J anuary 2009
 6667 Further Pure Mathematics FP1 (new)
 Mark Scheme

Question Number	Scheme	Marks
$\mathbf{1}$	$x-3$ is a factor $\mathrm{f}(x)=(x-3)\left(2 x^{2}-2 x+1\right)$ Attempt to solve quadratic i.e. $x=\frac{2 \pm \sqrt{4-8}}{4}$ $x=\frac{1 \pm \mathrm{i}}{2}$	M1
		M1 A1

Notes:
First and last terms in second bracket required for first M1
Use of correct quadratic formula for their equation for second M1

Question Number	Scheme	Marks
2 (a)	$\begin{aligned} & 6 \sum r^{2}+4 \sum r-\sum 1=6 \frac{n}{6}(n+1)(2 n+1)+4 \frac{n}{2}(n+1),-n \\ & =\frac{n}{6}\left(12 n^{2}+18 n+6+12 n+12-6\right) \text { or } n(n+1)(2 n+1)+(2 n+1) n \\ & =\frac{n}{6}\left(12 n^{2}+30 n+12\right)=n\left(2 n^{2}+5 n+2\right)=n(n+2)(2 n+1) \quad * \\ & \begin{array}{c} \sum_{r=1}^{20}\left(6 r^{2}+4 r-1\right)-\sum_{r=1}^{10}\left(6 r^{2}+4 r-1\right)=20 \times 22 \times 41-10 \times 12 \times 21 \\ =15520 \end{array} \end{aligned}$	M1 A1, B1
		M1
		(5)
		M1
		A1
		(2)

Notes:
(a) First M1 for first 2 terms, B1 for $-n$

Second M1 for attempt to expand and gather terms.
Final A1 for correct solution only
(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1

Question Number	Scheme	Marks
3 (a)	$x y=25=5^{2}$ or $c= \pm 5$	B1 (1)
(b)	A has co-ords (5,5) and B has co-ords (25,1)	B1
	Mid point is at (15,3)	M1A1
		$\begin{gathered} (3) \\ {[4]} \end{gathered}$

Notes:
(a) $x y=25$ only B1, $c^{2}=25$ only B1, $c=5$ only B1
(b) Both coordinates required for B1

Add theirs and divide by 2 on both for M1

Question Number	Scheme	Marks
4	When $n=1$, LHS $=\frac{1}{1 \times 2}=\frac{1}{2}$, RHS $=\frac{1}{1+1}=\frac{1}{2}$. So LHS $=$ RHS and result true for $n=1$ Assume true for $n=k ; \sum_{r=1}^{k} \frac{1}{r(r+1)}=\frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$ $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}$ and so result is true for $n=k+1$ (and by induction true for $n \in \mathbf{Z}^{+}$)	M1 M1 A1 B1 [5]

Notes:
Evaluate both sides for first B1
Final two terms on second line for first M1
Attempt to find common denominator for second M1.
Second M1 dependent upon first.
$\frac{k+1}{k+2}$ for A1
'Assume true for $n=k$ 'and 'so result true for $n=k+1$ ' and correct solution for final B1

Notes:

(a) awrt 0.3 and -0.3 and indication of sign change for first A1
(b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1
(c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect

Evidence of Newton-Raphson for M1
Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme	Marks
6	At $n=1, u_{n}=5 \times 6^{0}+1=6$ and so result true for $n=1$ Assume true for $n=k ; u_{k}=5 \times 6^{k-1}+1$, and so $u_{k+1}=6\left(5 \times 6^{k-1}+1\right)-5$ $\therefore u_{k+1}=5 \times 6^{k}+6-5 \quad \therefore u_{k+1}=5 \times 6^{k}+1$ and so result is true for $n=k+1$ and by induction true for $n \geq 1$	B1 M1, A1 A1 B1

Notes:
6 and so result true for $n=1$ award B1
Sub u_{k} into u_{k+1} or M1 and A1 for correct expression on right hand of line 2
Second A1 for $\therefore u_{k+1}=5 \times 6^{k}+1$
'Assume true for $n=k$ ' and 'so result is true for $n=k+1$ ' and correct solution for final B1

