PMT

AQA Maths Pure Core 4 Mark Scheme Pack

2006-2015

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
or ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	c	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	f(1) = 0	B1	1	
(ii)	f(-2) = -24 + 8 + 14 + 2 = 0	B1	1	
/···				
(111)	$\frac{(x-1)(x+2)}{(x-1)(x+2)} = \frac{(x-1)(x+2)}{(x-1)(x+2)}$	R1		Recognising $(x-1)$, $(x+2)$ as factors
	$3x^3 + 2x^2 - 7x + 2 (x-1)(x+2)(ax+b)$	DI		PI
	3 2 3 21 2	D1		a
	$ax^3 = 3x^3 \qquad -2b = 2$		3	
	a=3 $b=-1$	DI		Or By division M1 attempt started
				M1 complete division
				A1 Correct answers
(L)				AT CONCET differents
(D)	Use $\frac{1}{3}$	B1		
	$2(1)^{3} + 2(1)^{2} = 7 \times 1 + d = 2$	2.61		Remainder Th ^M with $+\frac{1}{-}+3$
	$3(\frac{1}{3}) + 2(\frac{1}{3}) - 7 \times \frac{1}{3} + d = 2$	MI		$\frac{1}{3}, \frac{1}{3}, \frac{1}{3}$
				Et an $1(anguar 4)$
	d = 4	A1F	3	$\left[\frac{1}{3}\left(\frac{1}{3}\left(\frac{1}{9}\right)\right)\right]$
				Or by division M1 M1 A1 as above
	Total		8	
2(a)	$\frac{dy}{dt} = \frac{-2}{t^2}$ $\frac{dx}{dt} = -4$	M1A1		
	$dt t^{-} dt$ dv dv 1 1	1011711		
	$\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{dx} = \frac{1}{2t^2}$	ml		Use chain rule $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$
	$\frac{dt}{dt} = \frac{dt}{2t}$	A1F	4	Follow on use of chain rule (if $f(t)$)
				Or eliminate $t: M1 \ y = f(x)$ attempt to
				differentiate M1A1 chain rule
				A1F reintroduce <i>t</i>
(b)	$t = 2$ $m = \frac{1}{2}$	B1F		follow on gradient (possibly used later)
	$r = 2$ $m_{\rm T} = 8$			
	x = -5 y = 2	B1		
	$y-2=\frac{1}{2}(x+5)$			Their $(x, y), m$
	8 (MI		
	x - 8y + 21 = 0	A1F	4	Ft on (x, y) and m
(c)	$x_{1}^{2} = 4t_{1} x_{1}^{2} = 2$			DI .
	$x-3 = -4t y-1 = -\frac{1}{t}$	M1		PI PI
	$(x-3)(y-1) = -4t \times \frac{2}{2} = (-8)$	M1		Attempt to eliminate t
	$(\cdots)(y) \qquad \cdots \qquad t = (0)$	A1	3	AG convincingly obtained
	Total		11	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$R = \sqrt{13}$ Or 3.6	B1	1	
(b)	$\frac{\sin\alpha}{\cos\alpha} = \tan\alpha = \frac{2}{3} \qquad \alpha \approx 33.7$	M1A1	2	Allow M1 for tan $\alpha = \frac{-2}{3}$ or $\pm \frac{3}{2}$
				AG convincingly obtained
(c)	maximum value = $\sqrt{13}$	B1F		
	$\cos(\theta + 33.7) = 1$ ($\theta = -33.7$)	M1		
	$\theta = 326.3$	A1	3	AWRT 326
	Total		6	
