June 2009
6667 Further Pure Mathematics FP1 (new)
Mark Scheme

Questic Numbe	NChama	Mar	ks
Q1 (a			
	z, ↑ , *z, *	B1	(1)
(t) $ z_1 = \sqrt{2^2 + (-1)^2} = \sqrt{5}$ (or awrt 2.24)	M1 A1	(2)
(($\alpha = \arctan\left(\frac{1}{2}\right) \text{ or } \arctan\left(-\frac{1}{2}\right)$	M1	
	arg $z_1 = -0.46$ or 5.82 (awrt) (answer in degrees is A0 unless followed by correct conversion)	A1	(2)
(0	$\frac{-8+9i}{2-i} \times \frac{2+i}{2+i}$	M1	
	$=\frac{-16-8i+18i-9}{5} = -5+2i$ i.e. $a = -5$ and $b = 2$ or $-\frac{2}{5}a$	A1 A1f	ît (3) [8]
	Alternative method to part (d)		
	-8+9i = (2-i)(a+bi), and so $2a+b = -8$ and $2b-a = 9$ and attempt to solve as far	M1	
	as equation in one variable		
	So $a = -5$ and $b = 2$	A1 A10	ao
Notes	(a) B1 needs both complex numbers as either points or vectors, in correct quadrants		
	and with 'reasonably correct' relative scale		
	(b) M1 Attempt at Pythagoras to find modulus of either complex number		
	A1 condone correct answer even if negative sign not seen in (-1) term		
	A0 for $\pm\sqrt{5}$		
	(c) $\arctan 2$ is M0 unless followed by $\frac{3\pi}{2} + \arctan 2$ or $\frac{\pi}{2} - \arctan 2$ Need to be clear		
	that $argz = -0.46$ or 5.82 for A1		
	(d) M1 Multiply numerator and denominator by conjugate of their denominator		
	A1 for -5 and A1 for 2i (should be simplified)		
	Alternative scheme for (d) Allow slips in working for first M1		

Question Number	Scheme	Marks
Q2 (a)	$r(r+1)(r+3) = r^3 + 4r^2 + 3r$, so use $\sum r^3 + 4\sum r^2 + 3\sum r$	M1
	$=\frac{1}{4}n^{2}(n+1)^{2}+4\left(\frac{1}{6}n(n+1)(2n+1)\right)+3\left(\frac{1}{2}n(n+1)\right)$	A1 A1
	$=\frac{1}{12}n(n+1)\{3n(n+1)+8(2n+1)+18\} \text{ or } =\frac{1}{12}n\{3n^3+22n^2+45n+26\}$	
	or = $=\frac{1}{12}(n+1)\{3n^3+19n^2+26n\}$	M1 A1
(b)	$=\frac{1}{12}n(n+1)\left\{3n^{2}+19n+26\right\}=\frac{1}{12}n(n+1)(n+2)(3n+13) \qquad (k=13)$	M1 A1cao (7)
	$\sum_{21}^{40} = \sum_{1}^{40} - \sum_{1}^{20}$	M1
	$=\frac{1}{12}(40 \times 41 \times 42 \times 133) - \frac{1}{12}(20 \times 21 \times 22 \times 73) = 763420 - 56210 = 707210$	A1 cao (2) [9]
Notes	(a) M1 expand and must start to use at least one standard formula	
	First 2 A marks: One wrong term A1 A0, two wrong terms A0 A0.	
	M1: Take out factor $kn(n + 1)$ or kn or $k(n + 1)$ directly or from quartic	
	A1: See scheme (cubics must be simplified)	
	M1: Complete method including a quadratic factor and attempt to factorise it	
	A1 Completely correct work.	
	Just gives $k = 13$, no working is 0 marks for the question.	
	Alternative method	
	Expands $(n + 1)(n + 2)(3n + k)$ and confirms that it equals	
	$\{3n^3 + 22n^2 + 45n + 26\}$ together with statement $k = 13$ can earn last M1A1	
	The previous M1A1 can be implied if they are using a quartic.	
