Question Number	Scheme	Marks
1		
	x - 3 is a factor	B1
	$f(x) = (x-3)(2x^2 - 2x + 1)$	M1 A1
	Attempt to solve quadratic i.e. $x = \frac{2 \pm \sqrt{4-8}}{4}$	M1
	$x = \frac{1 \pm i}{2}$	A1 [5]

First and last terms in second bracket required for first M1 Use of correct quadratic formula for their equation for second M1

Pl	M	Т	

Que Num	stion nber	Scheme	Marks
2	(a)	$6\sum r^{2} + 4\sum r - \sum 1 = 6\frac{n}{6}(n+1)(2n+1) + 4\frac{n}{2}(n+1), -n$	M1 A1, B1
		$= \frac{n}{6}(12n^2 + 18n + 6 + 12n + 12 - 6) \text{ or } n(n+1)(2n+1) + (2n+1)n$ $= \frac{n}{6}(12n^2 + 30n + 12) = n(2n^2 + 5n + 2) = n(n+2)(2n+1) *$	M1 A1 (5)
	(b)	$\sum_{r=1}^{20} (6r^2 + 4r - 1) - \sum_{r=1}^{10} (6r^2 + 4r - 1) = 20 \times 22 \times 41 - 10 \times 12 \times 21$	M1
		= 15520	A1 (2) [7]

(a) First M1 for first 2 terms, B1 for -nSecond M1 for attempt to expand and gather terms. Final A1 for correct solution only

(b) Require (r from 1 to 20) subtract (r from 1 to 10) and attempt to substitute for M1

Question Number	Scheme	Marks	
3 (a)	$xy = 25 = 5^2$ or $c = \pm 5$	B1	(1)
(b)	A has co-ords $(5, 5)$ and B has co-ords $(25, 1)$	B1	
	Mid point is at (15, 3)	M1A1	(3) [4]

(a) xy = 25 only B1, $c^2 = 25$ only B1, c = 5 only B1

(b) Both coordinates required for B1 Add theirs and divide by 2 on both for M1 PMT

Question Number	Scheme	Marks
4	When $n = 1$, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $\frac{1}{1+1} = \frac{1}{2}$. So LHS = RHS and result true for $n = 1$	B1
	Assume true for $n = k$; $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$	M1
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$	M1 A1
	and so result is true for $n = k + 1$ (and by induction true for $n \in \mathbb{Z}^+$)	B1 [5]

Notes:

Evaluate both sides for first B1 Final two terms on second line for first M1 Attempt to find common denominator for second M1. Second M1 dependent upon first. k + 1

 $\frac{k+1}{k+2} \text{ for A1}$

'Assume true for n = k 'and 'so result true for n = k + 1' and correct solution for final B1

PMT

Que: Num	stion nber	Scheme	Marks
5	(a)	attempt evaluation of $f(1.1)$ and $f(1.2)$ (– looking for sign change)	M1
		$f(1.1) = 0.30875$, $f(1.2) = -0.28199$ Change of sign in $f(x) \Longrightarrow$ root in the interval	A1 (2)
	(b)	$f'(x) = \frac{3}{2}x^{-\frac{1}{2}} - 9x^{-\frac{1}{2}}$	M1 A1 A1 (3)
	(c)	f(1.1) = 0.30875 $f'(1.1) = -6.37086$	B1 B1
		$x_1 = 1.1 - \frac{0.30875}{-6.37086}$	M1
		= 1.15(to 3 sig.figs.)	A1 (4) [9]

Notes:

(a) awrt 0.3 and -0.3 and indication of sign change for first A1

(b) Multiply by power and subtract 1 from power for evidence of differentiation and award of first M1

(c) awrt 0.309 B1and awrt -6.37 B1 if answer incorrect

Evidence of Newton-Raphson for M1

Evidence of Newton-Raphson and awrt 1.15 award 4/4

Question Number	Scheme	Marks
6	At $n = 1$, $u_n = 5 \times 6^0 + 1 = 6$ and so result true for $n = 1$ Assume true for $n = k$; $u_k = 5 \times 6^{k-1} + 1$, and so $u_{k+1} = 6(5 \times 6^{k-1} + 1) - 5$	B1 M1, A1
	$\therefore u_{k+1} = 5 \times 6^k + 6 - 5 \therefore u_{k+1} = 5 \times 6^k + 1$ and so result is true for $n = k + 1$ and by induction true for $n \ge 1$	A1 B1 [5]

6 and so result true for n = 1 award B1

Sub u_k into u_{k+1} or M1 and A1 for correct expression on right hand of line 2

Second A1 for $\therefore u_{k+1} = 5 \times 6^k + 1$

'Assume true for n = k' and 'so result is true for n = k + 1' and correct solution for final B1

	estion nber	Scheme	Marks
7	(a)	The determinant is $a - 2$	M1
		$\mathbf{X}^{-1} = \frac{1}{a-2} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$	M1 A1 (3)
	(b)	$\mathbf{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	B1
		Attempt to solve $2 - \frac{1}{a-2} = 1$, or $a - \frac{a}{a-2} = 0$, or $-1 + \frac{1}{a-2} = 0$, or $-1 + \frac{2}{a-2} = 1$	M1
		To obtain $a = 3$ only	A1 cso (3) [6]
		Alternatives for (b) If they use $X^2 + I = X$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1 If they use $X^2 + X^{-1} = O$, they can score the B1then marks for solving If they use $X^3 + I = O$ they need to identify I for B1, then attempt to solve suitable equation for M1 and obtain $a = 3$ for A1	

