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Algorithms 

What is an algorithm? 
An algorithm must have the following properties  

• it is a set of precisely defined instructions. 
• it has generality:  it will work for all valid 

inputs. 
• it is finite: it has a stopping condition. 
• it may be an iterative process: you may need to 

follow the procedure a number of times in 
order to reach the best solution.  

 

Presenting and Implementing Algorithms 

Before the exam you should know: 
• The three bin packing algorithms. These are the Full-

Bin Algorithm, the First-Fit Algorithm and the First-Fit 
Decreasing Algorithm. 

• The sorting algorithms. Make sure you know which of 
these algorithms you need to learn by heart. 

• How to count the umber of comparisons and swaps in 
each pass and know the maximum number of passes 
that are required for a list of a given length. 

The main ideas are covered in 
AQA Edexcel MEI OCR 
D1 D1 D1 D1 

The main ideas in this topic are 
Understanding and implementing a variety of 
algorithms expressed as lists of instructions, 
flow charts or in pseudo code. 

• The different ways algorithms are presented and make 
sure you practice following unfamiliar algorithms. 

• What is meant by efficiency of an algorithm. 

An algorithm is a well-defined, finite sequence of instructions to solve 
a problem. They can be communicated in various ways, including 
written English, pseudo code and flowcharts. Make sure you are 
experienced in all possible formats. 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Bin Packing Example 

a) What is the output of the 
algorithm when  
A = 84 and B = 660? 

b) What does the algorithm 
achieve? 

Solution 

a) 

A 

These are examples of HEURISTIC algorithms. This means 
that none of these algorithms necessarily lead you to the best 
or optimal solution of the problem.  
1. Full-Bin Algorithm 

Look for combinations of boxes to fill bins. Pack these boxes. 
For the remainder, place the next box to be packed in the first 
available slot that can take that box. 

Note – the full bin algorithm does not always lead to the same 
solution of the problem. In other words, two people could 
apply the full bin algorithm perfectly correctly and end up 
with their boxes packed differently. 

Input A and B 
(positive integers)

Let Q = int(B/A) 
Let R1 = B − A×Q 

Let B = A 

 
 
 
 

Let A = R1 
Let Q = int(B/A) 
Let R2 = B − A×Q 

R2 > 0 ? 

Print R1 
Stop 

Let R1 = R2 yes 
no 

84 72 12 

B 660 84 72 

Q 7 1 6 
2. First-Fit Algorithm 

R1 72  12 
Taking the boxes in the order listed, place the next box to be 
packed in the first available slot that can take that box. 

3. First-Fit Decreasing Algorithm 

i) Re-order the boxes in order of decreasing size. 

ii) Apply the First-Fit algorithm to this reordered list. 

R2  12 0 

PRINT 12 

b) It finds the highest common 
factor of A and B. 

You should be able to form a judgement about the relative 
efficiency of these algorithms. The First-Fit Decreasing 
Algorithm requires a sort to be made before applying the 
First-Fit Algorithm so, in terms of computation, it requires 
more resources than the First-Fit Algorithm alone. 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
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Example: Show how the following items are to be packed into boxes each of which has a capacity of 10Kg. 
 

1. Full Bin 

6+4=10, 5+3+2=10, 3     3 bins needed 

Item A B C D E F 
Weight (kg) 2 4 6 3 3 5 

2. First-Fit  
    

               3. First-Fit Decreasing 

2kg 4kg 

3kg 

6kg 
5kg 

3kg 

 
 
Sorting Algorithms 

 
 

3kg 3kg 

 
 4kg 

2kg 

6kg 
5kg 

There are many sorting algorithms, so you must check carefully to see which, if any, you need to memorise for the examination.  