4(a)	A = 80	B1	1	(SC1 Varification Need 62.51 or better
(b)	$5000 = 80 \times k$	MI		SC1 Verification. Need 62.31 of better
	$k = \sqrt[56]{\frac{5000}{80}} \approx 1.07664$	M1A1	3	Or using logs: M1 ln $\left(\frac{5000}{80}\right) = 56 \ln k$
				$A1 k = e^{\ln\left(\frac{322}{56}\right)}$
				Or $3/3$ for $k = 1.076636$
				Or 1.076637 seen
(c)(i)	$V = 80 \times k^{106} = 200707$	M1A1	2	200648 using full register k
(ii)	$\ln 10000 = \ln k^t$	M1		
	$t = \frac{\ln 10000}{1 - t} = 124.7 \Longrightarrow 2024$	M1A1	3	M1 $t \ln k = \ln 10000$
	ln k			A1 CAO
				Or trial and improvement M1expression
				M1 125, 124, A1 2024
	$\frac{\text{Total}}{(-1)(-2)}$		9	
5(a)(i)	$(1-x)^{-1} = 1 + (-1)(-x) + \frac{(-1)(-2)}{2}(-x)^2$	M1		First two terms $+kx^2$
	$= 1 + x + x^2$	A1	2	
(ii)	$\frac{1}{(3-2x)} = \frac{1}{3} \left(1 - \frac{2}{3}x\right)^{-1}$	B1		Or directly substitute into formula;
	$\approx * \left(1 + \frac{2}{3}x + \left(\frac{2}{3}x\right)^2 \right)$	M1		M1 power of 3 M1 other coefficients (allow one error) A1 CAO
	$\approx \frac{1}{3} + \frac{2}{9}x + \frac{4}{27}x^2$	A1	3	AG convincingly obtained
	$(2)(2)(2)(2)^{2}$	M1		Eirot two torms $+ hr^2$
(b)	$(1-x)^{-2} = 1 + (-2)(-x) + \frac{(-2)(-3)(-x)}{2}$			$\frac{1}{1} \int \int dx $
	$= 1 + 2x + 3x^2$	A1	2	

MPC4 (Cont)

Q	Solution	Marks	Total	Comments
5(c)	$2x^2 - 3 =$			
	$A(1-x)^{2} + B(3-2x)(1-x) + C(3-2x)$	M1		Or by equating coefficients
	$x=1$ $-1=C\times 1$ $x=\frac{3}{2}$ $\frac{3}{2}=A\times \frac{1}{4}$	M1		M1 same A1 collect terms M1 equate coefficients A1 2 correct
	$C = -1 \qquad A = 6 x = 0 \qquad (-3 = 6 + 3B - 3)$	A1		Follow on A and C
	or other value \Rightarrow equation in <i>A</i> , <i>B</i> , <i>C</i>	m1		
	B = -2	A1	5	
(d)	$\frac{6}{3-2x} - \frac{2}{1-x} - \frac{1}{(1-x)^2}$			
	$\approx \frac{6}{3} \left(1 + \frac{2}{3}x + \frac{4}{9}x^2 \right) - 2 \left(1 + x + x^2 \right)$	M1A1F		Follow on <i>A B C</i> and expansions
	$-(1+2x+3x^2) \approx -1-\frac{8}{3}x-\frac{37}{9}x^2$	A1	3	CAO
	Total		15	
6(a)	$\cos 2x = 2\cos^2 x - 1$	B1B1	2	
(b)	$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$	M1		Attempt to express $\cos^2 x$ in terms of
	$\frac{1}{2}\int_{0}^{\frac{\pi}{2}}\cos 2x + 1 \mathrm{d}x = \left[\frac{1}{4}\sin 2x + \frac{x}{2}\right]_{0}^{\frac{\pi}{2}}$	A1 A1		
	$=\frac{\pi}{4}$	M1A1F	5	Use limits. Ft on integer <i>a</i> .
