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1  Algebra
Partial fractions

1) You must start with a proper fraction: i.e. the degree of the numerator must be less than
the degree of the denominator.

If this is not the case you must first do long division to find quotient and remainder.

2) (a) Linear factors (not repeated)
...... A

(b) Linear repeated factors (squared)

(©) Quadratic factors)
...... _ Ax+B

(ax? +b)(......)  (ax’+h)

...... _ Ax+B
(ax® +bx+c)(......)  (ax®+bx+c)

or

5— X+ 2x?
(L-x)1+ x?)

Solution:  The degree of the numerator, 2, is less than the degree of the denominator, 3, so

Example: Express in partial fractions.

we do not need long division and can write

5— X+ 2x?
_ A + Bx+C multiply both sides by (1-x)(1+x?)

1-x)1+x*)  1-x 1+ x?

5-x+2x* = AL +x%) + (Bx+C)(1-X)

=
= 5-1+2 =2A = A=3 clever value!, put x=1
= 5=A+C = C=2 easy value, put x =0
= 2=A-B = B=1 equate coefficients of x*
5—X+2x° _ 3, x+2
1- X)L+ x?) 1-x 1+x°

Note: You can put in any value for x, so you can always find as many equations as you
need to solve for A,B,C,D....
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X% —Tx+ 22

Example: Express
P P (2x —1)(x - 3)°

in partial fractions.

Solution: The degree of the numerator, 2, is less than the degree of the denominator,
3, so we do not need long division and can write

X2 —Tx+ 22 A, B . C
(2x —1)(x - 3)° 2x -1 (x-3)° X-3

=  X*-7x+22 = A(x-3)> + B(2x-1) + C(2x-1)(x-3)

multiply by denominator

= 9-21+22=5B = B=2 clever value, put x =3
2
= 2_l422= (E) A = A=3 clever value, put x =%
4 2 2
= 22=9A-B +3C = C=-1 easy value, put x =0
x> —Tx+22 3 2 1
= =

2X—D(x-3)7  2x-1 = (x-3)7  x-3

X® +x?-9x-3

Example: Express T g in partial fractions.
X J—
Solution: Firstly the degree of the numerator is not less than the degree of the
denominator so we must divide top by bottom.
¥-9) ¥ + x -9 - 3 (x+1
X - 9
X - 3
X2 - 9
6
x* + x> -9x -3 6
= 5 = x+1 + —
X -9 X° -9
Factorise to give x*—9 = (x—3)(x + 3) and write
6 6 A B o _
= = + multiplying by denominator

x>-9  (x-3)(x+3) x-3  x+3
= 6 = Ax+3) + B(x-3)

= 6 = 6A = A=1 clever value, put x =3
= 6 =-6B = B=-1 clever value, put x =-3
x® +x? —9x -3 1 1
= - = x+1 + — - —
X“ -9 X-3 X+3
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2 Coordinate Geometry
Parametric equations

If we define x and y in terms of a single variable (the letters t or &are often used) then this
variable is called a parameter: we then have the parametric equation of a curve.

Example:

(i)
(ii)

Solution:

U U u

Example:

Solution:

U

VR
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x=2+t y=t?-3 is the parametric equation of a curve. Find
the points where the curve meets the x-axis,

the points of intersection of the curve with the line y =2x + 1.

The curve meets the x-axiswheny =0 = t?=3 = t=+\3
curve meets the x-axis at (2 -3, 0) and (2 + 3, 0).

Substitute for x and y in the equation of the line

y=2x+1,and y=t>-3, x=2+t

t2-3=202+t)+1

?-2t-8=0 = (t—-4)(t+2) =0

t=4or-2

the points of intersection are (6, 13) and (0, 1).

Find whether the curves x =2t +3, y=t*—2 and x=s-1, y=s-23 intersect.
If they do give the point of intersection, otherwise give reasons why they do not
intersect.

If they intersect there must be values of t and s (not necessarily the same), which
make their x-coordinates equal, so for these values of t and s

2t+3=s-1= s=2t+4

The y-coordinates must also be equal for the same values of t and s
tP—2=5-3=(2t+4)-3=2t+1 since s = 2t+4
t?-2t-3=0 =  (t-3)(t+1)=0

t=3,s=10 or t=-1,5s=2

Curves intersect at t =3 giving (9, 7). Check s =10 gives (9, 7).
curves intersect at t=-1 giving (1, -1). Check s =2 giving (1, -1).



Conversion from parametric to Cartesian form

Eliminate the parameter (tor € or ...) to form an equation between x and y only.
Example: Find the Cartesian equation of the curve given by y=t%*-3, x =t + 2.
Solution: x=t+2 = t=x-2, and y=t*-3

= y=(x-2)°-3,

which is the Cartesian equation of a parabola with vertex at (2, —-3)

With trigonometric parametric equations the formulae
sin?t + cos’t = 1 and  sec’t — tan’t = 1
will often be useful.

Example: Find the Cartesian equation of the curve given by
y=3sint+2, x=3cost-1.

Solution:  Re-arranging we have

. -2 X+1
sint = yT and cost:T, which together with sint + cos’t = 1

2 2
N @:Ej +(iﬂj 1
3 3
= (x+1?+(y-2° =9
which is the Cartesian equation of a circle with centre (-1, 2) and radius 3.

Example: Find the Cartesian equation of the curve given by y = 3tant, x =4sec t.
Hence sketch the curve.