Questions often ask about the relative efficiency of sorting algorithms by comparing the number of comparisons (c) and swaps that 
are made to sort the same list of numbers, as seen in this example: 

 

List 1st 
pass 

2nd 
pass 

3rd 
pass 

6 1 1 1 
1 3 3 3 
3 6 5 5 
7 5 6 6 
5 7 7 7 
c 4 3 2 
s 3 1 0 

total number of comparisons: 9 

total number of swaps: 4 

 
 
 

list 1st 
pass 

2nd 
pass 

3rd 
pass 

4th 
pass 

6 1 1 1 1 
1 3 3 3 3 
3 6 6 5 5 
7 7 5 6 6 
5 5 7 7 7 
c 4 2 1 0 
s 1 1 1 0 

 
total number of comparisons: 7 

Bubble Sort 

First pass: the first number in the list is compared with the second and whichever is 
smaller assumes the first position. The second number is then compared with the third 
and the smaller is placed in the second position, and so on. At the end of the first pass, 
the largest number will be at the bottom. For the list of five numbers on the right, this 
involves 4 comparisons and 3 swaps. 
Second pass: repeat first pass but exclude the last number (on the third pass the last two 
numbers are excluded and so on). 
The list is repeatedly processed in this way until no swaps take place in a pass. 
For a list of 5 numbers, the list will definitely be sorted after the 4th pass (why?), so this is 
the maximum number of passes. The maximum number of comparisons is 4+3+2+1=10 
and the maximum number of swaps is 10. You should be able to generalise this to a list 
of n numbers. 

Quick Sort 

Select a pivot – usually the middle item in the list 

First pass: numbers are sorted into two sub lists, those smaller than the pivot 
element and those greater than the pivot element. The pivot element is now fixed 
in its correct position I the list. 

Second pass: choose a pivot element in each of the two sub lists and repeat the 
sorting procedure. 

Continue this process until all numbers are fixed and the list is sorted. 

Notice that in this example the First-Fit 
Decreasing Algorithm gives the same 
result as the Full Bin Algorithm. This 
will not always be the case. 

total number of swaps: 3 
 
In this case the quick sort takes fewer comparisons and swaps than the bubble sort, though it does take one more pass to achieve 
the sort. It is worth noting that the relative efficiency of the different types of algorithm will vary depending on how “mixed up” 
the list is. 
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Graph Theory 
 

The main ideas in this topic are 
• The definition of a graph and the associated 

vocabulary. 

• Mathematical modeling with graphs. 

Before the exam you should know: 
• The terms vertices (nodes), edges (arcs), digraphs, trees 

and paths.  

• All the other vocabulary used to describe ideas in graph 
theory. 

• How to draw a graph from an incidence matrix. 

• How to model problems using graphs (e.g. Konigsberg 
Bridges). 

• What is meant by a tree. 

• How to recognise isomorphic graphs. 

• What is meant by a Hamiltonian cycle. 

• What is meant by an Euler cycle. 

The main ideas are covered in 
AQA Edexcel MEI OCR 
D1 D1 D1 D1 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Example: 
 
 
 

   edge 

  vertices 

loop 

These two graphs are 
isomorphic. 

Terminology for Graph Theory 
• Graph – collection of vertices & edges. 
• Vertex/Node – the dots in a graph (usually where 2 or 

more edges meet, but not necessarily). 
• Edge/Arc – a line between two vertices. 
• Tree – a graph with no cycles. 
• Order (degree) of a vertex – the number of edges starting 

or finishing at that vertex. 
• Simple graph – a graph with no loops or multiple edges. 
• A path – a route from one vertex to another which does 

not repeat any edge. 
• A cycle – a route starting and finishing at the same vertex. 
• Connected graph – a graph in which there is a route from 

each vertex to any other vertex (i.e. the graph is in one 
part). 

• Complete graph – a simple graph in which every pair of 
vertices is connected by an edge. 

• Bipartite graph – one in which the vertices are in two sets 
and each edge has a vertex from each set. 

• Planar graph – one which can be drawn with no edges 
crossing. 

• Sub graph – any set of edges & vertices taken from a 
graph is a sub-graph. 

• Hamiltonian cycle – a cycle that visits every vertex of the 
graph. 

