
 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

SUMMARY SHEET – DECISION MATHS

Algorithms

What is an algorithm?
An algorithm must have the following properties

• it is a set of precisely defined instructions.
• it has generality: it will work for all valid

inputs.
• it is finite: it has a stopping condition.
• it may be an iterative process: you may need to

follow the procedure a number of times in
order to reach the best solution.

Presenting and Implementing Algorithms

Before the exam you should know:
• The three bin packing algorithms. These are the Full-

Bin Algorithm, the First-Fit Algorithm and the First-Fit
Decreasing Algorithm.

• The sorting algorithms. Make sure you know which of
these algorithms you need to learn by heart.

• How to count the umber of comparisons and swaps in
each pass and know the maximum number of passes
that are required for a list of a given length.

The main ideas are covered in
AQA Edexcel MEI OCR
D1 D1 D1 D1

The main ideas in this topic are
Understanding and implementing a variety of
algorithms expressed as lists of instructions,
flow charts or in pseudo code.

• The different ways algorithms are presented and make
sure you practice following unfamiliar algorithms.

• What is meant by efficiency of an algorithm.

An algorithm is a well-defined, finite sequence of instructions to solve
a problem. They can be communicated in various ways, including
written English, pseudo code and flowcharts. Make sure you are
experienced in all possible formats.

Example

 a) What is the output of the
algorithm when
A = 84 and B = 660?

b) What does the algorithm
achieve?

Solution

a)

Input A and B
(positive integers)

Let Q = int(B/A)
Let R1 = B − A×Q

Let B = A
Let A = R1
Let Q = int(B/A)
Let R2 = B − A×Q

R2 > 0 ?

Print R1
Stop

Let R1 = R2 yes
no

A 84 72 12

B 660 84 72

Q 7 1 6

R1 72 12

R2 12 0

PRINT 12

b) It finds the highest common
factor of A and B.

Bin Packing
These are examples of HEURISTIC algorithms. This means
that none of these algorithms necessarily lead you to the best
or optimal solution of the problem.
1. Full-Bin Algorithm

Look for combinations of boxes to fill bins. Pack these boxes.
For the remainder, place the next box to be packed in the first
available slot that can take that box.

Note – the full bin algorithm does not always lead to the same
solution of the problem. In other words, two people could
apply the full bin algorithm perfectly correctly and end up
with their boxes packed differently.

2. First-Fit Algorithm

Taking the boxes in the order listed, place the next box to be
packed in the first available slot that can take that box.

3. First-Fit Decreasing Algorithm

i) Re-order the boxes in order of decreasing size.

ii) Apply the First-Fit algorithm to this reordered list.

You should be able to form a judgement about the relative
efficiency of these algorithms. The First-Fit Decreasing
Algorithm requires a sort to be made before applying the
First-Fit Algorithm so, in terms of computation, it requires
more resources than the First-Fit Algorithm alone.

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

Example: Show how the following items are to be packed into boxes each of which has a capacity of 10Kg.

1. Full Bin

6+4=10, 5+3+2=10, 3 3 bins needed

Item A B C D E F
Weight (kg) 2 4 6 3 3 5

2. First-Fit

 3. First-Fit Decreasing

2kg 4kg

3kg

6kg
5kg

3kg

Sorting Algorithms

3kg 3kg

 4kg

2kg

6kg
5kg

There are many sorting algorithms, so you must check carefully to see which, if any, you need to memorise for the examination.

Questions often ask about the relative efficiency of sorting algorithms by comparing the number of comparisons (c) and swaps that
are made to sort the same list of numbers, as seen in this example:

List 1st
pass

2nd
pass

3rd
pass

6 1 1 1
1 3 3 3
3 6 5 5
7 5 6 6
5 7 7 7
c 4 3 2
s 3 1 0

total number of comparisons: 9

total number of swaps: 4

list 1st
pass

2nd
pass

3rd
pass

4th
pass

6 1 1 1 1
1 3 3 3 3
3 6 6 5 5
7 7 5 6 6
5 5 7 7 7
c 4 2 1 0
s 1 1 1 0

total number of comparisons: 7

Bubble Sort

First pass: the first number in the list is compared with the second and whichever is
smaller assumes the first position. The second number is then compared with the third
and the smaller is placed in the second position, and so on. At the end of the first pass,
the largest number will be at the bottom. For the list of five numbers on the right, this
involves 4 comparisons and 3 swaps.
Second pass: repeat first pass but exclude the last number (on the third pass the last two
numbers are excluded and so on).
The list is repeatedly processed in this way until no swaps take place in a pass.
For a list of 5 numbers, the list will definitely be sorted after the 4th pass (why?), so this is
the maximum number of passes. The maximum number of comparisons is 4+3+2+1=10
and the maximum number of swaps is 10. You should be able to generalise this to a list
of n numbers.

Quick Sort

Select a pivot – usually the middle item in the list

First pass: numbers are sorted into two sub lists, those smaller than the pivot
element and those greater than the pivot element. The pivot element is now fixed
in its correct position I the list.

Second pass: choose a pivot element in each of the two sub lists and repeat the
sorting procedure.

Continue this process until all numbers are fixed and the list is sorted.

Notice that in this example the First-Fit
Decreasing Algorithm gives the same
result as the Full Bin Algorithm. This
will not always be the case.

total number of swaps: 3

In this case the quick sort takes fewer comparisons and swaps than the bubble sort, though it does take one more pass to achieve
the sort. It is worth noting that the relative efficiency of the different types of algorithm will vary depending on how “mixed up”
the list is.

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

SUMMARY SHEET – DECISION MATHS

CRITICAL PATH ANALYSIS

Before the exam you should know
• How to draw precedence networks. as you possibly can.

The main ideas are covered in
AQA Edexcel MEI OCR
D2 D1 D1 D2 • When you need to use dummy activities.

• How to perform forward and backward passes on a precedence
network to calculate early and late start times.

The main ideas in this topic are
• Drawing Activity or Precedence Networks

• How to find the critical activities.

• How to calculate the various types of float.

• How to draw a cascade chart and construct a resource histogram. • Performing Forward and Backward Passes
and Identifying Critical Activities

• Drawing Cascade Charts and Resource
Levelling

• Where resource levelling is required and how to make effective
use of float to improve efficiency.

• What is meant by crashing a network.

Terminology Example:
An activity is a task which needs to be done and takes an The table shows the activities involved in creating a small patio

in a garden. amount of time/resources to complete.
Precedence tables show the activities that need to be done
together with their duration and their immediate predecessors.

Activity
Name

Task Time
(hrs)

Preceding
Activities

A Clear Garden 4
B Measure area 1
C Design Patio 2 B
D Purchase fencing 1 B
E Buy pots and plants 3 A,C
F Plant all pots 1 E
G Purchase paving 1 C
H Construct Garden 6 A, D,G

 Precedence networks show the sequence of the activities. The
network must have one start node and one end node.

 An event is the start/finish of one or more activities.
Dummy activities are used to keep the correct logic and to
ensure each activity is uniquely defined by (i, j) where i is its
starting event and j is the finishing event.

 This is correct
 This is incorrect

It can be a good idea to do an initial sketch as it’s often possible
to make your diagram clearer by repositioning activities to avoid
them crossing over one another.
Forward pass establishes the earliest times that events can
happen.
Backward pass establishes the latest time that an event can
happen.
Critical activites are those whose timing is critical if the project
is to be completed in the minimum time. The critical activities
will form a path through the network
Float is the amount of time by which an activity can be delayed
or extended.
Independent float does not affect other activities.
Interfering float is shared between two or more activities.

 The network for this precedence table

H(6)

F(1)

G(1)

D(1)

C(2)

B(1)

E(3)

A(4)

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

The forward and backward pass

 This is the earliest
start time for the
next activity

This is the latest
start time for the
next activity

The duration of the project is 10 hours
The critical activities are A, B, C, G and H

Float

activity float type
D 2 hours independent
E 2 hours Interfering (with F)
F 2 hour Interfering (with E)

Cascade Chart and Resources levelling

0 1 2 3 4 5 6 7 8 9 10
A
B
C
D
E
F
G
H

0 1 2 3 4 5 6 7 8 9 10
A
B
C
D
E
F
G
H

4
3
2 2
1

0 1 2 3 4 5 6 7 8 9 10

4
3
2 2
1

0 1 2 3 4 5 6 7 8 9 10

In this example there are two hours of float shared between
activities E and F

A Cascade Chart shows each activity set against a time line.
Float time is sometimes shown by using shading.
Dependencies are shown by vertical lines.
The cascade chart can be adjusted by using the float times
to make use of resources more efficient.