Solution:  Re-arranging we have y

2/16-y?/9=1
tant = X, and sectzf, 4 Y
3 4

which together with sec’t — tan’t = 1

X2 y2
= g !

which is the standard equation of a
hyperbola with centre (0, 0)

and x-intercepts (4, 0), (-4, 0).

C4 JUNE 2016 SDB



Area under curve given parametrically

We know that the area between a curve and the x-axis is given by A = [y dx
L @
dx

But, from the chain rule d—A—d—Ax% = d_A— %
| dt  dx " dt at Yt

Integrating with respect to t

dx
A = —dt.
= jyolt

Example: Find the area between the curve y=t?—1, x =t > +t, the x-axis and the lines
x=0 and x=2.

2
Solution:  The area is A:f y dx .
0

?

©odx

= A = f YIE dt we must write limits for t, not x
?

dx
Firstly we need to find y and o in terms of t.

dx
=t?-1 and — =32+ 1.
y dt

Secondly we are integrating with respect to t and so the limits of integration must be for
values of t.

x=0 = t=0,and
x=2 = t+t=2 = £+t-2=0 = (t-1)(E+t+2)=0 = t=1only.
so the limits for t are from 0 to 1

1 dx N
= A= g dt = (-1) 32+ 1) dt

Il 3t -2t2 -1 dt
0

|
1
‘oo
~—
()]
|
‘I\)
N
w
|
~—
1
o
|
|
H
G-

Note that in simple problems you may be able to eliminate t and find [y dx in the usual
manner. However there will be some problems where this is difficult and the above technique
will be better.
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3

Sequences and series

Binomial series (1 +x)" for anyn

n(in-1) “x? 4 n(in-(n-2) %

n _
1+x)" = 1+nx + 2

+ ..

This converges provided that |x| < 1.

Example: Expand (1 +3x) %, giving the first four terms, and state the values of x for
which the series is convergent.
Solution:
(143072 = 1+(Q)x3x + TEED o (3y)2 4 LD 5 (33
= 1-6x + 27x° — 108 + ...

This series is convergent when [3x| < 1 < [x| < Ya.

Example: Use the previous example to find an approximation for 099977

Solution:  Notice that = 0-9997 % = (1 +3x)™ when x =-0-0001.

72
So writing x = —0-0001 in the expansion 1-6x + 27x* — 108x’

0-9997 2 ~ 1 + 0-0006 + 0-00000027 + 0-000000000108 = 1-000600270108
The correct answer to 13 decimal places is 1-0006002701080 not bad eh?

1
Example: Expand (4-x)2, giving all terms up to and including the term in x*, and state

for what values of x the series is convergent.

Solution:  As the formula holds for (1 +x)" we first re-write

1 1 x\2 X )2
(4-x)2 = 42 l—z = 2x|1-— and now we can use the formula

1
N
X
VN
[N
+
[
|
A x
N—
+
N[
|
N[~
X
|
Bx
N—
)
+
N[
X
|
@ N
X
|
N
X
|
B x
N—
w
+
~—

This expansion converges for || <1 <« |x|<4.
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Example: Find the expansion of

X2 —x—

Solution:  First write in partial fractions

3x-1 2 1 : _
7 = + , which must now be written as
X°—X—6 X+3 x-2
2 B 1
31+%)  2(1-3)

= 3037 - 30

-1 . .
5 in ascending powers of x up to x“.

2

2 [“ o2 MH] 1 (H o)+ M(_j]
3 3 2! 3 2 2 2! 2

1 17x 11xX°
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4

Differentiation

. . d d
Relationship between =2 and =
dx dy
Vo1 s o2 ing the chain rul
dx ~dy dx | ax using the chain rule
dy
d dx 1
Soif y=3¢ = L = 6x = — = =

Implicit differentiation

10

This is just the chain rule when we do not know explicitly what y is as a function of x.

Examples: The following examples use the chain rule (or implicit differentiation)

dy?) _d0”) dy _ 5,4y

dx dy — dx dx
d(siny) _ dGsiny)  dy _ COsyd_y

dx dy dx dx
d(5d3;2y) = 10xy + SxZZ—y using the product rule
i(xz +3y)3 = 3(X2 +3y)2 x i(x2 +3y) = 3(x2 +3y)2 x (2x+3ﬂj
dx dx .

Example: Find the gradient of, and the equation of, the tangent to the curve

x> +y*—3xy = -1 atthe point (1, 2).

Solution:  Differentiating x*+y?—3xy = —1 with respectto x gives

dy dy
2X+2y— — | 3y+3x—| =0
X ydx (y dx)
ﬂ:3y—2x - ﬂ:4 when x=1 andy=2.
dx  2y-3x dx

Equation of the tangentis y—-2 = 4(x-1)
= y=4x-2.

C4 JUNE 2016 SDB



Parametric differentiation

d d
dy _ dy dt _ dy _
dx dt dx dx

2/8[ai8

Example: A curve has parametric equations x = t*+t, y=t3-3t.

(i)  Find the equation of the normal at the point where t = 2.
(i)  Find the points with zero gradient.

Solution:
() When t =2, x=6 and y=2.

dy 2 dx
— =3t°-3and — = 2t+1
dt M

dy ¥ 3t2-3 9
— = = == when t=2
dx % 2t +1 5

=

Thus the gradient of the normal at the point (6, 2) is %5

and its equationis y—-2 = _?5 (x—6) = 5x + 9y = 48.
N . dy 3t°-3
radient = 0 when — = =
(i) gradi W dx  2t+1

= 3t°-3=0
= t=+1
= points with zero gradient are (0, 2) and (2, -2).

