C4 Integration

1. <u>June 2010 qu. 4</u>

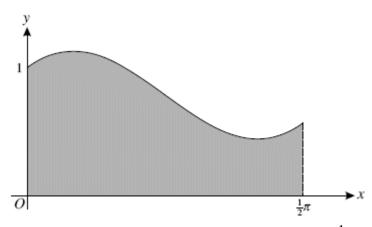
Use the substitution $u = \sqrt{x+2}$ to find the exact value of

$$\int_{-1}^{7} \frac{x^2}{\sqrt{x+2}} \, \mathrm{d}x.$$
 [7]

2. June 2010 qu. 9

(i) Find
$$\int (x + \cos 2x)^2 dx$$
. [9]

(ii)



The diagram shows the part of the curve $y = x + \cos 2x$ for $0 \le x \le \frac{1}{2}\pi$. The shaded region bounded by the curve, the axes and the line $x = \frac{1}{2}\pi$ is rotated completely about the *x*-axis to form a solid of revolution of volume *V*. Find *V*, giving your answer in an exact form.

3. <u>Jan 2010 qu. 3</u>

By expressing $\cos 2x$ in terms of $\cos x$, find the exact value of $\int_{\frac{1}{4}\pi}^{\frac{1}{3}\pi} \frac{\cos 2x}{\cos^2 x} dx.$ [5]

4. Jan 2010 qu. 4

Use the substitution $u = 2 + \ln t$ to find the exact value of $\int_{1}^{e} \frac{1}{t(2 + \ln t)^{2}} dt.$ [6]

5. <u>Jan 2010 qu. 8</u>

(i) State the derivative of
$$e^{\cos x}$$
. [1]

(ii) Hence use integration by parts to find the exact value of $\int_0^{\frac{1}{2}\pi} \cos x \sin x \, e^{\cos x} \, dx.$ [6]

6. June 2009 qu. 2

Use the substitution $x = \tan \theta$ to find the exact value of $\int_{1}^{\sqrt{3}} \frac{1 - x^2}{1 + x^2} dx$. [7]

7. June 2009 qu. 4

(i) Differentiate
$$e^x(\sin 2x - 2\cos 2x)$$
, simplifying your answer. [4]

(ii) Hence find the exact value of
$$\int_0^{\frac{1}{4}\pi} e^x \sin 2x \, dx$$
. [3]

8. June 2009 qu. 6

The expression $\frac{4x}{(x-5)(x-3)^2}$ is denoted by f(x).

(i) Express
$$f(x)$$
 in the form $\frac{A}{x-5} + \frac{B}{x-3} + \frac{C}{(x-3)^2}$, where A, B and C are constants. [4]

(ii) Hence find the exact value of
$$\int_{1}^{2} f(x) dx$$
. [5]

9.

$$\frac{\text{Jan 2009 qu. 2}}{\text{Find } \int x \sec^2 x \, dx}.$$
 [4]

Jan 2009 qu. 4 10.

Find the exact value of
$$\int_0^{\frac{1}{4}\pi} (1 + \sin x)^2 dx.$$
 [6]

11. Jan 2009 qu. 5

(i) Show that the substitution
$$u = \sqrt{x}$$
 transforms $\int \frac{1}{x(1+\sqrt{x})} dx$ to $\int \frac{2}{u(1+u)} du$. [3]

(ii) Hence find the exact value of
$$\int_1^9 \frac{1}{x(1+\sqrt{x})} dx$$
. [5]

12. June 2008 qu. 2

Find the exact value of
$$\int_{1}^{e} x^{4} \ln x \, dx$$
. [5]

13.

(i) Given that
$$\frac{2t}{(t+1)^2}$$
 can be expressed in the form $\frac{A}{t+1} + \frac{B}{(t+1)^2}$, find the values of the constants A and B.

(ii) Show that the substitution
$$t = \sqrt{2x-1}$$
 transforms $\int \frac{1}{x+\sqrt{2x-1}} dx$ to $\int \frac{2t}{(t+1)^2} dt$. [4]

(iii) Hence find the exact value of
$$\int_1^5 \frac{1}{x + \sqrt{2x - 1}} dx$$
. [4]

14.