• Eulerian cycle – a cycle that travels along every edge of 
the graph. 

These diagrams all show trees of the graph above  

• Eulerian graph – a graph with no odd vertices. 
• Di-graph – a graph in which the edges indicate direction. 
• Incidence matrix – a matrix representing the edges in a 

graph. 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
each specification exactly. 



 the Further Mathematics network – www.fmnetwork.org.uk  V 07 1 1 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
each specification exactly. 

 
 
 
 
 
 
 
 
Graphs can be used to represent many different things 
 
                        This graph represents a tetrahedron 
 
 
 
 
 
 
 
 
 
Example 
The table shows the number of vertices of degree  
1, 2, 3 and 4 for three different graphs.  
Draw an example of each of these graphs. 
 
solution 
         graph 1  graph 2  graph 3 
 
 
 
 
 
 
 
Find the number of edges and the sum of the degrees of all the vertices of the graphs. What do you notice? 

Graph 1:  number of edges  3    sum of degrees of vertices  1+1+1+3 = 6 
Graph 2:  number of edges  8    sum of degrees of vertices   3+3+3+3+4=16 
Graph 3:  number of edges  7    sum of degrees of vertices   2+2+3+3+4 = 14 
 
The sum of the degrees of the vertices is always twice the number of edges. 
  
Also note that there are always an even number of odd vertices. 
 
 
 
 
 

Order of vertex 1 2 3 4 
Graph 1 3 0 1 0 
Graph 2 0 0 4 1 
Graph 3 0 2 2 1 

2 1 1 

1 1 

1 1 

C 

B 

A 

C B A 

− 

− 

From 

To
A 

B 
C 

This shows a graph and its 
Incidence matrix. 

Alan 
 
Betty 
 
Chris 
 
Donna 

Biology 
 
English 
 
Maths 
 
Music 

This bipartite graph shows which 
subjects four students study. 
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GRAPHICAL LINEAR PROGRAMMING 
 

Before the exam you should:    
• Practice formulating linear programming problems. This 

can often be the trickiest part of the problem. Remember 
to be consistent with units. 

• Learn the terminology – the OBJECTIVE FUNCTION is 
what you have to maximise or minimise subject to a 
number of CONSTRAINTS. 

• Make sure you are able to draw straight line graphs 
quickly from the constraints by considering where they 
cross the x and y axes. 

• You must be able to find the solution to problems from 
the graph. Make sure you can draw graphs accurately. 

• Remember to shade OUT the unacceptable region to keep 
the feasible region clear and easy to identify. 

• You must be able to find correct solutions to problems 
where the answer must be an integer. 

The main ideas are covered in 
AQA Edexcel MEI OCR 
D1 D1 D1 D1 

The main ideas in this chapter are 
 
Formulating a problem as a linear 
programming problem, solving a Linear 
Programming Problem (maximisation and 
minimisation) and Integer Programming. 
 

 
Formulating a problem as a 
Linear Programming Problem 
First: identify the variables about which a decision is to be made. These are sometimes called the decision variables. For example 
if your problem is to decide how many chairs to make and how many tables to make to maximise profit, begin with a statement like 
– let x be the number of chairs and let y be the number of tables. If your problem is to work out how many grams of wheatgerm and 
how grams of oat flour there should be in a new food product to meet nutritional requirements and minimise cost then let x be the 
number of grams of wheatgerm and let y be the number of grams of oat flour. 

Next: Decide what the objective function is (this is the value you are trying to maximise or minimise) and what the constraints are 
as inequalities involving x and y. 

Be careful to use the same units consistently. For example it’s possible that some distances appearing in a problem are given in 
metres and some are given in centimetres. Or some times they could be given in seconds with some given in minutes. Choose one 
type of units and convert everything into those units. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Example: 
A clothing retailer needs to order at least 200 jackets to 
satisfy demand over the next sales period. He stocks two 
types of jacket which cost him £10 and £30 to purchase. 
He sells them at 20 pounds and 50 pounds respectively. 
He has 2700 pounds to spend on jackets. 
 