If activity A needs two people and all the rest can be done
by one person, then the resource histogram looks like this
(note that 4 people are needed in the second hour).

If only three people are available for the first three hours,
but a fourth friend can then come and help for an hour, we
could move activity D within its float time to make this
possible.

This would make the cascade chart look like this

The resource histogram would now look like this

H(6)

F(1)

D(1)

C(2)

B(1)

G(1)

E(3)

A(4)

4 4

7 9

3 3

1 1

4 4

0 0 10 10

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

SUMMARY SHEET – DECISION MATHS

Graph Theory

The main ideas in this topic are
• The definition of a graph and the associated

vocabulary.

• Mathematical modeling with graphs.

Before the exam you should know:

• The terms vertices (nodes), edges (arcs), digraphs, trees
and paths.

• All the other vocabulary used to describe ideas in graph
theory.

• How to draw a graph from an incidence matrix.

• How to model problems using graphs (e.g. Konigsberg
Bridges).

• What is meant by a tree.

• How to recognise isomorphic graphs.

• What is meant by a Hamiltonian cycle.

• What is meant by an Euler cycle.

The main ideas are covered in
AQA Edexcel MEI OCR
D1 D1 D1 D1

Example:

 edge

 vertices

loop

These two graphs are
isomorphic.

Terminology for Graph Theory
• Graph – collection of vertices & edges.
• Vertex/Node – the dots in a graph (usually where 2 or

more edges meet, but not necessarily).
• Edge/Arc – a line between two vertices.
• Tree – a graph with no cycles.
• Order (degree) of a vertex – the number of edges starting

or finishing at that vertex.
• Simple graph – a graph with no loops or multiple edges.
• A path – a route from one vertex to another which does

not repeat any edge.
• A cycle – a route starting and finishing at the same vertex.
• Connected graph – a graph in which there is a route from

each vertex to any other vertex (i.e. the graph is in one
part).

• Complete graph – a simple graph in which every pair of
vertices is connected by an edge.

• Bipartite graph – one in which the vertices are in two sets
and each edge has a vertex from each set.

• Planar graph – one which can be drawn with no edges
crossing.

• Sub graph – any set of edges & vertices taken from a
graph is a sub-graph.

• Hamiltonian cycle – a cycle that visits every vertex of the
graph.

• Eulerian cycle – a cycle that travels along every edge of
the graph.

These diagrams all show trees of the graph above

• Eulerian graph – a graph with no odd vertices.
• Di-graph – a graph in which the edges indicate direction.
• Incidence matrix – a matrix representing the edges in a

graph.

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

Graphs can be used to represent many different things

 This graph represents a tetrahedron

Example
The table shows the number of vertices of degree
1, 2, 3 and 4 for three different graphs.
Draw an example of each of these graphs.

solution
 graph 1 graph 2 graph 3

Find the number of edges and the sum of the degrees of all the vertices of the graphs. What do you notice?

Graph 1: number of edges 3 sum of degrees of vertices 1+1+1+3 = 6
Graph 2: number of edges 8 sum of degrees of vertices 3+3+3+3+4=16
Graph 3: number of edges 7 sum of degrees of vertices 2+2+3+3+4 = 14

The sum of the degrees of the vertices is always twice the number of edges.

Also note that there are always an even number of odd vertices.

Order of vertex 1 2 3 4
Graph 1 3 0 1 0
Graph 2 0 0 4 1
Graph 3 0 2 2 1

2 1 1

1 1

1 1

C

B

A

C B A

−

−

From

To
A

B
C

This shows a graph and its
Incidence matrix.