	(b) M 1 is for substituting 40 and 20 into their answer to (a) and subtracting.(NB not 40 and 21)Adding terms is M0A0 as the question said "Hence"	

Question Number	Scheme	Marks
Q3 (a)	$x^2 + 4 = 0 \implies x = ki, x = \pm 2i$	M1, A1
	Solving 3-term quadratic	M1
	$x = \frac{-8 \pm \sqrt{64 - 100}}{2} = -4 + 3i \text{ and } -4 - 3i$	A1 A1ft
(b)	2i + (-2i) + (-4 + 3i) + (-4 - 3i) = -8	(5) M1 A1cso (2) [7]
	Alternative method : Expands $f(x)$ as quartic and chooses \pm coefficient of x^3	M1
	-8	A1 cso
Notes	 (a) Just x = 2i is M1 A0 x = ±2 is M0A0 M1 for solving quadratic follows usual conventions, then A1 for a correct root (simplified as here) and A1ft for conjugate of first answer. Accept correct answers with no working here. Do not give accuracy marks for factors unless followed by roots. (b) M1 for adding four roots of which at least two are complex conjugates and getting a real answer. A1 for -8 following correct roots or the alternative method. If any incorrect working in part (a) this A mark will be A0 	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	M1 A1 B1 M1 A A1ca M1 A1 A1 A1 A1 M1	
Change of sign \Rightarrow Root need numerical values correct (to 1 s.f.). (b) $f'(x) = 3x^2 - 2x$ $f'(2.2) = 10.12$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12}$ $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12}$ $= 2.219$ (c) $\frac{\alpha - 2.2}{\pm '0.192'} = \frac{2.3 - \alpha}{\pm '0.877'}$ (or equivalent such as $\frac{k}{\pm '0.192'} = \frac{0.1 - k}{\pm '0.877'}$.) $\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$ $\alpha(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt)	A1 B1 M1 A A1ca M1 A1	1ft o (5)
(b) $f'(x) = 3x^2 - 2x$ f'(2.2) = 10.12 $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12}$ = 2.219 (c) $\frac{\alpha - 2.2}{\pm '0.192'} = \frac{2.3 - \alpha}{\pm '0.877'}$ (or equivalent such as $\frac{k}{\pm '0.192'} = \frac{0.1 - k}{\pm '0.877'}$.) $\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$ or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt) Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	B1 B1 M1 A A1ca M1 A1 A1	1ft o (5)
$\begin{aligned} f'(2.2) &= 10.12 \\ x_1 &= x_0 - \frac{f(x_0)}{f'(x_0)} = 2.2 - \frac{-0.192}{10.12} \\ &= 2.219 \\ (c) & \frac{\alpha - 2.2}{\pm' 0.192'} = \frac{2.3 - \alpha}{\pm' 0.877'} \text{(or equivalent such as } \frac{k}{\pm' 0.192'} = \frac{0.1 - k}{\pm' 0.877'} \text{ .)} \\ & \alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877 \\ \text{or } k(0.877 + 0.192) = 0.1 \times 0.192, \text{ where } \alpha = 2.2 + k \\ \text{so } \alpha \approx 2.218 (2.21796) \qquad \text{(Allow awrt)} \end{aligned}$	B1 M1 A A1ca M1 A1 A1	0 (5) (3)
(c) $x_{1} = x_{0} - \frac{f(x_{0})}{f'(x_{0})} = 2.2 - \frac{-0.192}{10.12}$ $= 2.219$ (c) $\frac{\alpha - 2.2}{\pm '0.192'} = \frac{2.3 - \alpha}{\pm '0.877'} \text{(or equivalent such as } \frac{k}{\pm '0.192'} = \frac{0.1 - k}{\pm '0.877'} \text{.)}$ $\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$ or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt) Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	M1 A A1ca M1 A1 A1	0 (5) (3)
(c) = 2.219 (c) $\frac{\alpha - 2.2}{\pm' 0.192'} = \frac{2.3 - \alpha}{\pm' 0.877'}$ (or equivalent such as $\frac{k}{\pm' 0.192'} = \frac{0.1 - k}{\pm' 0.877'}$.) $\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$ or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt) Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	A1ca M1 A1 A1	0 (5) (3)