The cheaper jackets are bulky and each need 20cm of 
hanging space. The expensive jackets need only 10cm 
each. He has 40m of hanging space for jackets. 
 
The retailer wishes to maximise profit. Assuming that all 
jackets will be sold, formulate a linear program, the 
solution of which will indicate how many jackets of each 
type should be ordered. 

Formulation as a linear program 
The decision is about how many of two types of jacket need to 
be ordered.  
Let x = number of cheaper jackets ordered 
Let y = number of expensive jackets ordered 
The profit, P, given by selling all of these, is , 
since the profit made on a cheaper jacket is 10 pounds and the 
profit made on an expensive one is 20 pounds. 

10 20P x= + y

The constraints are: 
1. “needs to order at least 200” giving  200+ ≥x y
2. “cost him 10 pounds and 30 pounds” and “has 2700 pounds 
to spend” giving 10  30 2700x y+ ≤
3. “20cm of hanging space” and “10cm” and “has 40m of 
hanging space” giving 0.2  0.1 40x y+ ≤

 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
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Solving a Linear Programming Problem 

Draw a graph in which each constraint is represented by a line with shading. The unacceptable side of the line should be shaded. 
This leaves a “feasible region”. The solution of the problem will be one of the vertices of the feasible region. These can be checked 
to find the best. We do this below for the example introduced over the page. 
 
 Drawing the line representing a constraint. 

As an example, take the constraint 
from the example over the page. 

The feasible region. 
Once you have drawn all the constraints, the feasible region 
is the intersection of the acceptable regions for all of them. 0.2 0.1 40x y+ ≤

x

y 

350 50 

350 

50 

The initial aim is to 
draw the line 

. We 
know this is a 
straight line so it’s 
enough to find two 
points on the line 
and join them. When 
x = 0, y = 400 and 
when y = 0, x = 200. 
So the points 

0.2 0.1 40x y+ =

(0, 400) and (200, 0) 
are on the line. 
Then shade out, the unacceptable region. To find the 
unacceptable region just test a point to see if it satisfies the 
constraint or not. For example, in this case (10, 10) clearly 
satisfies the constraint and so is in the acceptable region. 

(200,0) 

(0,400) 

x 

y

350 50

350 

50

Feasible 
Region 

200x y+ ≥

10 30 2700x y+ ≤

0.2 0.1 40x y+ ≤

 
 
 
 

 
 
 

 
 

Constraint 1 

Constraint 2 

Constraint 3 

Finding the solution 
The solution of the problem will be at one of the vertices 
of the feasible region. You will need to solve simultaneous 
equations to find the co-ordinates of these vertices. Then 
each vertex must be checked to find the best. For example 
in the above we have a feasible region as in the diagram on 
the right.  The coordinates of point A are found by solving 
x + y = 200 and 10x + 30y = 2700 simultaneously. The 
solutions are x = 165 and y = 35. So the point is (165, 35) 
and the profit at that point is P = 10x + 20y = 1650 + 700 = 
2350. Similarly it can be seen point B is (186, 28) giving a 
profit of 2420. Point C is (200, 0) giving a profit of 2000. 
So the best profit that can be made is by buying 165 cheap 
coats and 35 expensive coats. 

x 210 160

A B 

C

Considering 
Gradients. 
By calculating 
the gradients of 
each of the 
constraints and 
the gradient of 
the objective 
function, it’s 
possible to 
predict in 
advance which 
vertex will give 
the optimal 
solution.

Minimisation problems are solved in exactly the same way. Just remember that this time you are looking for the vertex 
which makes the objective function the lowest. 

Integer Programming 
If the solution to the problem has to have integer values then points with integer value coordinates, close to the optimal point 
can be checked. This is likely to reveal the optimal solution but it is not guaranteed to. For example suppose the Objective 
Function is 2  and that this should be maximised. The optimal point may be (30.6, 40. 8) but do not assume that 
(30.40) will give the best solution; you must look at all the points with integer coordinates that are nearby: (31, 40), (30, 41), 
(30, 40) and (31, 41).  