Alan

Betty

Chris

Donna

Biology

English

Maths

Music

This bipartite graph shows which
subjects four students study.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

SUMMARY SHEET – DECISION MATHS

GRAPHICAL LINEAR PROGRAMMING

Before the exam you should:
• Practice formulating linear programming problems. This

can often be the trickiest part of the problem. Remember
to be consistent with units.

• Learn the terminology – the OBJECTIVE FUNCTION is
what you have to maximise or minimise subject to a
number of CONSTRAINTS.

• Make sure you are able to draw straight line graphs
quickly from the constraints by considering where they
cross the x and y axes.

• You must be able to find the solution to problems from
the graph. Make sure you can draw graphs accurately.

• Remember to shade OUT the unacceptable region to keep
the feasible region clear and easy to identify.

• You must be able to find correct solutions to problems
where the answer must be an integer.

The main ideas are covered in
AQA Edexcel MEI OCR
D1 D1 D1 D1

The main ideas in this chapter are

Formulating a problem as a linear
programming problem, solving a Linear
Programming Problem (maximisation and
minimisation) and Integer Programming.

Formulating a problem as a
Linear Programming Problem
First: identify the variables about which a decision is to be made. These are sometimes called the decision variables. For example
if your problem is to decide how many chairs to make and how many tables to make to maximise profit, begin with a statement like
– let x be the number of chairs and let y be the number of tables. If your problem is to work out how many grams of wheatgerm and
how grams of oat flour there should be in a new food product to meet nutritional requirements and minimise cost then let x be the
number of grams of wheatgerm and let y be the number of grams of oat flour.

Next: Decide what the objective function is (this is the value you are trying to maximise or minimise) and what the constraints are
as inequalities involving x and y.

Be careful to use the same units consistently. For example it’s possible that some distances appearing in a problem are given in
metres and some are given in centimetres. Or some times they could be given in seconds with some given in minutes. Choose one
type of units and convert everything into those units.

Example:
A clothing retailer needs to order at least 200 jackets to
satisfy demand over the next sales period. He stocks two
types of jacket which cost him £10 and £30 to purchase.
He sells them at 20 pounds and 50 pounds respectively.
He has 2700 pounds to spend on jackets.

The cheaper jackets are bulky and each need 20cm of
hanging space. The expensive jackets need only 10cm
each. He has 40m of hanging space for jackets.

The retailer wishes to maximise profit. Assuming that all
jackets will be sold, formulate a linear program, the
solution of which will indicate how many jackets of each
type should be ordered.

Formulation as a linear program
The decision is about how many of two types of jacket need to
be ordered.
Let x = number of cheaper jackets ordered
Let y = number of expensive jackets ordered
The profit, P, given by selling all of these, is 10 20P x y= + ,
since the profit made on a cheaper jacket is 10 pounds and the
profit made on an expensive one is 20 pounds.
The constraints are:
1. “needs to order at least 200” giving 200+ ≥x y
2. “cost him 10 pounds and 30 pounds” and “has 2700 pounds
to spend” giving 10 30 2700x y+ ≤
3. “20cm of hanging space” and “10cm” and “has 40m of
hanging space” giving 0.2 0.1 40x y+ ≤

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

Solving a Linear Programming Problem

Draw a graph in which each constraint is represented by a line with shading. The unacceptable side of the line should be shaded.
This leaves a “feasible region”. The solution of the problem will be one of the vertices of the feasible region. These can be checked
to find the best. We do this below for the example introduced over the page.

 Drawing the line representing a constraint.

As an example, take the constraint
from the example over the page. 0.2 0.1 40x y+ ≤

The feasible region.
Once you have drawn all the constraints, the feasible region
is the intersection of the acceptable regions for all of them.

x

y

350 50

350

50

The initial aim is to
draw the line

. We
know this is a
straight line so it’s
enough to find two
points on the line
and join them. When
x = 0, y = 400 and
when y = 0, x = 200.
So the points

0.2 0.1 40x y+ =

(0, 400) and (200, 0)
are on the line.
Then shade out, the unacceptable region. To find the
unacceptable region just test a point to see if it satisfies the
constraint or not. For example, in this case (10, 10) clearly
satisfies the constraint and so is in the acceptable region.