Exponential functions, a*

Proof (i) y=a

= Iny=Ina* =xlna
1dy 1 y 1
= —=1lna = — = na
ydx dx 7
d(a*
= ( )=axlna
dx
Proof (i) y=a" = (elna)x = egXIna since a=en®
= % = eXIn@ x|ng = g*lna chain rule
d(a*
= ( )=axlna
dx

C4 JUNE 2016 SDB
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Example: Find the derivative of y = 3%,

d d(x?
Solution: %= 3** In3 x Elx) = 3*In3 x 2x
Example: Find the derivative of y = 55In%,
] dy . d(sinx) .
Solution: E: 551X In5 X P = 55"*In5 X cosx

Related rates of change
We can use the chain rule to relate one rate of change to another.
Example: A spherical snowball is melting at a rate of 96 cm® s ™ when its radius is 12 cm.

Find the rate at which its surface area is decreasing at that moment.

Solution:  We know that V = % nrd and that A=47r?

Using the chain rule we have

d—V:d—V><£:47zr2><ﬂ since d—V:47zl’2
dt  dr dt dt’ dr
= d—V = 4zr® x a
dt dt
= 96 = 4x rx12? ><ﬁ
dt
=N a1 cms*t
dt 67

Using the chain rule again

d—A—d—Axﬁ—&rrxg since %—87”
dt  dr dt dt ' dr

- d—A:8><7r><12><i=16cm2871
dt 671

12 C4 JUNE 2016 SDB



Forming differential equations

Example: The mass of a radio-active substance at time t is decaying at a rate which is
proportional to the mass present at time t. Find a differential equation connecting the

mass m and the time t.

i dm . . . -
Solution: Remember that —— means the rate at which the mass is increasing so in this

case we must consider the rate of decay as a negative increase

dm .
= — o« -

dt

dm . . L
= e = —km, where k is the (positive) constant of proportionality.

1
= f— dm = f—ktdt

m

= In|m|:—§kt2+InA
= |4 = e
Al 2

C4 JUNE 2016 SDB
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5 Integration

Integrals of e* and
Iex dx = e* + ¢

Jl dx = In|x| + ¢
X

3
Example: Find JX +23X
X

3
Solution: JX +3x dx

X2

Standard integrals

dx

= Jx+§ dx = %x* + 3In[x] +c.

for a further treatment of this result, see the appendix

x must be in RADIANS when integrating trigonometric functions.

f () [ 100 dx f () [ £00 dx
) Xn+l -
X — sin x — COS X
n+1
1 In | x| COS X sin x
e* e sec X tan x sec X
sec’ X tan x
COSEC X COt X — COSEC X
cosec’ X —cot x

Integration using trigonometric identities

Example: Find J'cotz X dXx-

Solution: cot’x = cosec®’x — 1
= jcotzx dx = J'coseczx — 1 dx

= —cotx — X + cC.

14 C4 JUNE 2016 SDB



Example: Find ISi”Z X dx.
Solution:  sin®x = Y% (1 - cos 2X)
= f sin®x dx = J' 1% (1—cos2x) dx
=  Yox - Yusin2x + c.
You cannot change x to 3x in the above result to find I sin? 3x dx.- see next example
Example: Find j sin? 3x dx.
Solution:  sin®3x = % (1 -cos2 x 3x) = % (1 - cos 6x)
= jsin23x dx = J'}g(l—cos6x) dx

= Yo — Y1psinbx + C.
Example: Find Isin 3x cos 5x dx.

Solution:  Using the formula 2 sin A cos B = sin(A + B) + sin(A - B)
This formula is NOT in the formula booklet — you can use the formulae for sin(A + B) and add them

fsin 3x cos bx dx

U, [singx + sin(=2x) dx = %, sin8x — sin 2x dx
= — 16 cos 8x + Vicos2x + cC.

Integration by ‘reverse chain rule’

Some integrals which are not standard functions can be integrated by thinking of the chain
rule for differentiation.

Example: Find I sin® 3xcos3x dx-
Solution: J' sin* 3xcos3x dx

du
If we think of u =sin 3x, then the integrand looks like u* ™ if we ignore the

constants, which would integrate to give /s u®

so we differentiate u® = sin® 3x
. d - 5 - 4 . 4
to give &(sm 3x) = 5(sm 3x)x30033x = 15sin” 3x cos 3x

which is 15 times what we want and so

H" e}
J'sin43xcos3x dx = 3 SiN°3x + ¢

C4 JUNE 2016 SDB 15



X

Example: Find fm dx
X —

Solution: jﬁ dx
X p—

1 du
If we think of u = (2x? - 3), then the integrand looks like Ui if we ignore the

constants, which would integrate to In m

so we differentiate In |u\ = 1In \2x2—3\
d 1 4x
togive —(In[2x*=3]) = —— x 4x = ———
giv dX( | |) 2X2_3 (2X2—3)

which is 4 times what we want and so

J.(sz—xg)dx = 1/4|n|2X2—3| + C.

f'()
f)