(a) Attempt *ad-bc* for first M1

$$\frac{1}{\det} \begin{pmatrix} -1 & -a \\ 1 & 2 \end{pmatrix}$$
 for second M1
(b) Final A1 for correct solution only

Que: Num	stion nber	Scheme	Marks
8	(a)	$\frac{dy}{dx} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \qquad \text{or } 2y\frac{dy}{dx} = 4a$ The gradient of the tangent is $\frac{1}{a}$	M1 A1
		The equation of the tangent is $y - 2aq = \frac{1}{q}(x - aq^2)$ So $yq = x + aq^2$ *	M1
	(b)	R has coordinates (0, aq)	A1 (4) B1
		The line <i>l</i> has equation $y - aq = -qx$	M1A1 (3)
	(c)	When $y = 0$ $x = a$ (so line <i>l</i> passes through $(a, 0)$ the focus of the parabola.)	B1 (1)
	(d)	Line <i>l</i> meets the directrix when $x = -a$: Then $y = 2aq$. So coordinates are (- <i>a</i> , 2 <i>aq</i>)	M1:A1 (2) [10]

(a) $\frac{dy}{dx} = \frac{2a}{2aq}$ OK for M1 Use of y = mx + c to find *c* OK for second M1 Correct solution only for final A1

(b) -1/(their gradient in part a) in equation OK for M1

(c) They must attempt y = 0 or x = a to show correct coordinates of R for B1

(d) Substitute x = -a for M1. Both coordinates correct for A1.

Questic Number		Scheme	N	larks
9 ((a)	$z_2 = \frac{12-5i}{3+2i} \times \frac{3-2i}{3-2i} = \frac{36-24i-15i-10}{13}$ $= 2-3i$	M1 A1	
((b)	P(3,2)		(2)
		O(2 - 3) $P: P1 O: P1ft$	I	31, B1ft
((c)	Q(2, -3) P: B1, Q: B1ft grad. $OP \times \text{grad.}$ $OQ = \frac{2}{3} \times -\frac{3}{2}$		(2)
(OR	$= -1 \qquad \Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit)$ $\angle POX = \tan^{-1}\frac{2}{3}, \angle QOX = \tan^{-1}\frac{3}{2}$		
		$Tan(\angle POQ) = \frac{\frac{2}{3} + \frac{3}{2}}{1 - \frac{2}{3} \times \frac{3}{2}}$ M1	M1	
		$\Rightarrow \angle POQ = \frac{\pi}{2} (\clubsuit) \qquad A1$	A1	(2)
((d)	$z = \frac{3+2}{2} + \frac{2+(-3)}{2}i$	M1	
		$=\frac{5}{2}-\frac{1}{2}i$	A1	(2)
((e)	$\frac{=\frac{5}{2} - \frac{1}{2}i}{r = \sqrt{\left(\frac{5}{2}\right)^2 + \left(-\frac{1}{2}\right)^2}}$	M1	(2)
		$=\frac{\sqrt{26}}{2}$ or exact equivalent	A1	(2) [10]

(a)
$$\times \frac{3-2i}{3-2i}$$
 for M1

- (b) Position of points not clear award B1B0
- (c) Use of calculator / decimals award M1A0
- (d) Final answer must be in complex form for A1
- (e) Radius or diameter for M1

Ques Numb		Scheme	Mark	s
10	(a)	A represents an enlargement scale factor $3\sqrt{2}$ (centre <i>O</i>)	M1 A1	
		B represents reflection in the line $y = x$ C represents a rotation of $\frac{\pi}{4}$, i.e.45° (anticlockwise) (about O)	B1 B1	(4)
	(b)	$\begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix}$	M1 A1	(2)
	(c)	$ \begin{pmatrix} 3 & -3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} $	B1	(1)
	(d)	$ \begin{pmatrix} -3 & 3 \\ 3 & 3 \end{pmatrix} \begin{pmatrix} 0 - 15 & 4 \\ 0 & 15 & 21 \end{pmatrix} = \begin{pmatrix} 0 & 90 & 51 \\ 0 & 0 & 75 \end{pmatrix} $ so (0, 0), (90, 0) and (51, 75)	M1A1A1	A1 (4)
	(e)	Area of $\triangle OR'S'$ is $\frac{1}{2} \times 90 \times 75 = 3375$	B1	
		Determinant of E is -18 or use area scale factor of enlargement So area of $\triangle ORS$ is $3375 \div 18 = 187.5$	M1A1	(3) [14]

(a) Enlargement for M1 $3\sqrt{2}$ for A1

(b) Answer incorrect, require CD for M1

(c) Answer given so require **DB** as shown for B1

(d) Coordinates as shown or written as $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 90 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 51 \\ 75 \end{pmatrix}$ for each A1

(e) 3375 B1 Divide by theirs for M1