(200,0)

(0,400)

x

y

350 50

350

50

Feasible
Region

200x y+ ≥

10 30 2700x y+ ≤

0.2 0.1 40x y+ ≤

Constraint 1

Constraint 2

Constraint 3

Finding the solution
The solution of the problem will be at one of the vertices
of the feasible region. You will need to solve simultaneous
equations to find the co-ordinates of these vertices. Then
each vertex must be checked to find the best. For example
in the above we have a feasible region as in the diagram on
the right. The coordinates of point A are found by solving
x + y = 200 and 10x + 30y = 2700 simultaneously. The
solutions are x = 165 and y = 35. So the point is (165, 35)
and the profit at that point is P = 10x + 20y = 1650 + 700 =
2350. Similarly it can be seen point B is (186, 28) giving a
profit of 2420. Point C is (200, 0) giving a profit of 2000.
So the best profit that can be made is by buying 165 cheap
coats and 35 expensive coats.

x 210 160

A B

C

Considering
Gradients.
By calculating
the gradients of
each of the
constraints and
the gradient of
the objective
function, it’s
possible to
predict in
advance which
vertex will give
the optimal
solution.

Minimisation problems are solved in exactly the same way. Just remember that this time you are looking for the vertex
which makes the objective function the lowest.

Integer Programming
If the solution to the problem has to have integer values then points with integer value coordinates, close to the optimal point
can be checked. This is likely to reveal the optimal solution but it is not guaranteed to. For example suppose the Objective
Function is 2 and that this should be maximised. The optimal point may be (30.6, 40. 8) but do not assume that
(30.40) will give the best solution; you must look at all the points with integer coordinates that are nearby: (31, 40), (30, 41),
(30, 40) and (31, 41).

3x + y

However (31, 41) and (31, 40) are not in the feasible region. You can check this by substituting in the values into the
constraints. Of the two points nearby which are in the feasible region, namely (30, 41) and (30, 40), it can be seen that
(30, 41) provides the best profit.

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

SUMMARY SHEET – DECISION MATHS 1
NETWORKS – Minimum spanning tree and shortest path

 1. Choose a vertex…

2. Choose the shortest edge from this
vertex to any vertex connected directly
to it…

3. Choose the nearest vertex not yet in
the solution which is connected to any
vertex which is in the solution and
which does not create a cycle…

4. Repeat step 3 until all the vertices
are connected then stop.

Minimum Spanning Tree
The minimum connector problem is to make a selection of the available edges so that any one vertex can be
reached from any other, and the total length of the chosen edges is as small as possible. A connected set of
edges with no loops is called a tree and the set which solves the minimum connector problem is the minimum
spanning tree for the network.

Kruskal’s Algorithm

Prim’s Algorithm on a network

Before the exam you should know: The main ideas are covered in
AQA Edexcel MEI OCR • How to show all the working clearly, there are more

marks for the working than for getting the right answer. D1 D1 D1
• The distinction between Kruskal’s and Prim’s algorithms.

D1
• How to apply Prim’s algorithm to both a network and a

table correctly.

• That Prim’s and Kruskal’s algorithms will usually give
the same MST but often select the edges in a different
order. Make sure you show sufficient working so that the
examiner can see which algorithm you have used.

The main ideas in this topic are
• Appling Kruskal’s and Prim’s Algorithms to

find the minimum spanning tree of a network.
• How to work with networks or tables and be able to

convert between the two. • Applying Dijkstra’s Algorithm to find the
shortest (or least value path from one vertex
to any other vertex in the network. • That you must always show all the working values as

well as the permanent labels when using Dijkstra’s
algorithm.

1. Choose the shortest
edge (if there is more
than one, choose any of
the shortest)…

2. Choose the next shortest
edge in the network (it
doesn’t have to be joined
to the edges already…

3. Choose the next shortest
edge which does not create
a cycle and add it…

C

6 3

4
2

4 3

3 2

A

B

D

E

F 2
2 C

E
B

3
2

4. Repeat step 3 until all
the vertices are
connected then stop.

Length of minimum spanning
tree: 14

C
2

4

A

B

2
C

E

3
3

2
2 C

F

E
B

D

4 3
3

2
2

A

B E
C

D

F

2

D

E

C

B

F

C4
2

A

B E
2

D

C

4

A

B

A

4
2

A

B E
2

3 F3

D

C

A

4
2

B

3

E
2

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

1. Label the start vertex with permanent label 0 and order label 1.
2. Assign temporary labels to all the vertices that can be reached

directly from the start.
3. Select the vertex with the smallest temporary label and make its

label permanent. Add the correct order label.
4. Put temporary labels on each vertex that can be reached directly

from the vertex you have just made permanent. The temporary
label must be equal to the sum of the permanent label and the
direct distance from it. If there is an existing temporary label at a
vertex, it should be replaced only if the new sum is smaller.