Example:  Find fxez"2 dx

In general f dx =In|f(x)| + ¢

Solution:  First consider %(emz) = 4x e?", which is 4 x the integrand

2

, eZX
= fxezx dx = +c
Example:  Find f53x dx
Solution:  We know that %(53’5) = 5%In5 x 3, using the chain rule
3x
3x —
= fS dx = 3% +c
Integrals of tan x and cot x
sin x —sinx
Jtanx dx = J—dx = —I dx,
COS X COS X
f'(x
and we now have IL dx = In|[f(x)| + ¢
f(x)

—In|cosx| + ¢

=  Jtanx dx
In |secx\ +cC

=  [Jtanx dx
cot x can be integrated by a similar method to give
cotx dx = In|[sinx| + c

C4 JUNE 2016 SDB
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Integrals of sec x and cosec x

secx(secx + tanx) dx = Isec2 X+sec x tan x

[secxdx = I
SecX + tanx Secx + tanx

dx

The top is now the derivative of the bottom

f'(x)
andwehave |—= dx = In|f(X)|+ ¢
I F 0 ()
—  [secxdx = In|secx+tanx| + ¢
and similarly

[ cosec x dx = —In \cosecx+cotx| +cC

Integration using partial fractions
For use with algebraic fractions where the denominator factorises.
6Xx

Example: Find | —————— dx
P I X2 +x—2
Solution:  First express 2L in partial fractions.
X“+X—-2
X A B
6x 6 _ N

Xax—2  (x-D(x+2)  x-1  x+2
= 6x =A(X+2) + B(x-1).

put x =1 = A=2,

put x =-2 = B=4

= Izde= L+ 4 dx
X +X-2 x—-1 X+ 2

= 2Injx-1] + 4Inx+2| + c.

Integration by substitution, indefinite

Q) Use the given substitution involving x and u, (or find a suitable substitution).

du dx
(i) Find either ™ or m whichever is easier and re-arrange to find dx in terms
of du,i.e dx=...... du

(iif)  Use the substitution in (i) to make the integrand a function of u, and use your
answer to (ii) to replace dx by ...... du.

(iv)  Simplify and integrate the function of u.
(v) Use the substitution in (i) to write your answer in terms of x.
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Example:

Solution:

(i)

(iii)

(iv)

v) =

Example:

Solution:

(i)

(iii)

(iv)

v)

Example:

Solution:

(i)

18

Find I x+/3x% —5 dx using the substitution u = 3x*—-5.

(i) u=3x*-5

d—u:6x = dx:d—u
dx 6X

We can see that there an x will cancel, and V3x2 —5 = Ju

[ x3x* =5 dx =fX\/U% = j% du

1
= 1 u
= Ej u2 du = — X— 4+ C
6 6 32
3
2 _ )2
(3x° =5) L
9
Find f ! _ dx using the substitution x = tan u.

1+x

() X = tanu.

dx
i sec’U = dx = sec’u du.
u

I 12 dx =_|';zseczu du
1+x l+tan“u

2

sec” u .

= j — du since 1+tan’u = sec’u
sec” u

= I du = u+¢

= tan tx + ¢

. 3X . T 2_2

Find J' - dx using the substitution u“=x"-4.

X -4

(i) u=x-4

Do not re-arrange as u = Vx? — 4

d du
We know that &(uz) = 2u ™ so differentiating gives

2ud—u = 2X = dx:gdu.

dx X

C4 JUNE 2016 SDB



(iii)  We canseethatan x will cancel and x> — 4 = uso

I 3 dx :J.%xgdu
x> -4 u X
(iv) = .deu = 3u +c

() = 3Jx? =4 + ¢

A justification of this technique is given in the appendix.

Integration by substitution, definite

If the integral has limits then proceed as before but remember to change the limits from
values of x to the corresponding values of wu.

Add (ii) (a) Change limits from x to u, and
new (v) Put in limits for wu.

Example: Find JG x+/3x — 2 dx using the substitution u=3x - 2.
2

Solution: (i) u=3x-2.
du du
ii — =3 dx = —
(i) ix = 3

(ii) (&) Change limits from x to u
X=2 =>Uu=3x2-2=4,and x =6 > u=3x6-2=16

6 _ (s u+2_ 5 du
(i) [Px/3x—2 dx = L SRt o
3 1
16 — —
(iv) = gL u? + 2u2 du
5 3 16
2 2
= %{— +oox
5 3
2 2
4
() = 1[2x1024 + £x64] — 1[2x32+4x8]= 5244 t0 3S.F.
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Choosing the substitution

In general put u equal to the “awkward bit” — but there are some special cases where this will
not help.

[x3(x?2+1)° dx put u =x*+1
f(xi’;)z dx put u = x-2
[xV2x+5 dx put u = 2x+5 or u’=2x+5
n
[x" V4 —x2 dx or f = dx
2 24—x2 e
put u or U = 4-x only if nis ODD
put X = 2sinu only if nis EVEN (or zero)

this makes v4 — x2 =+v4cos?2u = 2 cosu

There are many more possibilities — use your imagination!!

Example: Find I=[+16 —x2 dx, and express your answer in as simple a form as
possible.

Solution:  This is of the form [ x™ V16 — x2 dx where n =0, an even number
= use the substitution x =4 sin u,

= dx=4cosudu

= | =[V16—16sin2uX4cosu du
f16cos?u du = 8f1+cos2u du

8 (u + %sinZu) + c
X=4sinu = u=arcsin G)
but sin2u = sin (2 arcsin G)) is not in the simplest form.

