EXAMINATION HINTS

Before the examination

- Dobtain a copy of the formulae book and use it!
- Write a list of and LEARN any formulae not in the formulae book
- Learn basic definitions
- Make sure you know how to use your calculator!
- Practise all the past papers TO TIME!

At the start of the examination

- A Read the instructions on the front of the question paper and/or answer booklet
- NOpen your formulae book at the relevant page

During the examination

- $\ensuremath{\mathfrak{B}}$ Read the WHOLE question before you start your answer
- ⁽¹⁾ Start each question on a new page (traditionally marked papers) or
- ⁽²⁾ Make sure you write your answer within the space given for the question (on-line marked papers)
- ① Draw clear well-labelled diagrams
- ^(b) Look for clues or key words given in the question
- ⁽¹⁾ Show ALL your working including intermediate stages
- ② Write down formulae before substituting numbers
- ^(S) Make sure you finish a 'prove' or a 'show' question quote the end result
- Don't fudge your answers (particularly if the answer is given)!
- ⁽¹⁾ Don't round your answers prematurely
- ⁽¹⁾ Make sure you give your final answers to the required/appropriate degree of accuracy
- ⁽¹⁾ Check details at the end of every question (e.g. particular form, exact answer)
- ^(b) Take note of the part marks given in the question
- ⁽²⁾ If your solution is becoming very lengthy, check the original details given in the question
- [®] If the question says "hence" make sure you use the previous parts in your answer
- ^(I) Don't write in pencil (except for diagrams) or red ink
- Write legibly!
- ② Keep going through the paper go back over questions at the end if time

At the end of the examination

If you have used supplementary paper, fill in all the boxes at the top of every page

C4 KEY POINTS

C4 Algebra and functions

Partial fractions: Methods for dealing with degree of numerator \geq degree of denominator, partial fractions of the form

 $\frac{2x+3}{x(x-1)(2x+1)} \equiv \frac{A}{x} + \frac{B}{x-1} + \frac{C}{2x+1} \text{ and } \frac{5-x}{(x+2)(x-3)^2} \equiv \frac{A}{x+2} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$

C4 Coordinate geometry

Changing equations of curves between Cartesian and parametric form

Use of $\int y \frac{dx}{dt} dt$ to find area under a curve

C4 Sequences are series

Expansion of $(ax + b)^n$ for any rational *n* and for $|x| < \frac{b}{a}$, using

$$(1+x)^{n} = 1 + nx + {}^{n}C_{2}x^{2} + \dots + {}^{n}C_{r}x^{r} + \dots + x^{n} = 1 + nx + \frac{n(n-1)}{2!}x^{2} + \frac{n(n-1)(n-2)}{3!} + \dots + x^{n}$$

where ${}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

C4 Differentiation

Implicit and parametric differentiation including applications to tangents and normals Exponential growth and decay

 $\frac{\mathrm{d}(a^x)}{\mathrm{d}x} = a^x \ln a$

Formation of differential equations

C4 Integration

$$\int e^{x} dx = e^{x} + c \qquad \int e^{kx} dx = \frac{1}{k} e^{kx} + c$$

$$\int \frac{1}{x} dx = \ln |x| + c \qquad \int \frac{1}{ax} dx = \int \frac{1}{a} \cdot \frac{1}{x} dx = \frac{1}{a} \ln |x| + c_{1} \quad \text{or} \quad \int \frac{1}{ax} dx = \frac{1}{a} \ln |ax| + c_{2}$$

 $\int \cos kx \, dx = \frac{1}{k} \sin kx + c \qquad \int \sin kx \, dx = -\frac{1}{k} \cos kx + c \qquad \int \sec^2 kx \, dx = \frac{1}{k} \tan kx + c$

Use of
$$\int \frac{f'(x)}{f(x)} dx = \ln |f(x)| + c$$
 and $\int f'(x) [f(x)]^n dx = \frac{[f(x)]^{n+1}}{n+1} + c$

Integration of other trig. functions: see formulae book

Volume: use of $\int \pi y^2 dx$ when rotating about *x*-axis

Integration by substitution Integration by parts Use of partial fractions in integration

Differential equations: first order separable variables

e.g.
$$f(x)g(y)\frac{dy}{dx} = h(x)k(y) \implies \int \frac{g(y)}{k(y)} dy = \int \frac{h(x)}{f(x)} dx$$

Trapezium rule applied to C3 and C4 functions

$$\int_{a}^{b} f(x) dx \approx \frac{1}{2} h[y_0 + y_n + 2(y_1 + \dots + y_{n-1})] \quad \text{where } y_i = f(a + ih) \text{ and } h = \frac{b - a}{n}$$

C4 Vectors If $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, $|\mathbf{a}| = \sqrt{x^2 + y^2 + z^2}$

If $\mathbf{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, the unit vector in the direction of \mathbf{a} is $[(x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \div \sqrt{(x^2 + y^2 + z^2)}]$

Scalar product: If $\mathbf{OP} = \mathbf{p} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $\mathbf{OQ} = \mathbf{q} = a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ and $\angle POQ = \theta$, then

 $\mathbf{p} \cdot \mathbf{q} = |\mathbf{p}||\mathbf{q}| \cos \theta$ and $\mathbf{p} \cdot \mathbf{q} = (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) \cdot (a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) = xa + by + cz$

If *OP* and *OQ* are perpendicular, $\mathbf{p.q} = 0$

Vector equation of line where **a** is the position vector of a point on the line and **m** is a vector parallel to the line:

 $\mathbf{r} = \mathbf{a} + \lambda \mathbf{m}$

Vector equation of line where **a** and **b** are the position vectors of points on the line: $\mathbf{r} = \mathbf{a} + \lambda(\mathbf{b} - \mathbf{a})$