	Total		7	
7(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 6\\5\\-\end{bmatrix} - \begin{bmatrix} 2\\1\\\end{bmatrix} = \begin{bmatrix} 4\\4\\\end{bmatrix}$	M1		Penalise use of co-ordinates at first occurrence only
		A1	2	
(ii)	$\begin{bmatrix} 4\\4\\0 \end{bmatrix} = 4 \begin{bmatrix} 1\\1\\0 \end{bmatrix} \Rightarrow \text{parallel}$	E1	1	Needs comment "same direction" Or "same gradient" (Or by scalar product)
(iii)	$\begin{bmatrix} 2\\ -3\\ -1 \end{bmatrix} = \begin{bmatrix} 6\\ 1\\ -1 \end{bmatrix} + \lambda \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$	M1		
	is satisfied by $\lambda = -4$	A1	2	$\lambda = -4$ satisfies 2 equations

MPC4 (cont	t)			
Q	Solution	Marks	Total	Comments
(b)(i)	l_2 has equation			Or
	$\mathbf{r} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 4\\1\\1 \end{bmatrix} - \begin{bmatrix} 2\\-3\\-1 \end{bmatrix} = \begin{bmatrix} 4\\1\\1 \end{bmatrix} + \lambda \begin{bmatrix} 2\\4\\2 \end{bmatrix}$	M1A1	2	$r = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} + t \begin{bmatrix} 2 \\ 4 \\ 2 \end{bmatrix}$ M1 calculate and use direction vector A1 all correct
(ii)	$\begin{bmatrix} 1\\2\\1 \end{bmatrix} \bullet \begin{bmatrix} 4\\0\\-4 \end{bmatrix} = 4 - 4 = 0$	M1A1		Clear attempt to use directions of AC and l_2 in scalar product
	\Rightarrow 90° (or perpendicular)	A1F	3	Accept a correct ft value of $\cos\theta$
	Total		10	
8(a)	$\int \frac{\mathrm{d}x}{\sqrt{x-6}} \mathrm{d}x = \int -2\mathrm{d}t$	M1		Attempt to separate and integrate
	$2\sqrt{x-6} = -2t+c$ $t = 0 x = 70 \Rightarrow c = 16$	m1A1F		Follow on <i>c</i> from sensible attempt at integrals $(\sqrt{\text{not ln}})$
	$t = 8 - \sqrt{x - 6}$	A1	6	CAO (or AEF)
(b)(i)	The liquid level stops falling/flowing/ at minimum depth	B1	1	
	$x = 22 \qquad t = 8 - \sqrt{22 - 6}$	M1		Use $x = 22$ in their equation provided there is a <i>c</i> Or start again using limits M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$
	<i>t</i> = 4	A1	2	CAO
	Total		9	
	Total		75	

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2006 examination – June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Key To Mark Scheme And Abbreviations Used In Marking

mark is for method					
mark is dependent on one or more M marks and is for method					
mark is dependent on M or m marks and	is for accuracy				
mark is independent of M or m marks and	d is for method	and accuracy			
mark is for explanation					
follow through from previous					
incorrect result	MC	mis-copy			
correct answer only	MR	mis-read			
correct solution only	RA	required accuracy			
anything which falls within	$\mathbf{F}\mathbf{W}$	further work			
anything which rounds to	ISW	ignore subsequent work			
any correct form	FIW	from incorrect work			
answer given	BOD	given benefit of doubt			
special case	WR	work replaced by candidate			
or equivalent	FB	formulae book			
2 or 1 (or 0) accuracy marks	NOS	not on scheme			
deduct <i>x</i> marks for each error	G	graph			
no method shown	c	candidate			
possibly implied	sf	significant figure(s)			
substantially correct approach	dp	decimal place(s)			
	mark is for method mark is dependent on one or more M mar mark is dependent on M or m marks and mark is independent of M or m marks and mark is for explanation follow through from previous incorrect result correct answer only correct solution only anything which falls within anything which falls within anything which rounds to any correct form answer given special case or equivalent 2 or 1 (or 0) accuracy marks deduct <i>x</i> marks for each error no method shown possibly implied substantially correct approach	mark is for methodmark is dependent on one or more M marks and is for mmark is dependent on M or m marks and is for accuracymark is independent of M or m marks and is for methodmark is for explanationfollow through from previousincorrect resultMCcorrect answer onlyMRcorrect solution onlyRAanything which falls withinFWanything which rounds toISWany correct formFIWanswer givenBODspecial caseWRor equivalentFB2 or 1 (or 0) accuracy marksNOSdeduct x marks for each errorGno method showncpossibly impliedsfsubstantially correct approachdp			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1 (a)(i)	p(2) = 0	B1	1	
(ii)	See $-\frac{1}{2}$	B1		
	$p\left(-\frac{1}{2}\right) = 6 \times \left(-\frac{1}{8}\right) - 19 \times \frac{1}{4} + 9\left(-\frac{1}{2}\right) + 10$ = 0	M1 A1	3	Use $\pm \frac{1}{2}$ Arithmetic to show = 0 and conclusion.