(c) = 2.219 (c) $\frac{\alpha - 2.2}{\pm' 0.192'} = \frac{2.3 - \alpha}{\pm' 0.877'}$ (or equivalent such as $\frac{k}{\pm' 0.192'} = \frac{0.1 - k}{\pm' 0.877'}$.) $\alpha(0.877 + 0.192) = 2.3 \times 0.192 + 2.2 \times 0.877$ or $k(0.877 + 0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt) Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	M1 A1 A1	(5)
$\frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{(or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.192'} = \frac{1}{\pm '0.877'} \text{ (or equivalent such as } \frac{1}{\pm '0.8$	A1 A1	(3)
or $k(0.877+0.192) = 0.1 \times 0.192$, where $\alpha = 2.2 + k$ so $\alpha \approx 2.218$ (2.21796) (Allow awrt) Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$	A1	
Alternative Uses equation of line joining (2.2, -0.192) to (2.3, 0.877) and substitutes $y = 0$		
Uses equation of fine joining $(2.2, -0.192)$ to $(2.3, 0.877)$ and substitutes $y = 0$	M1	
$y + 0.192 = \frac{0.192 + 0.877}{(x - 2.2)}$ and $y = 0$ so $\alpha \approx 2.218$ or awrt as before		
$1 \qquad 0 \qquad $	A1, A	.1
(NB Gradient = 10.69)		
Notes (a) M1 for attempt at $f(2.2)$ and $f(2.3)$		
A1 need indication that there is a change of sign – (could be $-0.19 < 0, 0.88 > 0$) and		
need conclusion. (These marks may be awarded in other parts of the question if not done in part (a)))	
(b) B1 for seeing correct derivative (but may be implied by later correct work)		
B1 for seeing 10.12 or this may be implied by later work		
M1 Attempt Newton-Raphson with their values		
A1ft may be implied by the following answer (but does not require an evaluation)		
Final A1 must 2.219 exactly as shown. So answer of 2.21897 would get 4/5		
If done twice ignore second attempt		
(c) M1 Attempt at ratio with their values of \pm f(2.2) and \pm f(2.3).		
N.B. If you see $0.192 - \alpha$ or $0.877 - \alpha$ in the fraction then this is M0		
A1 correct linear expression and definition of variable if not α (may be implied by		
final correct answer- does not need 3 dp accuracy)		
A1 for awrt 2.218		
If done twice ignore second attempt		

Question Number	Scheme	Marks
Q5 (a)	$\mathbf{R}^2 = \begin{pmatrix} a^2 + 2a & 2a + 2b \\ a^2 + ab & 2a + b^2 \end{pmatrix}$	M1 A1 A1 (3)
(b)	Puts their $a^2 + 2a = 15$ or their $2a + b^2 = 15$ or their $(a^2 + 2a)(2a + b^2) - (a^2 + ab)(2a + 2b) = 225$ (or to 15),	M1,
	Puts their $a^2 + ab = 0$ or their $2a + 2b = 0$	M1
	Solve to find either <i>a</i> or <i>b</i>	M1
	a = 3, b = -3	A1, A1 (5) [8]
Alternative for (b)	Uses $\mathbf{R}^{2} \times \text{column vector} = 15 \times \text{column vector}$, and equates rows to give two equations in <i>a</i> and <i>b</i> only Solves to find either <i>a</i> or <i>b</i> as above method	M1, M1 M1 A1 A1
Notes	(a) 1 term correct: M1 A0 A0 2 or 3 terms correct: M1 A1 A0	
	 (b) M1 M1 as described in scheme (In the alternative scheme column vector can be general or specific for first M1 but must be specific for 2nd M1) M1 requires solving equations to find <i>a</i> and/or <i>b</i> (though checking that correct answer satisfies the equations will earn this mark) This mark can be given independently of the first two method marks. So solving M² = 15M for example gives M0M0M1A0A0 in part (b) Also putting leading diagonal = 0 and other diagonal = 15 is M0M0M1A0A0 (No possible solutions as <i>a</i> >0) A1 A1 for correct answers only Any Extra answers given, e.g. <i>a</i> = -5 and <i>b</i> = 5 or wrong answers – deduct last A1 awarded So the two sets of answers would be A1 A0 Just the answer . <i>a</i> = -5 and <i>b</i> = 5 is A0 A0 Stopping at two values for <i>a</i> or for <i>b</i> – no attempt at other is A0A0 Answer with no working at all is 0 marks 	

