FPI Moch Paper

1) $R=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right) S=\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)$
a) $R^{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
b) $R S=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)$
2)

$$
\begin{aligned}
& y^{2}=4 a x \\
& y^{2}=-12 x
\end{aligned}
$$

3)

$$
\begin{aligned}
z=1+i \sqrt{3} \quad z^{2} & =(1+i \sqrt{3})(1+i \sqrt{3}) \\
& =1+3 i^{2}+2 \sqrt{3} i \\
& =-2+i 2 \sqrt{3}
\end{aligned} \begin{aligned}
& z+z^{2}= 1+i \sqrt{3} \\
& \frac{-2+i 2 \sqrt{3}}{-1+i 3 \sqrt{3}}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \frac{2}{3-2}=\frac{1+i \sqrt{3}}{3-1-i \sqrt{3}}=\frac{1+i \sqrt{3}}{2-i \sqrt{3} \times(2+i \sqrt{3})} \\
& =\frac{\left.2+3 i^{2}+i 3 \sqrt{3}\right)}{4-3 i^{2}}=\frac{-1+i 3 \sqrt{3}}{7}=-\frac{1}{7}+i \frac{3 \sqrt{3}}{7}
\end{aligned}
$$

$$
\begin{array}{ll}
\text { 4) } \begin{array}{ll}
f(x)=x^{3}-4 x^{2}+5 x-3 & f(2)=-1 \quad f(3)=3 \\
(2,-1) \rightarrow(3,3) & y+1=4(x-2) \\
(2,-1) & y=0 \Rightarrow \frac{1}{4}=x-2 \Rightarrow x=2 \frac{1}{4}
\end{array}
\end{array}
$$

b)

$$
\begin{aligned}
& f^{\prime}(x)=3 x^{2}-8 x+5 \\
& x_{0}=2.5 \quad x_{1}=2.5-\frac{f(2.5)}{f^{\prime}(2.5)}=\frac{37}{15}=2.47 \quad\left(2 d_{p}\right)
\end{aligned}
$$

5)

$$
\begin{aligned}
& x=\left(\begin{array}{cc}
a & 2 b \\
-a & 3 b
\end{array}\right) \quad \operatorname{det} x=3 a b+2 a b=5 a b \\
& x^{-1}=\frac{1}{5 a b}\left(\begin{array}{cc}
3 b & -2 b \\
a & a
\end{array}\right)
\end{aligned}
$$

b)

$$
\begin{aligned}
& z x=y \Rightarrow 2 x x^{-1}=y x^{-1} \Rightarrow z=y x^{-1} \\
& z=\left(\begin{array}{cc}
3 a & b \\
a & 2 b
\end{array}\right)\left(\begin{array}{cc}
3 b & -2 b \\
a & a
\end{array}\right) \frac{1}{5 a b}=\frac{1}{5 a b}\left(\begin{array}{cc}
9 a b+a b & -6 a b+a b \\
3 a b+2 a b & -2 a b+2 a b
\end{array}\right) \\
& Z=\frac{1}{5 a b}\left(\begin{array}{cc}
10 a b & -5 a b \\
5 a b & 0
\end{array}\right) \Rightarrow Z=\left(\begin{array}{cc}
2 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

6)

$$
\begin{aligned}
& \sum_{1}^{n} r\left(2 r^{2}-6\right)=2 \sum_{1}^{n} r^{3}-6 \sum_{1}^{n} r=2\left(\frac{1}{4} n^{2}(n+1)^{2}\right)-6\left(\frac{1}{2} n(n+1)\right) \\
&=\frac{1}{2} n(n+1)[n(n+1)-6]=\frac{1}{2} n(n+1)\left(n^{2}+n-6\right) \\
&=\frac{1}{2} n(n+1)(n+3)(n-2)
\end{aligned}
$$

b) $\sum_{10}^{50} r\left(2 r^{2}-6\right)=\frac{1}{2}(50)(51)(53)(48)-\frac{1}{2}(9)(10)(12)(7)=3239820$
7)

$$
\begin{aligned}
& z^{2}+10 z+169=0 \Rightarrow(z+5)^{2}-25=-169 \Rightarrow(z+5)^{2}=-144 \\
& \Rightarrow z=-5 \pm \sqrt{-144} \Rightarrow z_{1}=-5+12 i, z_{2}=-5-12 i
\end{aligned}
$$

b) $\left|z_{1}\right|=\left|z_{2}\right|=\sqrt{5^{2}+12^{2}}=13$
c) $z_{1}(-5,12)$
c)

$$
\begin{array}{ll}
& \\
& \begin{aligned}
\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{12}{-5} \Rightarrow \theta=\tan ^{-1}\left(\frac{12}{-5}\right) \\
\theta=-1.176
\end{aligned} \\
z_{2}(-5,-12) & \arg \left(z_{1}\right)=1.97+\pi \\
& \Rightarrow \arg \left(z_{2}\right)=-1.97
\end{array}
$$