(iii)	p(x) = (2x+1)(x-2)(3x-5)	B1 B1	2	Long division : $0/3$ x-2 Complete expression
(b)	3x(x-2)	M1	2	$\sum_{x=1}^{\infty} \frac{3x(x-2)}{x-2}$
	$\overline{(2x+1)(x-2)(3x-5)}$	1011		For their (a)(iii)
	$=\frac{3x}{(2x+1)(3x-5)}$	A1	2	$Or \frac{3x}{6x^2 - 7x - 5} \qquad No ISW on A1$
	Total		8	
2(a)	$(1-x)^{-3} = 1 + (-3)(-x) + \frac{(-3)(-4)(-x)^2}{2}$	M1		$1\pm 3x+x^2$ term
	$=1+3x+6x^2$	A1	2	
(b)	$\left(1 - \frac{5}{2}x\right)^{-3} = 1 + 3\left(\frac{5}{2}x\right) + 6\left(\frac{5}{2}x\right)^{2}$	M1		$x \rightarrow \frac{5}{2}x$, incl. $\left(\frac{5}{2}x\right)^2$ seen or implied
	$=1+\frac{15}{2}x+\frac{75}{2}x^2$	A1	2	(of start again) CAO OE
(c)	$\left \frac{5}{2}x\right < 1 \qquad x < \frac{2}{5}$	M1A1	2	Sight of $\frac{\pm 5}{2}$ or $\frac{\pm 2}{5}$
	$=8(1+\frac{15}{2}x+\frac{75}{2}x^2)=8+60x+300x^2$	M1		$k \times \text{their} \left(1 - \frac{5}{2}x\right)^{-3}$
(d)	Alternatively, start again:	A1F	2	ft only on 8 $\left(1-\frac{5}{2}x\right)^{-3}$
	8× expression or $k \times \left(1 - 3\left(\pm\frac{5}{2}x\right)\right)$	(M1)		
	САО	(A1)		
	Total		8	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
3(a)	$9x^2 - 6x + 5$			6r+2
	= 3(3x-1)(x-1) + A(x-1) + B(3x-1)	B1		Or $3 + \frac{6x+2}{(3x-1)(x-1)}$
	$x=1$ $x=\frac{1}{2}$	M1		Substitute 1 1
	3	IVI I		Substitute $x = 1$ or $x = \frac{1}{3}$
	$B = 4 \qquad A = -6$	A1A1	4	Or equivalent method (equating coefficients, simultaneous equations)
(b)	$\int = \int 3 - \frac{6}{3x - 1} + \frac{4}{x - 1} \mathrm{d}x$	M1		Attempt to use partial fractions
	= 3 <i>x</i>	B1		
	$-2\ln(3x-1)+4\ln(x-1)(+c)$	M1		$p\ln(3x-1) + q\ln(x-1)$
				Condone missing brackets
		A1F	4	Follow through on A and B; brackets needed.
	Total		8	
4(a)(i)	$\sin 2x = 2\sin x \cos x$	B1	1	
(ii)	$\cos 2x = 2\cos^2 x - 1$	B1	1	
(b)	$\sin x$	M1		Use of their $\cos 2x \operatorname{or} \sin 2x$
	$\sin 2x - \tan x = 2\sin x \cos x - \frac{1}{\cos x}$	M1		Use of $\tan x = \frac{\sin x}{\cos x}$ and the other
	$=\sin x \left(2\cos x - \frac{1}{\cos x}\right)$	1411		double angle identity
	$=\sin x \left(\frac{2\cos^2 x - 1}{\cos x}\right) = \tan x \cos 2x$	A1	3	AG convincingly obtained
(c)	$\tan x \cos 2x = 0 \qquad x = 180$	B1		Ignore $x = 0$, $x = 360^{\circ}$ & any others outside range
	$\cos 2x = 0$ or $\cos^2 x = \frac{1}{2} \left(\operatorname{or} \sin^2 x = \frac{1}{2} \right)$	M1		
	x = 45	A1		
	<i>x</i> = 135, 225, 315	A1	4	CAO max 3/4 for answers in radians
	Total		9	

5(a) $\begin{aligned} x = 1 y^2 - y + 3 - 5 = 0 \\ (y - 2)(y + 1) = 0 \\ y = 2 y = -1 \end{aligned}$ (b)(i) $\begin{aligned} 2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0 \\ 6x - y + (2y - x) \frac{dy}{dx} = 0 \end{aligned}$ Alternative $\begin{aligned} \frac{dy}{dx}(y - x)^2 = (y - x)(0 - 6x) \\ -(5 - 3x^2)(\frac{dy}{dx} - 1) \end{aligned}$ (B1) $\begin{aligned} B1B1\\B1\\M1A1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1\\M1$	Q	Solution	Marks	Total	Comments