5. Repeat steps 3 and 4 until the finishing vertex has a permanent
label.

6. To find the shortest paths(s), trace back from the end vertex to the
start vertex. Write the route forwards and state the length.

Dijkstra’s Algorithm for the shortest path

1. Step 1

2. Steps 2
and 3

 5. Steps 4 and 5

3. Steps 4
and 5

6. Steps 4
and 5

4. Steps 4
and 5
 7. Step 6

Prim’s Algorithm on a Table
1. Choose a column and cross out its row. Here D

has been chosen. Delete row D.
2. Choose the smallest number in the column D

and circle it. If there is a choice, choose either.
3. For the number you have just circled, cross out

its row and put an arrow above its row at the
top of the table.

4. Choose the smallest number not already
crossed out from the arrowed columns and
circle it.

5. For the number you have just circled, cross out
its row

6. and put an arrow above it’s row at the top of
the table.

7. Continue till all vertices have been included in
the tree.

1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3

3E 2 -
F 6 3 3 -

2 3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3
E 2 - 3
F 6 3 3 -

2

3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -
F 6 3 3

3
3
-

2 4 5 3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3
E 2 - 3
F 6 3 3 -

2 4 6 5 3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3
E 2 - 3
F 6 3 3 -

2 4

Length of minimum spanning tree 14

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0

2 4
4

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0

4

2 4
4

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0

10

3 4
4

2 4
4

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0

10 9

7

4 6
6

3 4
4

2 4
4

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0

10 9

5 7
7

4 6
6

3 4
4

1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -

3
3

F 6 3 3 -

2 4
4

C

6 3
4

2

4 3

3 2

A

B

D

E

F

1 0
 6 9

10 9

4 6
6

3 4
4

5 7
7

Solution:
Shortest path ACEF
Length 9

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

REVISION SHEET – DECISION MATHS 1

SIMULATION

Simulating a Queue

The main ideas in this chapter are

Using random devices, especially random
number generators to simulate events which are
affected by chance.

Simulating queues.

Before the exam you should:
• Make sure you are able to allocate random

numbers to events correctly, to generate events
with the correct probabilities.

• Make sure you know how to correct rules, which
result in some numbers being ignored.

• Make sure you understand service times, arrival
times and inter-arrival times.

• Make sure you are happy with the idea of
queueing disciplines.

• Be aware of how to allocate random numbers
efficiently.

• Re-do Exercise 6D to ensure that you are fluent
with exam style questions.

The main ideas are covered in
AQA Edexcel MEI OCR

 D1

First: Data must be gathered from observing the real queue and recording arrival times and service times.

Next: This data must be used to produce a frequency table of arrival times or inter-arrival times and service times. The wider the
intervals, the less accurate will be the simulation.

Then: Use relative frequencies to allocate probabilities to the different arrival times, inter-arrival times or service times.

Then: Allocate random numbers to these probabilities.

Then: Run the simulation to see how the queue behaves. If the simulated queue behaves in a similar way to the real queue, the
simulation may be adequate for its purpose. If it does not, the model may need improving, perhaps by shortening inter-arrival
intervals or having more service intervals.

Example

Formulate rules to simulate these times using two-digit
random numbers.
Inter-arrival
time (seconds)

probability

20 12 1
60 5=

30 20 1
60 3=

60 28 7
60 15=

Service time
(seconds)

probability

30 30 1
60 2=

50 15 1
60 4=

70 15 1
60 4=

The probabilities for
the times are given
by their relative
frequencies. We use
these probabilities to
assign random
numbers.