$d\left|\left|z_{1}-z_{2}\right|=|-5+12 i-(-5-12 i)|=|24 i|=24\right.$
8) $x y=c^{2} \quad\left(3 t, \frac{3}{t}\right) \Rightarrow 3 t\left(\frac{3}{t}\right)=c^{2} \Rightarrow 9=c^{2} \quad c= \pm 3$
b)

$$
\begin{aligned}
& x y=9 \quad y=9 x^{-1} \Rightarrow \frac{d y}{d x}=-9 x^{-2}=\frac{-9}{x^{2}}=\frac{-9}{9 t^{2}} \\
& m t=\frac{-1}{t^{2}} \Rightarrow m_{n}=t^{2} \quad y-\frac{3}{t}=t^{2}(x-3 t) \\
&
\end{aligned}
$$

c)

$$
\begin{aligned}
& H(6,1-5)=\left(3 t, \frac{3}{t}\right)=t=2 \quad \Rightarrow \quad y=4 x+\left(\frac{3}{2}-3(2)^{3}\right) \\
& \\
& y=4 x-\frac{45}{2} \\
& x y=9 \Rightarrow x\left(4 x-\frac{45}{2}\right)=9 \Rightarrow 4 x^{2}-\frac{45}{2} x-9=0 \\
& \Rightarrow 8 x^{2}-45 x-18=0 \quad(x-6)(8 x+3)=0 \\
& x=6 \sqrt{2} \quad x=-\frac{3}{8} \quad y=-\frac{12}{8}-\frac{45}{2}=-24 \quad Q\left(-\frac{3}{81},-24\right)
\end{aligned}
$$

a)

$$
\left.\begin{array}{l}
u_{1}=3 \quad u_{n+1}=3 u_{n}+4 \quad \text { prove } u_{n}=3^{n}+2\left(3^{n-1}-1\right) \\
n=1 \quad u_{1}=3 \quad u_{1}=3^{1}+2\left(3^{1-1}-1\right)=3^{\prime}=3 \\
n=2 \quad u_{2}=3(3)+4=13 \quad u_{2}=3^{2}+2\left(3^{2-1}-1\right)=9+4=13 \checkmark \\
n=k+1 \quad u_{n+1}
\end{array}=3 u_{n}+4=3\left(3^{u}+2\left(3^{n-1}-1\right)\right)+4\right] \text { } \begin{aligned}
& \Rightarrow u_{u+1}=3^{u+1}+2\left[3\left(3^{u-1}-1\right)\right]+4 \\
& \Rightarrow u_{u+1}=3^{u+1}+2\left(3^{u}-3\right)+2 \times 2 \\
& \Rightarrow u_{u+1}=3^{u+1}+2\left(3^{u-3+2)}\right. \\
& \therefore u_{u+1}=3^{u+1}+2\left(3^{u}-1\right)
\end{aligned}
$$

true for $n=1, n=2$; true for $n=u+1$, if true for $n=u$ \therefore by induction, true for all $n \in \mathbb{Z}^{+}$.
b) $A=\left(\begin{array}{ll}4 & 0 \\ 9 & 1\end{array}\right)$ prove $A^{n}=\left(\begin{array}{cc}4^{n} & 0 \\ 3\left(4^{n}-1\right) & 1\end{array}\right)$

$$
\begin{aligned}
& n=1 \quad A^{\prime}=A=\left(\begin{array}{ll}
4^{1} & 0 \\
3\left(4^{\prime}-1\right) & 1
\end{array}\right)=\left(\begin{array}{ll}
4 & 0 \\
9 & 1
\end{array}\right) \quad / \\
& n=u+1 \Rightarrow A^{u+1}=\left(\begin{array}{ll}
4^{u+1} & 0 \\
3\left(4^{u+1}-1\right) & 1
\end{array}\right) \\
& A^{n+1}=A A^{n}=\left(\begin{array}{ll}
4 & 0 \\
9 & 1
\end{array}\right)\left(\begin{array}{ll}
4^{u} & 0 \\
3\left(4^{u}-1\right) & 1
\end{array}\right)=\left(\begin{array}{ll}
4 \times 4^{u} & 0 \\
9 \times 4^{u}+3\left(4^{n-1}\right) & 1
\end{array}\right) \\
& 9\left(4^{u}\right)+3\left(4^{u}-1\right)=12\left(4^{u}\right)-3=3 \times 4\left(4^{u}\right)-3=3\left(4^{n+1}-1\right)
\end{aligned}
$$

true for $n=1$, true for $n=u+1$ if time for $n=l$
\therefore by induction true for all $n \in \mathbb{I}^{+}$
(ii)

$$
\begin{aligned}
& A^{-1}\left(\begin{array}{cc}
4^{-1} & 0 \\
3\left(4^{-1}-1\right) & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
3\left(\frac{1}{4}-1\right) & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{4} & 0 \\
-\frac{9}{4} & 1
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
-9 & 4
\end{array}\right) \\
& \operatorname{det} A=4-0=4 \quad A^{-1}=\frac{1}{\operatorname{det} A}\left(\begin{array}{cc}
1 & 0 \\
-9 & 4
\end{array}\right)=\frac{1}{4}\left(\begin{array}{cc}
1 & 0 \\
-9 & 4
\end{array}\right)
\end{aligned}
$$

\therefore it is also valid for $n=-1$