Instead write 1 =8 (u + % X 2sin u cos u) + c,

use cosu = V1 —sin?u = /1—(%)2
8arcsin(§) + 8><§>< /1—(%)2 +C

8arcsin(§) + §V16—x2 +c

= |
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Integration by parts

The product rule for differentiation is

d(uv) dv du dv d(uv) du
o 't T Y& T T Vax
dv du
= fuadxzuv—fvadx

To integrate by parts

d
(1) choose u and &
dx

du
ii find d —
(i) ind v an ix

(iii)  substitute in formula and integrate.

Example: Find Ixsinx dx
Solution: (i) Choose u =X, because it disappears when differentiated

dv .
and choose — = SInX
dx

(ii) u:x:>d—u:1 and

dx

dv ]

— =sinx = v= —cCosx

dx

dv du

iii u— dx = uv — [ v— dx
(i) I dx dx
= _[ xsinx dx = —XCOSX — jlx(—cosx) dx

= —XCOSX + sinx + C.
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Example: Find j'nX dx

dv
Solution: (i) It does not look like a product, u&, but if we take u=1Inx and
dv d
— =1 then u—V:Inx><1:Inx
dx dx
du 1 dv
(i) u=lnhx > —=—and —=1= v =x
X X dx

(i) [ Inxxidc = xinx - | Xx% dx

= xInx — x + c.

Area under curve

We found in Core 2 that the area under the curve is written
. b
as the integral [ 'y dx.

We can consider the area as approximately the sum of the
rectangles shown.

If each rectangle has width ox and if the heights of the
rectangles are yi, Y2, ..., Yn a b

then the area of the rectangles is approximately the area
under the curve

Zb:y5x = I:ydx

b b
andas x>0 wehave ) yox — Lydx

This last result is true for any integrable function .
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Volume of revolution y=fX)

¢
N

X+ OX

If the curve of y =f (x) is rotated about the x-axis then the volume of the shape formed can
be found by considering many slices each of width ox: one slice is shown.

The volume of this slice (a disc) is approximately 7y

b
= Sum of volumes of all slices froma to b = Zfry2 OX
b b
and as ox — 0 we have (using the result above Z yox — _[a ydx)

b b
2 2
— Volume ~ za‘/zy SX — J'aﬁy dx .
Volume of revolution about the x—axis
Volume when y =f (x), between x=a and x =b, is rotated about the x-—axis
is V= Ib nyz dx.
Volume of revolution about the y—axis
Volume when y =f(x) , between y=c and y =d, is rotated about the y-axis

is V= Id T x% dy.
Volume of rotation about the y-axis is not in the syllabus but is included for completeness.

23
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Parametric integration

When x and y are given in parametric form we can find integrals using the techniques in
integration by substitution.

fy dx = fy% dt think of “‘cancelling’ the “dt’s
See the appendix for a justification of this result.

Example: If x=tant and y=sint, find the area under the curve fromx=0 to x = 1.
Solution:  The area = J'y dx for some limitson x = I y 3—1( dt for limitsont.
We know that y =sint, and also that
dx )
x=tant => — = sec’t
dt

T

Finding limits fort: x=0 =t=0,and x=1 = t=-

1 T dx
—>area = fydx = f y—dt
0 o ~ dt

T T

i , 7
= sintsec“t dt = tant sect dt
0 0

T
4

= [sect] =V2-1
0

To find a volume of revolution we need I zy? dx and we proceed as above writing

jnyz dx = jnyzg dt

30 Y x=t2-1, y=t
Example: The curve shown has parametric equations
x=t?-1, y=*t. 20
The region, R, between x = 0 and x = 8 above the x-axis
is rotated about the x-axis through 2z radians. Find the 0
volume generated. R
X
\ 4 8
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Solution: V = Ignyz dx -
0

Change limits to t:
Xx=0 =>t=41 and x=8 = t=3,
but the curve is above the x-axis = y=t2>0 =t>0, = t =+1, 0r3

dx
also y = t%, x=t*-1 = E:Zt

8 3 dx
= V= f myldx = f Ty?—dt
0 1 dt

3 3
= f m(t3)? x 2tdt = an t7 dt
1 1

- MH - T3 1)

8 1

Differential equations

Separating the variables

d
Example: Solve the differential equation d—i = 3y+Xy.

d
Solution: d—i = 3y+Xy =y@B+Xx)

We first “‘cheat’ by separating the xs and y s onto different sides of the equation.

= 1 dy = (3+x)dx and then put in the integral signs
y

1

= f—dyz f3+xdx
y

= Iny = 3x+%x2+c.

See the appendix for a justification of this technique.
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Exponential growth and decay

Example: A radio-active substance decays at a rate which is proportional to the mass of the
substance present. Initially 25 grams are present and after 8 hours the mass has
decreased to 20 grams. Find the mass after 1 day.

Solution: Let m grams be the mass of the substance at time t.

dm . ) . ) .
E is the rate of increase of m so, since the mass is decreasing,

dm 1 dm
e —km = Pl -k
S [Edm o= -k
m
= In|m|= —kt + In|A]| see ** below
= In |%| = —kt
= m = Ae™.

When t=0, m=25 —= A=25
= m= 25"
Whent =8 m = 20

= 20 = 2578 = % =08
= 8k = In 08 — k= 0-027892943
Sowhen t= 24, m = 25g 24> 0027892943 — 19 g

Answer 12-8 grams after 1 day.