Question Number	Scheme	Marks
7 (a)	The determinant is $a-2$	M1
	$\mathbf{X}^{-1}=\frac{1}{a-2}\left(\begin{array}{rr} -1 & -a \\ 1 & 2 \end{array}\right)$	M1 A1 (3)
	$\mathbf{I}=\left(\begin{array}{ll} 1 & 0 \\ 0 & 1 \end{array}\right)$	B1
	Attempt to solve $2-\frac{1}{a-2}=1$, or $a-\frac{a}{a-2}=0$, or $-1+\frac{1}{a-2}=0$, or $-1+\frac{2}{a-2}=1$	M1
	To obtain $a=3$ only	A1 cso (3) [6]
	Alternatives for (b) If they use $\mathbf{X}^{\mathbf{2}}+\mathbf{I}=\mathbf{X}$ they need to identify \mathbf{I} for \mathbf{B} 1, then attempt to solve suitable equation for M1 and obtain $a=3$ for A1 If they use $\mathbf{X}^{2}+\mathbf{X}^{-1}=\mathbf{O}$, they can score the B1then marks for solving If they use $\mathbf{X}^{3}+\mathbf{I}=\mathbf{O}$ they need to identify \mathbf{I} for \mathbf{B} 1, then attempt to solve suitable equation for M1 and obtain $a=3$ for A1	

Notes:

(a) Attempt $a d-b c$ for first M1
$\frac{1}{\operatorname{det}}\left(\begin{array}{ll}-1 & -a \\ 1 & 2\end{array}\right)$ for second M1
(b) Final A1 for correct solution only

Question Number	Scheme	Marks
8 (a)	$\frac{d y}{d x}=a^{\frac{1}{2}} x^{-\frac{1}{2}} \quad \text { or } 2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}=4 a$ The gradient of the tangent is $\frac{1}{q}$	M1 A1
	The equation of the tangent is $y-2 a q=\frac{1}{q}\left(x-a q^{2}\right)$	M1
	So $y q=x+a q^{2}$	A1
(b)	R has coordinates ($0, a q$)	B1
	The line l has equation $y-a q=-q x$	M1A1 (3)
(c)	When $y=0 \quad x=a$ (so line l passes through ($a, 0$) the focus of the parabola.)	B1
(d)	Line l meets the directrix when $x=-a$: Then $y=2 a q$. So coordinates are ($-a, 2 a q$)	M1:A1 (2) [10]

Notes:

(a) $\frac{d y}{d x}=\frac{2 a}{2 a q}$ OK for M1

Use of $y=m x+c$ to find c OK for second M1
Correct solution only for final A1
(b) $-1 /$ (their gradient in part a) in equation OK for M1
(c) They must attempt $y=0$ or $x=a$ to show correct coordinates of R for B1
(d) Substitute $x=-a$ for M1.

Both coordinates correct for A1.

Notes:
(a) $\times \frac{3-2 i}{3-2 i}$ for M1
(b) Position of points not clear award B1B0
(c) Use of calculator / decimals award M1A0
(d) Final answer must be in complex form for A1
(e) Radius or diameter for M1

Question Number	Scheme	Marks
10 (a) ${ }^{(b)}$ (c) ${ }^{\text {(b) }}$ (d)	A represents an enlargement scale factor $3 \sqrt{2}$ (centre O)	M1 A1
	B represents reflection in the line $y=x$ C represents a rotation of $\frac{\pi}{4}$, i.e. 45° (anticlockwise) (about O)	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \end{array}$
	$\left(\begin{array}{rr} 3 & -3 \\ 3 & 3 \end{array}\right)$	M1 A1 (2)
	$\left(\begin{array}{rr} 3 & -3 \\ 3 & 3 \end{array}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=\left(\begin{array}{rr} -3 & 3 \\ 3 & 3 \end{array}\right)$	B1 (1)
	$\left(\begin{array}{rr} -3 & 3 \\ 3 & 3 \end{array}\right)\left(\begin{array}{ccc} 0 & -15 & 4 \\ 0 & 15 & 21 \end{array}\right)=\left(\begin{array}{ccc} 0 & 90 & 51 \\ 0 & 0 & 75 \end{array}\right) \text { so }(0,0),(90,0) \text { and }(51,75)$	M1A1A1A1 (4)
	Area of $\triangle O R^{\prime} S^{\prime}$ is $\frac{1}{2} \times 90 \times 75=3375$	B1
	Determinant of \mathbf{E} is -18 or use area scale factor of enlargement So area of \triangle ORS is $3375 \div 18=187.5$	$\begin{array}{cc} \text { M1A1 } & (3) \\ & {[14]} \end{array}$

Notes:
(a) Enlargement for M1
$3 \sqrt{2}$ for A1
(b) Answer incorrect, require $\mathbf{C D}$ for M1
(c) Answer given so require DB as shown for B1
(d) Coordinates as shown or written as $\binom{0}{0},\binom{90}{0},\binom{51}{75}$ for each A1
(e) 3375 B1

Divide by theirs for M1

