \sqrt{16-64}}{2}, \quad x=-2 \pm 2 \sqrt{3} \mathrm{i} \quad\) (or equiv. surd for \(2 \sqrt{ } 3\)) \& M1, A1 \& (4) \\
\hline \& \(\longrightarrow\) Root on + ve real axis, one other in correct quad. \& B1 \& \\
\hline \& Third root in conjugate complex position \& B1ft \& \\
\hline \multirow[t]{11}{*}{} \& \multirow[t]{11}{*}{\begin{tabular}{l}
M1 in part (b) needs(x-"their 4") times quadratic (\(x^{2}+a x+.\).) or times \(\left(x^{2}+16\right)\) M1 needs solution of three term quadratic \\
So (\(x^{2}+16\)) special case, results in B1M1A0M0A0B0B1 possibly Alternative scheme for (b) \\
\((a+i b)^{3}=64\), so \(a^{3}+3 a^{2} i b+3 a(i b)^{2}+(i b)^{3}=64\) and equate real, imaginary part so \(a^{3}-3 a b^{2}=64\) and \(3 a^{2} b-b^{3}=0\) \\
Solve to obtain \(a=-2, b=\sqrt{12}\) \\
Alternative ii
\[
(x-4)(x-a-i b)(x-a+i b)=0 \quad \text { expand and compare coefficients }
\] \\
two of the equations \(\quad-2 a-4=0,8 a+a^{2}+b^{2}=0,4\left(a^{2}+b^{2}\right)=64\) \\
Solve to obtain \(a=-2, b=\sqrt{12}\) \\
(c)Allow vectors, line segments or points in Argand diagram. \\
Extra points plotted in part (c) - lose last B mark \\
Part (c) answers are independent of part (b)
\end{tabular}} \& \multicolumn{2}{|l|}{\multirow{11}{*}{M1
A1
M1A1

M1
A1
M1A1}}

\hline \& \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 46. \& \begin{tabular}{l}
(a) \(z=\frac{(a+2 \mathrm{i})(a+\mathrm{i})}{(a-\mathrm{i})(a+\mathrm{i})}=\frac{a^{2}+3 a \mathrm{i}-2}{a^{2}+1}\) \\
\(\frac{a^{2}-2}{a^{2}+1}=\frac{1}{2}, \quad 2 a^{2}-4=a^{2}+1 \quad a=\sqrt{5} \quad\) (presence of \(-\sqrt{5}\) also is A0) \\
(b) Evaluating their " \(\frac{3 a}{a^{2}+1}\) ", or " \(3 a\) " (\(\frac{\sqrt{5}}{2}\) or \(\left.3 \sqrt{5}\right)\) \\
(ft errors in part \(a\)) \\
\(\tan \theta=\frac{3 a}{a^{2}-2}\left(=\frac{3 \sqrt{5}}{3}\right), \arg z=1.15 \quad\) (accept answers which round to 1.15)
\end{tabular} \& \begin{tabular}{l}
M1 A1 \\
M1, A1 \\
B1ft \\
M1, A1
\end{tabular} \& (4)

(3)
7

\hline \& | (b) B mark is treated here as a method mark |
| :--- |
| The M1 is for $\tan (\operatorname{argz})=$ Imaginary part / real part answer in degrees is A0 |
| Alternative method: |
| (a) $\left(\frac{1}{2}+\mathrm{i} y\right)(a-\mathrm{i})=a+2 \mathrm{i} \Rightarrow \frac{1}{2} a+y=a$ and $a y-\frac{1}{2}=2$ $y=\frac{1}{2} a$ and $a y=\frac{5}{2} \Rightarrow \frac{1}{2} a^{2}=\frac{5}{2} \Rightarrow a=\sqrt{5}$ |
| (b) |
| (May be seen in part (a)) $\tan \theta=\sqrt{5} \quad \arg z=1.15$ |
| Further Alternative method in (b) |
| Use $\arg (a+2 \mathrm{i})-\arg (a-\mathrm{i})$ $=0.7297-(-0.4205)=1.15$ | \& \[

$$
\begin{aligned}
& \text { M1 A1 } \\
& \text { M1 A1 } \\
& \text { B1ft } \\
& \text { M1 A1 } \\
& \text { B1 } \\
& \text { M1A1 }
\end{aligned}
$$
\] \& (4)

(3)
(3)

\hline
\end{tabular}

[FP1 June 2008 Qn 3]

47. (a)	$\begin{aligned} \left(\begin{array}{cc} k & -2 \\ 1-k & k \end{array}\right)\binom{t}{2 t} & =\binom{t(k-4)}{t(1+k)} \\ t(1+k) & =2 t(k-4) \\ k & =9 \end{aligned}$	M1 dM1 A1 (3)
(b)	$\begin{aligned} \operatorname{det} \mathbf{A} & =k^{2}+2(1-k) \\ & =(k-1)^{2}+1, \text { which is always positive } \\ & \mathbf{A} \text { is non-singular } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { Alcso (3) } \\ & \hline \end{aligned}$
(c)	$\mathbf{A}^{-1}=\frac{1}{k^{2}-2 k+2}\left(\begin{array}{cc}k & 2 \\ k-1 & k\end{array}\right)$	M1 A1 (2)
(d)	$\begin{aligned} & k=3, \quad \mathbf{A}^{-1}=\frac{1}{5}\left(\begin{array}{ll} 3 & 2 \\ 2 & 3 \end{array}\right) \\ & \mathbf{A p}=\mathbf{q} \Rightarrow \mathbf{p}=\mathbf{A}^{-1} \mathbf{q} \quad \mathbf{p}=\frac{1}{5}\left(\begin{array}{ll} 3 & 2 \\ 2 & 3 \end{array}\right)\binom{4}{-3}=\frac{1}{5}\binom{6}{-1} \end{aligned}$ Alt. $\left(\begin{array}{cc}3 & -2 \\ -2 & 3\end{array}\right)\binom{x}{y}=\binom{4}{-3} \Rightarrow 3 x-2 y=4,-2 x+3 y=-3$ B1 M1 A1 for solving two sim. eqns. in x and y to give $x=1.2, y=-0.2$ (o.e.)	B1 M1 A1 (3) (11)
	(b) $2^{\text {nd }} \mathrm{M}$: Alternative is to use quadratic formula on the quadratic equation, or to use the discriminant, with a comment about 'no real roots', or 'can't equal zero', or a comment about the condition for singularity. $\left(x=\frac{2 \pm \sqrt{4-8}}{2}\right)$ Al Conclusion. (c) M: Need $\frac{1}{\text { their } \operatorname{det} \mathrm{A}}, k$'s unchanged and attempt to change sign for either -2 (leaving as top right) or $1-k$ (leaving as bottom left). (d) M: Requires an attempt to multiply the matrices.	

[FP3 June 2008 Qn 5]