(b)(i) $\begin{array}{c} (y-2)(y+1)=0\\ y=2 y=-1\\ (b)(i) \\ 2y\frac{dy}{dx}-x\frac{dy}{dx}-y+6x=0\\ (b)(i) \\ 2y\frac{dy}{dx}-x\frac{dy}{dx}-y+6x=0\\ (b)(i) \\ 2y\frac{dy}{dx}-x\frac{dy}{dx}-y+6x=0\\ (b)(i) \\ 2y\frac{dy}{dx}-x\frac{dy}{dx}-y+6x=0\\ (b)(i) \\ (b)(i) \\ (b)(i) \\ 2y\frac{dy}{dx}-x\frac{dy}{dx}-y+6x=0\\ (b)(i) \\ (c)(x-y)^2=(y-x)\frac{dy}{dx}=0\\ (c)(x-y)(0-6x)\\ (c)(x-y)^2=(y-x)(0-6x)\\ (c)(x-$	5(a)	$x=1$ $v^2 - v + 3 - 5 = 0$	M1		
(b)(i) $y = 2 y = -1$ $y = 2 y = -1$ (b)(i) $2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $A1$ $B1B1 \\ B1 \\ M1A1$ $6x - y + (2y - x) \frac{dy}{dx} = 0$ $A1$ 6 $Atternative \frac{dy}{dx} (y - x)^2 = (y - x)(0 - 6x) (B1) \\ (B1) \\ (B1) \\ (A1) (A1) \frac{dy}{dx} [(y + x)^2 + (5 - 3x^2)] = (y - x)(-6x) (A1) \\ + (5 - 3x^2) (A1) (1, 2) \frac{dy}{dx} = -\frac{4}{3} (1, -1) \frac{dy}{dx} = \frac{7}{3} (ii) y - 6x = 0 (b)(i) (b)(i) y - 6x = 0 (b)(i) y -$		(y-2)(y+1) = 0	M1		Attempt to solve quadratic equation with
(b)(i) $2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) 2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) 2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) 2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) 2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) (2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) (2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) (2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) (2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $(b)(i) (1, 2) \frac{dy}{dx} - \frac{4}{3}$ $(i) (1, -1) \frac{dy}{dx} = \frac{7}{3}$ $(i) (1, -1) \frac{dy}{dx} = \frac{1}{3}$		v = 2 $v = -1$	A1	3	<i>x</i> = 1
(b)(i) $2y \frac{dy}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $B1B1 B1 B1$		<i>y</i> _ <i>y</i> _		_	
(ii) $2y \frac{dx}{dx} - x \frac{dy}{dx} - y + 6x = 0$ $4B1$ $M1A1$ $M1A1$ $M1A1$ $A1$ $Chain rule$ $Product rule (M1 two terms)$ $Factorise and obtain answer given$ $A1$ $\frac{dy}{dx}(y - x)^2 = (y - x)(0 - 6x)$ $-(5 - 3x^2) \left(\frac{dy}{dx} - 1\right)$ $(B1)$ $(M1)$ $(A1)$ $B1$ $(M1)$ $(A1)$ $\frac{dy}{dx} \left[(y + x)^2 + (5 - 3x^2)\right] = (y - x)(-6x)$ $+(5 - 3x^2)$ $(A1)$ $(A1)$ $(1, 2) \frac{dy}{dx} = -\frac{4}{3}$ $(1, -1) \frac{dy}{dx} = \frac{7}{3}$ (iii) $y - 6x = 0$ $(6x)^2 - x \times 6x + 3x^2 - 5 = 0$ $M1$ (bx)	(b)(i)	$2y \frac{dy}{dy} = y \frac{dy}{dy} = y + 6y = 0$	B1B1		$+6x; -5 \rightarrow 0$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$2y\frac{dx}{dx} - x\frac{dy}{dx} - y + 6x = 0$	BI		Chain rule
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			M1A1		Product rule (M1 two terms)