3x + y

However (31, 41) and (31, 40) are not in the feasible region. You can check this by substituting in the values into the 
constraints. Of the two points nearby which are in the feasible region, namely (30, 41) and (30, 40), it can be seen that 
(30, 41) provides the best profit. 
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The main ideas in this topic are: 
Modelling real situations using bipartite 
graphs. 

Using the maximum matching algorithm to 
solve problems. 

Before the exam you should know: 

Matchings 

The main ideas are covered in 
AQA Edexcel MEI • What is meant by  a bipartite graph. 

• That a matching maps vertices in one set to vertices 
in a second set. No vertex may be used more than 
once. 

• For a complete matching the two sets must have the 
same number of vertices. 

• A complete matching pairs every vertex in the first 
set to one in the second set. 

• A maximal matching is one where there is no 
solution that uses a greater number of edges. 

• A complete matching is always maximal, but a 
maximal matching is not necessarily complete. 

OCR 
D1 D1  D2 

A bipartite graph has two sets of vertices, X and 
Y such that the edges only connect vertices in set 
X to those in set Y and never to vertices in the 
same set.  

The algorithm for finding a maximum matching 
1. Always start with an initial matching. 
2. If the matching is not maximal it can be improved by 
finding an alternating path.  
An alternating path: 
• Starts on an unmatched vertex on the right hand side.  
• Consists of edges alternately not in and in the 

matching. 
• Finishes on an unmatched vertex in the second set. 
3. If every vertex is now matched so we have a complete 
matching. If it is not, then repeat step 2. 
4. The solution consists of:  
• Edges in the alternating path but not in the initial 

matching. 
• Edges in the initial matching but not in the alternating 

path. 

 
P  

  
A 
 
 
B 
 
 
C 
 
 

 
 
 
 
 
 
 
 
 
 
 
Example 
A college has to fit French, Geography, History, 
Maths and Science into a single timetable slot. 
There are five teachers available all of whom can 
teach two or more of these subjects.  

Ann can teach French and Geography. 
Bob can teach French, Maths and Science. 
Carol can teach Geography and History. 
David can teach Geography, Maths and Science. 
Elaine can teach History Maths and Science. 

How should the college allocate the staff so that all subjects are covered? 
 

 

 
 

Q 
 
 
R 
 
 
S D 

A, B, C, D 
are the 
vertices in 
set X 

P, Q, R, S 
are the 
vertices in 
set Y 

Disclaimer: Every effort has gone into ensuring the accuracy of this document. However, the FM Network can accept no responsibility for its content matching 
each specification exactly. 
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Solution 
A  F 

Start by drawing a bipartite graph to model the situation   
   G   B        H C   

  These vertices 
represent the 
teachers 

 These vertices 
represent the 
subjects 

D M  
   
E  S  

 
 
Start with an initial matching: 

A
 
 
B
 
 
C
 
 

D
 
E

 F 
 
 

 G 
 
 
 H 
 
 
M 
 
 S 

         A – G, B – M, C – H, D – S 

This is not a maximum matching since Elaine has not been  
allocated a subject and there is no-one to teach French. 

 
 
 
We must try to find an alternating path 
 
Start on an unmatched vertex on the right hand side (F) *A  F 

  
Choose an edge which is not in the initial matching (FA)  

 G 
 
 
 H 
 
 
M 
 
 S 

 
BChoose an edge which is in the initial matching (AG) 
 

Choose an edge which is not in the initial matching (GC)  
CChoose an edge which is in the initial matching (CH)  
 

Choose an edge which is not in the initial matching (HE) D
   
E*We have now reached E which was not in the initial matching so 

we have a breakthrough. 