PMT

Question Number	Scheme	Marks
Q6 (a)	$y^2 = (8t)^2 = 64t^2$ and $16x = 16 \times 4t^2 = 64t^2$	D1
	Or identifies that $a = 4$ and uses general coordinates $(at^2, 2at)$	B1 (1)
(b)	(4, 0)	B1
		(1)
(C)	$y = 4x^{\frac{1}{2}}$ $\frac{dy}{dx} = 2x^{-\frac{1}{2}}$	B1
	Replaces x by $4t^2$ to give gradient $[2(4t^2)^{-\frac{1}{2}} = \frac{2}{2t} = \frac{1}{t}]$	M1,
	Uses Gradient of normal is $-\frac{1}{\text{gradient of curve}}$ [-t]	M1
	$y - 8t = -t(x - 4t^2) \implies y + tx = 8t + 4t^3 $ (*)	M1 A1cso (5)
(d)	At N, $y = 0$, so $x = 8 + 4t^2$ or $\frac{8t + 4t^3}{4}$	D1
	At N, $y = 0$, so $x = 8 + 4t$ or $\frac{1}{t}$	B1
	Base $SN = (8 + 4t^2) - 4 \ (= 4 + 4t^2)$	B1ft
	Area of $\triangle PSN = \frac{1}{2}(4+4t^2)(8t) = 16t(1+t^2)$ or $16t+16t^3$ for $t \ge 0$	M1 A1
	{Also Area of $\Delta PSN = \frac{1}{2}(4+4t^2)(-8t) = -16t(1+t^2)$ for $t < 0$ } this is not required	(4) [11]
	<u>Alternatives:</u>	
	(c) $\frac{dx}{dt} = 8t$ and $\frac{dy}{dt} = 8$ B1	
	$\frac{dy}{dx} = \frac{dy}{dt} \div \frac{dx}{dt} = \frac{1}{t}$ M1, then as in main scheme.	
	(c) $2y\frac{dy}{dx} = 16$ B1 (or uses $x = \frac{y^2}{8}$ to give $\frac{dx}{dy} = \frac{2y}{8}$)	
	$\frac{dy}{dx} = \frac{8}{y} = \frac{8}{8t} = \frac{1}{t}$ M1, then as in main scheme.	
Notes	(c) Second M1 – need not be function of t	
	Third M1 requires linear equation (not fraction) and should include the parameter t but could be given for equation of tangent (So tangent equation loses 2 marks only	
	and could gain B1M1M0M1A0)	
	(d) Second B1 does not require simplification and may be a constant rather than an expression in <i>t</i> .	
	M1 needs correct area of triangle formula using $\frac{1}{2}$ 'their SN' $\times 8t$	
	Or may use two triangles in which case need $(4t^2 - 4)$ and $(4t^2 + 8 - 4t^2)$ for B1ft	
	Then Area of $\triangle PSN = \frac{1}{2}(4t^2 - 4)(8t) + \frac{1}{2}(4t^2 + 8 - 4t^2)(8t) = 16t(1 + t^2)$ or $16t + 16t^3$	
L		

Scheme	Marks
Use $4a - (-2 \times -1) = 0 \implies a_{,} = \frac{1}{2}$	M1, A1 (2)
Determinant: $(3 \times 4) - (-2 \times -1) = 10$ (Δ)	M1
$\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$	M1 A1cso (3)
$\frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k-6 \\ 3k+12 \end{pmatrix}, = \frac{1}{10} \begin{pmatrix} 4(k-6)+2(3k+12) \\ (k-6)+3(3k+12) \end{pmatrix}$	M1, A1ft
$\binom{k}{k+3}$ Lies on $y = x+3$	A1 (3) [8]
$\frac{\text{Alternatives:}}{(c)} \begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x+3 \end{pmatrix}, = \begin{pmatrix} 3x-2(x+3) \\ -x+4(x+3) \end{pmatrix},$ $= \begin{pmatrix} x-6 \\ -k+12 \end{pmatrix}$ which was of the form $(k-6, 3k+12)$	M1, A1,
Or $\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$, $= \begin{pmatrix} 3x - 2y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix}$, and solves simultaneous equations	M1
10x - 10y = -30 or equivalent.	A1
Completely correct work (to $x = k$ and $y = k + 3$), and conclusion lies on $y = x + 3$	A1
 (a) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.) Second M1 is for correctly treating the 2 by 2 matrix, ie for ⁴ 2 1 3 Watch out for determinant (3 + 4) - (-1 + -2) = 10 - M0 then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector A1 correct work (ft wrong determinant) A1 for conclusion 	