** Writing the arbitrary constant as In|A| is a nice trick. If you don’t like this you can write

Injm|= —kt+c
— Iml = e kttc — oCp—kt
= m =Ae7k writing e¢ = A.
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6  Vectors
Notation
The book and exam papers like writing vectors in the form
a =3 -4 + 7k
It is allowed, and sensible, to re-write vectors in column form
3
ie.a=3i—-4+7k=1|-4]|.
7
Definitions, adding and subtracting, etcetera

A vector has both magnitude (length) and direction. If you always think of a vector as a
translation you will not go far wrong.

Directed line segments

The vector AB is the vector from A to B,

B
(or the translation which takes A to B).
This is sometimes called the

displacement vector from A to B. A

Vectors in co-ordinate form
Vectors can also be thought of as column vectors,

— 7
thus in the diagram AB = {3}

Negative vectors
—_ . —_— e —_— - 7
AB is the 'opposite' of BA andso BA = —AB = .

Adding and subtracting vectors
(i) Using a diagram
Geometrically this can be done using a triangle (or a parallelogram):
Adding:

[f¥]

(=2

The sum of two vectors is called the resultant of those vectors.
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Subtracting:

(if) Using coordinates

o) lova) = L) =[]

Parallel and non - parallel vectors

Parallel vectors
Two vectors are parallel if they have the same direction
< one is a multiple of the other.
Example:  Which two of the following vectors are parallel?

6 -4 2
-3 |2 [ |1]
. . 6 -3 |-4 6| . -4
Solution:  Notice that = —X and so is parallel to
-3 2 2 -3 2

2 -4
but L} is not a multiple of [ 5 } and so cannot be parallel to the other two

vectors.

4
Example: Find a vector of length 15 in the direction of { 3}.

Solution: a = {

4
3} haslength a= |a| =+v4°+3° =5

4 12
and so the required vector of length 15 = 3 x5 is 3a=3x { 3} = { 9]
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Non-parallel vectors
If a and b are not parallel and if aa + fb = ya + &b, then
wa-ya =6b-pfb = (a-pa = (6-phhb
but a and b are not parallel and one cannot be a multiple of the other
= (a-7)=0=(5-9
= a=y and &=/

Example: If a and b are not parallel and if
b+2a + fb = aa + 3b — 5a, findthe values of « and p.

Solution:  Since a and b are not parallel, the coefficients of a and b must *balance out’

a
2= g-5 = a=7 ad 1+8=3 = B=2

=

Modulus of a vector and unit vectors
Modulus

The modulus of a vector is its magnitude or length.

If AB = [g] then the modulus of 4B is AB = |AB| = V72 + 3% = /58

Or,if ¢ = [_53] then the modulus of ¢ is ¢ = |¢| =/(-3)%2+ 52 = V34

Unit vectors
A unit vector is one with length 1.

-12
Example: Find a unit vector in the direction of [ 5 }

-12
Solution: a :[ : } has length |a| = a =+v12%+5% = 13,

. . . -12 =Lz
and so the required unit vectoris L x a = %x[ } = {13} :
5 5
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Position vectors

If A isthe point (-1, 4) then the position vector of A is the vector from the originto A,

. -1
usually writtenas 0OA = a= [4}
For two points A and B the position vectors are
OA =aand OB = b

To find the vector AB gofrom A0 —>B

giving AB = -a+b=b - a

Ratios

Example: A, B are the points (2, 1) and (4, 7). M lieson AB inthe ratio 1: 3. Find the
coordinates of M.

Solution : AB = Z]
a =38 =5[] = [0
oM = 04+ A = [{] + [} 7]
= o =[5
= Mis (2-5, 2-5)
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Proving geometrical theorems

Example: Inatriangle OBC let M and N be the midpoints of OB and OC.
Prove that BC =2 MN and that BC is parallel to MN.

Solution:  Write the vectors OB as b, and OC as c.

ThenOM = % 0B = %b
and ON = % 0C = Y.

To find MN, go from M to O using —%2 b and M
then from O to N using %2 ¢

— MN = -%b +%¢
Yoc - Y2 b B

= MN

Also, to find BC, go from B to O using -b and
then from O to C using ¢

= BC = b +c=c-b.

But MN = —%.b +%c = %(c-h) = % BC
= BC isparallel to MN

and BC istwice as long as MN.

Example: P lieson OAintheratio 2 : 1, and Q lies on OB in the ratio 2 : 1. Prove that PQ
is parallel to AB and that PQ = /3 AB.

Solution: Let a= OA and b= OB
=b-

and PQ = —0P+ 00 = ?%3b-%sa
=30 - )
= %3 AB
= PQ is parallel to AB and
=  PQ=2%3AB.
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Three dimensional vectors

Length, modulus or magnitude of a vector

&
The length, modulus or magnitude of the vector 04 = a, | Is
8

|ﬁ| = |q| :a:\/a12 +a’ + a’,

a sort of three dimensional Pythagoras.

Distance between two points
To find the distance between A, (a3, az, az) and B, (bs, by, bs) we need to find the length of
the vector AB.

o b1 & b,—a,
AB =b-a =|b|-|a,| =|b-3a
bs CS bs_as

Scalar product
a.b = abcos @
where a and b are the lengths of a and b

and @ is the angle measured from a to b.