The laternating path is F – A – G – C – H – E  

 

The solution consists of:  
• Edges in the alternating path but not in the initial matching:  AF, CG, EH 
• Edges in the initial matching but not in the alternating path:  BM, DS 
 
So the solution is: 
 
Ann teaches French 
Bob teaches Maths 
Carol teaches Geography 
David teaches Science 
Elaine teaches History 
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 1. Choose a vertex… 

2. Choose the shortest edge from this 
vertex to any vertex connected directly 
to it… 

3. Choose the nearest vertex not yet in 
the solution which is connected to any 
vertex which is in the solution and 
which does not create a cycle… 

4. Repeat step 3 until all the vertices 
are connected then stop. 

 

 
Minimum Spanning Tree 
The minimum connector problem is to make a selection of the available edges so that any one vertex can be 
reached from any other, and the total length of the chosen edges is as small as possible. A connected set of 
edges with no loops is called a tree and the set which solves the minimum connector problem is the minimum 
spanning tree for the network. 

Kruskal’s Algorithm 
 
 
 
 

 
 
 
 
Prim’s Algorithm on a network  
  

 
  

   

Before the exam you should know: The main ideas are covered in 
AQA Edexcel MEI • How to show all the working clearly, there are more 

marks for the working than for getting the right answer. 
• The distinction between Kruskal’s and Prim’s algorithms. 

OCR 
D1 D1 D1 D1 

• How to apply Prim’s algorithm to both a network and a 
table correctly. 

• Applying Dijkstra’s Algorithm to find the 
shortest (or least value path from one vertex 
to any other vertex in the network. 

• Appling Kruskal’s and Prim’s Algorithms to 
find the minimum spanning tree of a network. 

 
The main ideas in this topic are • That Prim’s and Kruskal’s algorithms will usually give 

the same MST but often select the edges in a different 
order. Make sure you show sufficient working so that the 
examiner can see which algorithm you have used. 

• How to work with networks or tables and be able to 
convert between the two.  

• That you must always show all the working values as 
well as the permanent labels when using Dijkstra’s 
algorithm. 

1. Choose the shortest 
edge (if there is more 
than one, choose any of 
the shortest)… 

2. Choose the next shortest 
edge in the network (it 
doesn’t have to be joined 
to the edges already…

3. Choose the next shortest 
edge which does not create 
a cycle and add it… 

4. Repeat step 3 until all 
the vertices are 
connected then stop. 

Length of minimum spanning 
tree: 14 

C 
2

4 

A 

B 

C 

6 3 

4 
2 

4 3 

3 2 

A 

B 

D 
D 

E 

F F 2 3 
2 C 

E 
B 

2 
C 

E 

2 C 2 
E B 

3 
D 

3 
2 

2 C 
F 

E 
B 

4 3 
3 

2 
2 
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B 

D 

F 

C 
E 

4 

A

B 

A 

D D

C

A 

4 
2

B E
2

 

C

A A

4
2

B E
2

3 F3

C4 
2 

B 

3

E
2
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1. Label the start vertex with permanent label 0 and order label 1. 
2. Assign temporary labels to all the vertices that can be reached 

directly from the start. 
3. Select the vertex with the smallest temporary label and make its 

label permanent. Add the correct order label. 
4. Put temporary labels on each vertex that can be reached directly 

from the vertex you have just made permanent. The temporary 
label must be equal to the sum of the permanent label and the 
direct distance from it.  If there is an existing temporary label at a 
vertex, it should be replaced only if the new sum is smaller.  

5. Repeat steps 3 and 4 until the finishing vertex has a permanent 
label. 

6. To find the shortest paths(s), trace back from the end vertex to the 
start vertex. Write the route forwards and state the length. 