(i) Express
$$\frac{x}{(x+1)(x+2)}$$
 in partial fractions. [3]

(ii) Hence find
$$\int \frac{x}{(x+1)(x+2)} dx$$
. [2]

15. Jan 2008 qu. 7

(i) Given that
$$A(\sin\theta + \cos\theta) + B(\cos\theta - \sin\theta) \equiv 4\sin\theta$$
, find the values of the constants A and B . [3]

(ii) Hence find the exact value of
$$\int_0^{\frac{1}{4}\pi} \frac{4\sin\theta}{\sin\theta + \cos\theta} d\theta$$
. giving your answer in the form $a\pi - \ln b$. [5]

16. Jan 2008 qu.10

- (i) Use the substitution $x = \sin \theta$ to find the exact value of $\int_0^{\frac{1}{2}} \frac{1}{(1-x^2)^{\frac{3}{2}}} dx.$ [6]
- (ii) Find the exact value of $\int_{1}^{3} \frac{\ln x}{x^{2}} dx.$ [5]

17. June 2007 qu. 2

Find the exact value of $\int_0^1 x^2 e^x dx$. [6]

18. June 2007 gu. 3

Find the exact volume generated when the region enclosed between the *x*-axis and the portion of the curve $y = \sin x$ between x = 0 and $x = \pi$ is rotated completely about the *x*-axis. [6]

19. Jan 2007 qu. 7

- (i) Find the quotient and the remainder when $2x^3 + 3x^2 + 9x + 12$ is divided by $x^2 + 4$. [4]
- (ii) Hence express in the form $\frac{2x^3 + 3x^2 + 9x + 12}{x^2 + 4}$ in the form $Ax + B + \frac{Cx + D}{x^2 + 4}$, where the values of the constants A, B, C and D are to be stated. [1]
- (iii) Use the result of part (ii) to find the exact value of $\int_{1}^{3} \frac{2x^3 + 3x^2 + 9x + 12}{x^2 + 4} dx$. [5]

20. Jan 2007 qu. 2

Find the exact value of $\int_{1}^{2} x \ln x \, dx$ [5]

21. Jan 2007 qu. 4

Use the substitution u = 2x - 5 to show that $\int_{\frac{5}{2}}^{3} (4x - 8)(2x - 5)^{7} dx = \frac{17}{72}$. [5]

22. June 2006 qu. 3

- (i) Express $\frac{3-2x}{x(3-x)}$ in partial fractions. [3]
- (ii) Show that $\int_{1}^{2} \frac{3-2x}{x(3-x)} dx = 0$. [4]
- (iii) What does the result of part (ii) indicate about the graph of $y = \frac{3-2x}{x(3-x)}$ between x = 1 and x = 2?

23. June 2006 qu. 6

- (i) Show that the substitution $u = e^x + 1$ transforms $\int \frac{e^{2x}}{e^x + 1} dx$ to $\int \frac{u 1}{u} du$. [3]
- (ii) Hence show that $\int_0^1 \frac{e^{2x}}{e^x + 1} dx = e 1 \ln\left(\frac{e + 1}{2}\right)$. [5]

24. June 2006 qu. 8

- (i) Show that $\int \cos^2 6x \, dx = \frac{1}{2}x + \frac{1}{24}\sin 12x + c$. [3]
- (ii) Hence find the exact value of $\int_0^{\frac{1}{12}\pi} x \cos^2 6x \, dx$. [6]

25. Jan 2006 qu. 4

- (i) Use integration by parts to find $\int x \sec^2 x \, dx$. [4]
- (ii) Hence find $\int x \tan^2 x \, dx$. [3]

26. Jan 2006 qu. 6

- (i) Show that the substitution $x = \sin^2 \theta$ transforms $\int \sqrt{\frac{x}{1-x}} dx$ to $\int 2\sin^2 \theta d\theta$. [4]
- (ii) Hence find $\int_0^1 \sqrt{\frac{x}{1-x}} dx$. [5]

27. June 2005 qu. 2

Evaluate $\int_0^{\frac{1}{2}\pi} x \cos x \, dx$, giving your answer in an exact form.

28. <u>June 2005 qu. 4</u>

(i) Show that the substitution $x = \tan \theta$ transforms $\int \frac{1}{(1+x^2)^2} dx$ to $\int \cos^2 \theta d\theta$. [3]

[5]

(ii) Hence find the exact value of $\int_0^1 \frac{1}{(1+x^2)^2} dx$. [4]