	Use $4a - (-2 \times -1) = 0 \implies a_{1} = \frac{1}{2}$ Determinant: $(3 \times 4) - (-2 \times -1) = 10$ (Δ) $\mathbf{B}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k - 6 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix}, = \frac{1}{10} \begin{pmatrix} 4(k - 6) + 2(3k + 12) \\ (k - 6) + 3(3k + 12) \end{pmatrix}$ $\begin{pmatrix} k \\ k + 3 \end{pmatrix}$ Lies on $y = x + 3$ Alternatives: (c) $\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ x + 3 \end{pmatrix}, = \begin{pmatrix} 3x - 2(x + 3) \\ -x + 4(x + 3) \end{pmatrix},$ $= \begin{pmatrix} x - 6 \\ 3x + 12 \end{pmatrix}$, which was of the form $(k - 6, 3k + 12)$ Or $\begin{pmatrix} 3 & -2 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}, = \begin{pmatrix} 3x - 2y \\ -x + 4y \end{pmatrix} = \begin{pmatrix} k - 6 \\ 3k + 12 \end{pmatrix},$ and solves simultaneous equations Both equations correct and eliminate one letter to get $x = k$ or $y = k + 3$ or 10x - 10y = -30 or equivalent. Completely correct work (to $x = k$ and $y = k + 3$), and conclusion lies on $y = x + 3$ (a) Allow sign slips for first M1 (b) Allow sign slips for first M1 (b) Allow sign slip for determinant for first M1 (This mark may be awarded for 1/10 appearing in inverse matrix.) Second M1 is for correctly treating the 2 by 2 matrix, ie for $\begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix}$ Watch out for determinant (3 + 4) - (-1 + -2) = 10 - M0 then final answer is A0 (c) M1 for multiplying matrix by appropriate column vector Al correct work (ft wrong determinant)

Question Number	Scheme	Marks
Q8 (a)	f(1) = 5 + 8 + 3 = 16, (which is divisible by 4). (:: True for $n = 1$).	B1
	Using the formula to write down $f(k + 1)$, $f(k + 1) = 5^{k+1} + 8(k + 1) + 3$	M1 A1
	$f(k+1) - f(k) = 5^{k+1} + 8(k+1) + 3 - 5^k - 8k - 3$ = 5(5 ^k) + 8k + 8 + 3 - 5 ^k - 8k - 3 = 4(5 ^k) + 8	M1 A1
	$f(k+1) = 4(5^{k}+2) + f(k)$, which is divisible by 4	A1ft
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1cso (7)
(b)	For $n = 1$, $\binom{2n+1}{2n} = \binom{3}{2} - \binom{2}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} = \binom{3}{2} - \binom{2}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2} = \binom{3}{2} + \binom{3}{2}$	B1
	$ \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix} $	M1 A1 A1
	$= \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$	M1 A1
	\therefore True for $n = k + 1$ if true for $n = k$. True for $n = 1$, \therefore true for all n	A1 cso (7) [14]
(a) Alternative	$f(k+1) = 5(5^k) + 8k + 8 + 3 $ M1	
for 2 nd M:	$= 4(5^{k}) + 8 + (5^{k} + 8k + 3) $ A1 or $= 5(5^{k} + 8k + 3) - 32k - 4$	
	$= 4(5k + 2) + f(k), \qquad \text{or} = 5f(k) - 4(8k+1)$ which is divisible by 4 A1 (or similar methods)	
Notes	 (a) B1 Correct values of 16 or 4 for n = 1 or for n = 0 (Accept "is a multiple of") M1 Using the formula to write down f(k + 1) A1 Correct expression of f(k+1) (or for M1 Start method to connect f(k+1) with f(k) as shown A1 correct working toward multiples of 4, A1 ft result including f(k + 1) as subject, A10 conclusion 	f(<i>n</i> +1)
	(b) B1 correct statement for $n = 1$ or $n = 0$ First M1: Set up product of two appropriate matrices – product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips M1: States in terms of $(k + 1)$	l
Part (b)	A1 Correct statement A1 for induction conclusion May write $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix}$. Then may or may not complete the proof	
Alternative	This can be awarded the second M (substituting $k + 1$) and following A (simplification). The first three marks are awarded as before. Concluding that they have reached the sar therefore a result will then be part of final A1 cso but also need other statements as in the method.	in part (b). ne matrix and