 

 
 
 
 
 
 
 

 
 

 
 

 
 
 
 
 
 
 
Dijkstra’s Algorithm for the shortest path 
 
 
 
 
1. Step 1 
 
 
 
 
 
 
 
 
 
 
2. Steps 2  
and 3 
 
 
        5. Steps 4 and 5 
 
 
 
 
 
 
3. Steps 4  
and 5 
 
 

6. Steps 4 
and 5 

 
 
 
4. Steps 4  
and 5 
                           7. Step 6 
 

Prim’s Algorithm on a Table 
1. Choose a column and cross out its row. Here D 

has been chosen. Delete row D. 
2. Choose the smallest number in the column D 

and circle it. If there is a choice, choose either. 
3. For the number you have just circled, cross out 

its row and put an arrow above its row at the 
top of the table. 

4. Choose the smallest number not already 
crossed out from the arrowed columns and 
circle it.  

5. For the number you have just circled, cross out 
its row  

6. and put an arrow above it’s row at the top of 
the table. 

7. Continue till all vertices have been included in 
the tree. 

1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3

3E 2 -
F 6 3 3 -

3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -
F 6 3 3 -

3
3

2 2 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -

3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -
F 6 3 3

3
3
-

2 4 5 3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 - 3
E 2 - 3
F 6 3 3 -

2 

3
3

F 6 3 3 -
6 5 3 1
A B C D E F

A - 4 4
B 4 - 2
C 4 2 - 3 2 6
D 3 -
E 2 -
F 6 3 3 -

4 

3
3

2 4 

Length of minimum spanning tree 14 
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Solution: 
Shortest path ACEF 
Length 9 
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REVISION SHEET – DECISION MATHS  REVISION SHEET – DECISION MATHS  

  

Networks: Travelling Salesperson and Route Inspection Networks: Travelling Salesperson and Route Inspection 

Before the exam you should know: 
• That a Hamiltonian cycle is a tour which contains every 

vertex (node) precisely once. 
• That an Euler cycle is a tour which travels along every edge 

of a network. 
• That the Nearest Neighbour algorithm is used for finding 

upper bounds for the TSP.  The main ideas in this topic are: 
• That the Nearest Neighbour algorithm will always produce 

a tour but it may not be the optimal solution. Finding bounds within which the solution to 
the Travelling Salesperson problem lies. • How to find a lower bound to TSP by deleting a vertex. 

• That it may be possible to improve the tour by 
interchanging the order in which two nodes are visited. 

• The meaning of: order of a vertex (node), traversable graph 
and Eulerian graph. 

• That the direct route is not always the shortest. 
• That you need to identify ALL the odd vertices in the route 

inspection problem. 

Applying the Nearest Neighbour algorithm to 
find an upper bound for the solution. 

Apply the Chinese Postman Algorithm to 
obtain the closed trail of minimum weight. 

The traveling Salesperson Problem The traveling Salesperson Problem 
Upper bounds: Nearest Neighbour Algorithm (NNA) 
Before you can apply the nearest neighbour algorithm you need to 
make a complete matrix of all shortest distance between pairs of 
vertices: 

1. Choose any starting node. 
2. Consider the edges which join the previously chosen vertex to 

not-yet-chosen vertex and choose the one with minimum 
weight.  

3. Repeat Step 2 until all nodes have been chosen. 
4. Then add the arc that joins the last-chosen node to the first-

chosen node. 

A Hamiltonian cycle is defined as a tour which contains 
every vertex precisely once. In a simple case it is easy to 
list all the Hamiltonian cycles but as the number of nodes 
increases, the number of Hamiltonian cycles tends to 
increase very rapidly. There is no algorithm for finding 
the optimal solution to the travelling salesperson
problem. The method used finds a reasonably good 
solution by establishing upper and lower bounds. by establishing upper and lower bounds. 
  

For a full solution, NNA should be repeated starting at each 
vertex in turn. The shortest tour will be the least upper bound. 

Note the similarity between the nearest neighbour method and 
Prim’s algorithm. Do not confuse the two: with Prim, choose the 
least weight arc from all the nodes in the tree. In the nearest 
neighbour, choose the least weight arc from the current node only. 