The following data has been collected for a queue at a
ticket office:

Inter-arrival
time (seconds)

frequency

20 12
30 20
60 28

Service time
(seconds)

frequency

30 30
50 15
70 15

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

 the Further Mathematics network – www.fmnetwork.org.uk V 07 1 1

 Allocating the random numbers

 The lowest common denominator of 71 1
5 3 1, and

Running the simulation
Use the random numbers below, reading from left to right
and top to bottom, to simulate the arrival and service of the
first 10 people in the queue.

person rand Arrival

time
Service
start

rand Service
end

Wait
time

1 54 60 60 98 130 0
2 63 120 130 49 160 10
3 *67 180 180 40 210 0
4 79 240 240 22 270 0
5 55 300 300 62 350 0
6 33 330 350 61 400 20
7 21 360 400 80 470 40
8 62 420 470 77 540 50
9 88 480 540 46 570 60
10 12 500 570 19 600 70
*92 had to be rejected – see rule in box on left.
Check that you can follow how this table was produced.

5 is
15. There are 100 two-digit random numbers, 00 – 99
inclusive. 100 , remainder 10 and , so
we use the ninety random numbers, 00 – 89. A
probability of

15 6= 6 15 90× =

1
5 will require 90

5 18= numbers, 00 – 17.
Check you can see how the others are arrived at.

Inter-arrival
time (seconds)

Random
numbers

20 00 - 17
30 18 - 47
60 48 - 89

It’s much easier to allocate the random numbers for
service times because the lowest common denominator of
the probabilities divides exactly into 100, so all of the
numbers 00 – 99 are allocated.

Service time
(seconds)

Random
numbers

30 00 - 49
50 50 - 74
70 75 - 99

Random numbers for
arrivals

54, 63, 92, 67, 79,
55, 33, 21, 62, 88,
12, 45, 46, 28, 81

Random numbers
for service

98, 49, 40, 22, 62,
61, 80, 77, 46, 19,
26, 23, 34, 09, 58

To simulate the
probabilities correctly,
the 10 numbers 90 –
99 inclusive must be
ignored if they come
up.

Check that you
can see where
these came
from.

Mean queueing time
This is the mean of the times for which each customer queues. For the above example this is 10 20 40 50 60 70

10 25+ + + + + = seconds.
Mean length of queue

This is the total time spent queueing divided by the total elapsed time. For the above example this is 250
600 = 0.417 people.

Server utilization
This is the percentage of elapsed time for which the server is busy. For the above example this is 50 = 83.3%. 0

600 100×

The 500 comes from the fact that the server is idle between 160 and 180 seconds, between 190 and 240 seconds and between 270
and 300 seconds, giving a total of 100 seconds idle time, so 500 seconds actually serving.

How do you improve the accuracy of a simulation?

If asked this in the exam, you should always say run
more simulations

Other things that might make a simulation more
reliable include:

• do longer runs of the simulation.

• have shorter arrival intervals and service times.

• collect more data on which to base probabilities.

• examine the assumptions made in the simulation
and seeing if they can be removed by making the
simulation more sophisticated e.g. in the above
example it is assumed that as soon as one
customer has finished being served, the next starts.

What is simulation used for?

• Simulation is used extensively in medical research, for example
simulating the spread of highly contagious diseases.

• Often we need to be able to predict the effect of change without
actually carrying out the change first, for example changing road
layouts by building roundabouts, bypasses etc. is very expensive and
disruptive, so it is a good idea to first simulate the affect of the
proposed change, to help us decide whether it will work. To do this
we first need to simulate the current situation accurately. Once this
is done, we can adapt the simulation to incorporate the proposed
changes and see whether they have the desired effect. We must
always be on the lookout for unexpected consequences though.

• Weather forecasting is an example of simulation. It uses
probabilities in a very complex weather model to try to predict the
future.

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching
each specification exactly.

	Algorithms Revision Sheet V_07_1_1.doc
	Critical Path Analysis Revision V_07_1_2.doc
	Graphical LP_V_07_1_1.doc
	Graphs V_07_1_1.doc
	MST and Dijkstra V_07_1_1.doc
	SimulationRevisionSheet_V_07_1_1.doc