Notethat () a.a = aacos0’ = a’

(i)

@) a.b=>b.a since cosd = cos (-6)

QD
i
+
)
~
1
[[s8}
[ox
+
[[s}
10

QD

In co-ordinate form

b,
a.b= {al][bl} = ab, + a,b, = abcos @

or

1
(=3
1
D D o©
N

b,
b, | = ab + a,b, + a;b, = abcos 6.
b,
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Perpendicular vectors

If a and b are perpendicular then 8=90° and cos & = 0

thus a perpendiculartob = a.b =0

and a.b =0 = either a isperpendicularto b or a or b =0.
Example: Find the values of A sothat a =3i-24j + 2k and

b=2i+ 4] + 6k are perpendicular.

Solution:  Since a and b are perpendicular a.b =0

3 2
= |22 A =0 = 6-2A°+12=0
2 6

1 3
Example: Find a vector which is perpendicularto a, |-1|,and b, [1].
2 1

P
Solution:  Let the vector ¢, | q |, be perpendicular to both a and b.

r

p 1 p 3
= |q|.|-1| = 0 and g|.|1| =0
r 2 r 1

= p-q+2r=0 and 3p+q+r = 0.
Adding these equations gives 4p +3r = 0.

Notice that there will never be a unique solution to these problems, so having
eliminated one variable, g, we find p interms of r, and then find q in terms of r.

-3r or
= =— = q=—
4 4
—3r
4
= ¢ isany vector of the form | 5- |,
r
-3
and we choose a sensible value of r = 4 to give 5
4
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Angle between vectors

Example: Find the angle between the vectors

0A=4i-5]+2k and OA = i+ 2j-3k, to the nearest degree.

Solution:  First re-write as column vectors (if you want)

4 -1
a=|-5andb=| 2
2 -3
azla| = VA 457427 =\A5=3/5, b= |p| = VP+2+% = VI
4 -1
and a.b=|-5|.] 2| =-4-10-6 = -20
2 -3
a.b =abcosd = 20 = 35 x +/14 cosd
cos @ — 20 0.796819
= = — = —=0.
370

= 6 = 143° to the nearest degree.

Angle in atriangle
You must take care to find the angle requested, not ‘180 minus the angle requested’.

Example: A (-1,2,4),B,(2,3,0),and C, (0, 2, -3) form a triangle. Find the angle ZBAC.

Solution:
Z/BAC = a, which is the angle between the vectors
AB and AC. B

Note that the angle between BA and AC isthe angle g,
which is not the angle requested.

Then proceed as in the example above.
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Vector equation of a straight line

X

r =y | isusually used as the position vector of a
z

general point, R.

In the diagram the line ¢ passes through the point
A and is parallel to the vector b.

To go from O to R first go to A, using a, and then
from A to R using some multiple of b.

= The equation of a straight line through the point
A and parallel to the vector b is

r=a+Aib

Example: Find the vector equation of the line through the points M, (2, -1, 4),
and N, (-5, 3, 7).

Solution:  We are looking for the line through M (or N) which is parallel to the vector MN.

-5 2 -7
MN =n-m=|3|-|-1|=| 4
7 4 3
2 -7
= equationis r = |-1| + A| 4
4 3

Example: Show that the point P, (-1, 7, 10), lies on the line

1 -1
r=13(+ 4 2
4 3

Solution:  The x co-ord of P is—1 and of the lineis 1- 1
= -1=1-1 => A1=2.
In the equation of the line thisgives y=-1+2x4 =7 and z=4+2x3=10
= P, (-1, 7, 10) does lie on the line.
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Geometrical problems

First DRAW a large diagram to see what is happening; this should then tell you how to use your
vectors to solve the problem.

1 -1
Example: Find A’ the reflection of the point A (2, 4, 0) inthe line 4 r = ( 4 >+/1< 2 )
-1 1

Solution: From the diagram we can see that A2 4,0) x /
AA” is perpendicular to £ N\

So, if we can find the point B, where AB is
perpendicular to 4 we will be able to find A”,

since AB = BA'.

B is a point on ¢

—_

1-2
= OB=b= <4+ZA> for some value of A.
—-1+2

-1
b is perpendicular to 4 and Zis parallel to ( 2 )
1

-1 1-2 -1
= Q.<2>=0: <4+ZA>.<2>=
1 —-1+2 1

= -1+21+8+41-1+1=0 = A=-1

= 0A'=0A+2AB=<4>+2<—2> = (0)
0 -2 —4

= the reflection of A (2, 4,0) in Zis A’ (2, 0, —4).
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Intersection of two lines

2 Dimensions

Example: Find the intersection of the lines

R

Solution:  We are looking for values of A and z which give the same x and y
co-ordinates on each line.

~

Equating x co-ords = 2-1 =1+u

equatingy co-ords = 3+24=3-u
Adding = 5+1=4 = A=-1 = u=2
= lines intersect at (3, 1).

3 Dimensions
This is similar to the method for 2 dimensions with one important difference — you can not be
certain whether the lines intersect without checking.

You will always (or nearly always) be able to find values of A and x by equating
x coordinates and y coordinates but the z coordinates might or might not be equal and
must be checked.

Example: Investigate whether the lines

2 -1 -3 1
1,  r=111+ 4 2 and  / r= 1|1 |+u|3 intersect
3 1 5 1

and if they do find their point of intersection.

Solution:  If the lines intersect we can find values of 4 and u to give the same x,y and z
coordinates in each equation.