The main ideas are covered in 
AQA Edexcel MEI OCR 
D1 D1 D2 D1 

Lower Bounds 
1. Delete a vertex and the edges incident on it to form a reduced 

matrix. 
2. Find a minimum spanning tree for the remaining network. 
3. Reconnect the deleted vertex by the two shortest edges. 

Repeat for all vertices. Greatest lower bound is the best lower 
bound 

The Route Inspection Problem The Route Inspection Problem 
The problem is to find a route of minimum length which goes along each edge in the network once and returns to the 
starting point. This type of problem arises in contexts such as a rail safety expert needing to inspect every piece of track 
in a railway system, or a postman needing to walk along every street to deliver mail in the most efficient way possible, 
hence it is often called the Chinese Postman problem because a Chinese mathematician developed the algorithm. 

The problem is to find a route of minimum length which goes along each edge in the network once and returns to the 
starting point. This type of problem arises in contexts such as a rail safety expert needing to inspect every piece of track 
in a railway system, or a postman needing to walk along every street to deliver mail in the most efficient way possible, 
hence it is often called the Chinese Postman problem because a Chinese mathematician developed the algorithm. 
For a network to be traversable it must be Eulerian (no odd nodes) or semi-Eulerian (two odd nodes). A network will 
always have an even number of odd nodes (handshaking theorem). If the network is Eulerian (every vertex is of even 
order) there are many equal optimum solutions. 

For a network to be traversable it must be Eulerian (no odd nodes) or semi-Eulerian (two odd nodes). A network will 
always have an even number of odd nodes (handshaking theorem). If the network is Eulerian (every vertex is of even 
order) there are many equal optimum solutions. 
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Example: For the network shown below 

(a) Find the length of the shortest closed trail 
that covers every edge on the network 
below and write down a suitable route 

(b) Find an upper bound for the Traveling 
Salesperson problem, starting at vertex A. 

(c) Find a lower bound for the Traveling 
Salesperson by deleting vertex A. 

(d) Give a suitable route 

Solution:                                                                       
(a) Odd vertices are A, C, D and E. 

Consider all the possible pairings of odd vertices: 
 AC = 6              and  DE = 14 total = 20 
 AD = 11 and  CE = 6 total = 17 
 AE = 12 and  CD = 8 total = 20 

The pairing of least weight is AD and CE = 17. 

The sum of the weights in the network is 124. 

Repeating AD and CE gives a total weight = 124 + 17 = 141. 

A suitable route is A – B – E – F – D – A – C – B – F – C – E – C – D – A.      

  
 
(b) Nearest Neighbour algorithm 
Upper bound has length 
6 + 17 + 6 + 12 + 8 + 22 = 71 
Route: A – C – E – B – D – F – A      
Interpreted this is: 
A – C – E – B – C – D – F – E – C – A 

 
 
(c) delete vertex A 
 

 

 

   (d)  49 ≤ the length of the route ≤ 71 

         A suitable route would be A – B – E – F – D – C - A  

         Length 12 + 8 + 10 + 12 + 8 + 6 = 56 
 

 1 4 2 5 3 6 
 A B C D E F 

A - 12 6 11 12 22 
B 12 - 9 17 8 18 
C 6 9 - 8 6 16 
D 11 17 8 - 14 12 
E 12 8 6 14 - 10 
F 22 18 16 12 10 - 

The Algorithm can be stated as follows: 

1. Identify the odd vertices in the network. 
2. Consider all the routes joining pairs of odd vertices 

and select the one with the least weight. 
3. Find the sum of the weights on all the edges. 
4. Shortest distance is the sum of the weights plus the 

extra that must be traveled. 
5. Find a tour which repeats the edges found in step 2. 

 

A

11 

6 

24 

8 B E 

10 12 6 
9 

D

C 
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8

18 

12 

D 

24 

9 

8 

10 6 

B E 
Minimum connector for the remaining network: 6 + 8 + 8 + 10 = 32
Minimum distance to reconnect A: 6 + 11 = 17 

Lower bound = 32 + 17 = 49 
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