$\begin{aligned} \text{Alternative} \\ \frac{dy}{dx}(y-x)^2 = (y-x)(0-6x) \\ & -(5-3x^2)\left(\frac{dy}{dx}-1\right) \\ & \frac{dy}{dx}\left[(y+x)^2 + (5-3x^2)\right] = (y-x)(-6x) \\ & +(5-3x^2) \\ & \text{Given answer} \end{aligned} \qquad (A1) \\ & (1,2) \frac{dy}{dx} = -\frac{4}{3} \\ & (1,-1) \frac{dy}{dx} = \frac{7}{3} \\ & (\text{iii}) y-6x=0 \\ & (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \end{aligned} \qquad (A1) \\ & \text{B1} \\ & (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \\ & \text{M1} \end{aligned} \qquad \begin{array}{c} \text{B1} \\ \text{B2} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B2} \\ \text{B2} \\ \text{B2} \\ \text{B3} \\ \text{B4} \\ \text{B1} \\ \text{B5} \\ \text{B5} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B2} \\ \text{B3} \\ \text{B3} \\ \text{B4} \\ \text{B5} \\ \text{B5} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B2} \\ \text{B3} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B3} \\ \text{B2} \\ \text{B3} \\ \text{B3} \\ \text{B4} \\ \text{B5} \\ \text{B5} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B2} \\ \text{B3} \\ \text{B3} \\ \text{B1} \\ \text{B1} \\ \text{B1} \\ \text{B2} \\ \text{B3} \\ \text{B3} \\ \text{B1} \\ \text{B2} \\ \text{B3} \\ \text{B3} \\ \text{B1} \\ \text{B1}$		$6x - y + (2y - x)\frac{dy}{dt} = 0$	A1	6	Factorise and obtain answer given
Alternative $\frac{dy}{dx}(y-x)^2 = (y-x)(0-6x)$ (B1) (B1) (M1) (A1) $5 \rightarrow 0$ $-6x$ $-(5-3x^2)\left(\frac{dy}{dx}-1\right)$ (M1) (A1)B1 (M1) (A1)Factorise out $\frac{dy}{dx}$ $\frac{dy}{dx}\left[(y+x)^2 + (5-3x^2)\right] = (y-x)(-6x)$ $+(5-3x^2)$ (A1)Factorise out $\frac{dy}{dx}$ Given answer(A1) $1(2)$ Correct answer from correct working Be convinced(ii) $(1,2)$ $\frac{dy}{dx} = -\frac{4}{3}$ $(1,-1)$ M1 $(1,-1)$ $\frac{dy}{dx} = \frac{7}{3}$ A1F2(iii) $y-6x=0$ $(6x)^2 - x \times 6x + 3x^2 - 5 = 0$ B1 M1		dx			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Alternative			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\frac{dy}{(y-x)^2} = (y-x)(0-6x)$	(B1)		$5 \rightarrow 0$
$\begin{aligned} & -\left(5-3x^{2}\right)\left(\frac{dy}{dx}-1\right) & (M1)\\ (A1) \\ & \frac{dy}{dx}\left[\left(y+x\right)^{2}+\left(5-3x^{2}\right)\right]=\left(y-x\right)\left(-6x\right) & (A1)\\ & +\left(5-3x^{2}\right) \\ & Given answer & (A1)\\ & \left(1,2\right) \frac{dy}{dx}=-\frac{4}{3} & (A1)\\ & \left(1,-1\right) \frac{dy}{dx}=\frac{7}{3} & A1F \\ & \left(1,-1\right) \frac{dy}{dx}=\frac{7}{3} & A1F \\ & \left(\frac{1}{6x}\right)^{2}-x\times6x+3x^{2}-5=0 & M1 \\ & \left(\frac{1}{6x}\right)^{2}-x\times6x+3x^{2}-5=0 & M1 \\ \end{aligned}$		$\frac{1}{\mathrm{d}x}(y-x) = (y-x)(0-0x)$	(B1)		-6x