Equating x coords = 2-4 = -3+, I
1+ 3, I
equating z coords = 3+1 = 5+ 1

equating y coords = 1+22

2x1+1l = 5=-5+54 = u=2 inl = A=3.
We must now check to see if we get the same point for the values of A and u
In 71, A =23 gives the point (-1, 7, 6);
in /5, u=2 gives the point (-1, 7, 7).
The x and y co-ords are equal (as expected!), but the z co-ordinates are different and so

the lines do not intersect.
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7  Appendix

Binomial series (1 +x)" for any n — proof
Suppose that
f(X) = L+x)" = a+bx+ox®+dc+ex* + ...
putx=0,= 1l=a
= f/(X)=nl+x)""1=b+2cx+3dx’ +4ex’ + ...
put x=0,= n=b

= f'X)=n(h—-1)1+x)""?>=2c+3x2dx + 4 x 3ex* + ...

n(n-1) _

put x=0,= nlh-1)=2¢c =

2!
= 70 =n(n-1)N-2)L+x)"">=3x2d+4x3x2ex+...

put x=0, = n(n-1)(n-2) =3x2d = W:d
Continuing this process, we have

n(n-Hn-2)(n-3) _ e and nn-1)n-2)(n-3)(n—4) _ f, etc.
4! 5!

giving f(x) = (1+x)"

=1 +nx+ n(r;—l)xz + n(n—13)'(n—2)x3 + n(n—l)(zl—z)(n—3) x4 + n(n—l)(n—zs)'(n—3)(n—4) x5 +

+ n(n—l)(n—i? . (n—7r+1) X"+

Showing that this is convergent for |x| <1, is more difficult!

Derivative of x% for g rational

Suppose that g is any rational number, g =£, where r and s are integers, s #0.
Then y=x =x"s = y=x

Differentiating with respectto x = sxys! Z—i’ =rxx"

dy _r % xT-1 T % %71 % _ % xT-1 % ] r
= ax PR s y =q >3 y since q =~

dy xT’—l 1

—_ = X X x4 = q i -~ =y
= Tx qXxX—= X gx sincey’=x and y = X

which follows the rule found for x", where n is an integer.
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fi dx for negative limits

We know that the ‘area’ under any curve, from
X =ato x = b is approximately

&

b b
Zy5x - fydx, as 6x =0
a a a X b

If the curve is above the x-axis, all the y values are positive, and if a < b then all values of 6 x
are positive, and so the integral is positive.

j —dx = |[In|x]| = Inb—Ina
4 X
-a

-3 1
Example: Find _[_1 ;dx.

Solution:  The integral wanted is shown as A’ in y
the diagram. )

By symmetry |A’| =A (A positive) A

and we need to decide whether the integral is
+A or —A.

From x =-1 to x =-3, we are going in the
direction of x decreasing
= all dxare negative.

And the graph is below the x-axis,

= theyvalues are negative, = y OX is positive
= Y3yéx>0 = f__fy dx >0

= the integral is positive and equal to A.

31
The integral, A’ =A = .[1 S dx= [Inx]; =In3 - In1=1In3

-3 1
= A=[ Zdx =3
-1 X
Notice that this is what we get if we write In |x| in place of Inx
I_s 1 dx= [In|x|]3= IN3-1In1=1In3
a4y -1

As it will always be possible to use symmetry in this way, since we can never have one
positive and one negative limit (because there is a discontinuity at x = 0), it is correct to write
In |x| for the integral of */y.
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Integration by substitution —why it works
We show the general method with an example.

y = fxzy/1+x3 dx

d
= d_y = x%y1+ x3 integrand = x2v1 + x3
X
Choose u = 1+x°
du 3. dx 1 to cive d du
= —_— = - _— = — e —
dx X du 3x2 rearrange to give ax 3x2
dy dy dx
But — = —= x—
T @
dy dx
= = | —X—d
Y fdx du u
d : .
d_y = x%\Ju leave the x* because it appears in dx
X
1 this is the same as writing the integrand in
— 2
y = fx Vu X 302z U terms of u, and then replacing dx by
dx du
Z du= —
du 3x2

The essential part of this method, writing the integrand in terms of u, and then replacing dx
by Z—z du, will be the same for all integrations by substitution.

Parametric integration
This is similar to integration by substitution.

dA
A=J-ydx = E:y
dA dt
T oow Y
dA dx
7w Y@
dx
= Azfyadt
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Separating the variables —why it works
We show this with an example.

If y=6y> then j—i’ = 18y? Z—i’

and so f18y23—z dx = [18y? dy = 6y3 + ¢

Notice that we ‘cancel’ the dx.
Example: Solve Z—i = x*secy

s dy 2
Solution: — = X“secy

dy _ 2
= cosy—~ =X
d
= fcosyd—i/dx= [x? dx

= Jcosy dy = [x* dx ‘cancelling’ the dx
= siny = 2x% + ¢
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proof - for any n, 38
Differential equations
exponential growth and decay, 26
forming, 13
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Parametric differentiation, 11
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Partial fractions, 3
integration, 17
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quadratic factors, 3
top heavy fractions, 4

Scalar product, 32
perpendicular vectors, 33
properties, 32

Vectors, 27
adding and subtracting, 27
angle between vectors, 34
angle in a triangle, 34
displacement vector, 27
distance between 2 points, 32
equation of a line, 35
geometrical problems, 36
intersection of two lines, 37
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non-parallel vectors, 29
parallel vectors, 28
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proving geometrical theorems, 31
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unit vector, 29
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