$(i) (1,2) \frac{dy}{dx} = \frac{7}{3}$ $(ii) y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0$ $(ii) (1,2) \frac{dy}{dx} = \frac{7}{3}$ $(iii) y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0$ $(iii) (1,2) \frac{dy}{dx} = \frac{7}{3}$ $(iii) y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0$ $(iii) (1,2) \frac{dy}{dx} = \frac{7}{3}$ $(iii) (1,2) $		$-(5-3r^2)\left(\frac{dy}{dy}-1\right)$	(M1)		Recognisable attempt at quotient rule
$\frac{dy}{dx} \Big[(y+x)^2 + (5-3x^2) \Big] = (y-x)(-6x) $ (A1) +(5-3x^2) Given answer (i) $(1,2) \frac{dy}{dx} = -\frac{4}{3}$ (A1) $(1,-1) \frac{dy}{dx} = \frac{7}{3}$ (A1) (1		$\left(\begin{array}{cc} 5 & 5 \end{array}\right) \left(\begin{array}{cc} dx \end{array}\right)$	(A1)		Completely correct OE
(ii) $ \begin{array}{c} dx = 1 & dx = 1 & dx \\ +(5-3x^2) \\ Given answer \\ (1,2) & \frac{dy}{dx} = -\frac{4}{3} \\ (1,-1) & \frac{dy}{dx} = \frac{7}{3} \\ (iii) & y-6x=0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \\ \end{array} $ (A1) (A1) $ \begin{array}{c} Correct answer from correct working Be convinced \\ Substitute x = 1 and one y value from \\ A1F \\ Correct answer from correct working Be convinced \\ Substitute x = 1 and one y value from \\ OE & \frac{-7}{-3}; 3SF \\ OE & \frac{-7}{-3}; 3SF \\ \end{array} $		$\frac{dy}{dx} \left[(y+x)^2 + (5-3x^2) \right] = (y-x)(-6x)$	(A1)		Factorise out $\frac{dy}{dt}$
(ii) $\begin{array}{c} (1,2) \frac{dy}{dx} = -\frac{4}{3} \\ (1,-1) \frac{dy}{dx} = \frac{7}{3} \\ (iii) y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \end{array}$ (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1)		$dx = (5 - 2x^2)$			dx
(ii) Given answer (ii) $(1,2) \frac{dy}{dx} = -\frac{4}{3}$ (1,-1) $\frac{dy}{dx} = \frac{7}{3}$ (iii) $y - 6x = 0$ (6x) ² - x × 6x + 3x ² - 5 = 0 (A1) M1 M1 A1F Both; follow on candidates y s OE $\frac{-7}{-3}$; 3SF M1		+(3-5x)	(1 1)		Correct answer from correct working
(ii) $(1,2) \frac{dy}{dx} = -\frac{4}{3}$ $(1,-1) \frac{dy}{dx} = \frac{7}{3}$ (iii) $y - 6x = 0$ $(6x)^2 - x \times 6x + 3x^2 - 5 = 0$ M1 M1 M1 Substitute $x = 1$ and one y value from A1F 2 Both; follow on candidates y s OE $\frac{-7}{-3}$; 3SF		Given answer	(A1)		Be convinced
(ii) $(1,2)$ $\frac{y}{dx} = -\frac{1}{3}$ $(1,-1)$ $\frac{dy}{dx} = \frac{7}{3}$ (iii) $y - 6x = 0$ $(6x)^2 - x \times 6x + 3x^2 - 5 = 0$ M1 M1 A1F Both; follow on candidates y s OE $\frac{-7}{-3}$; 3SF	(::)	dv = dv = 4	M1		Substitute 1 and ano unable from (a)
(iii) $ \begin{array}{c c} (1,-1) & \frac{dy}{dx} = \frac{7}{3} \\ y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \end{array} $ A1F 2 Both; follow on candidates y s OE $\frac{-7}{-3}$; 3SF	(11)	$(1,2) \frac{1}{dx} = -\frac{1}{3}$	111		Substitute $x - 1$ and one y value from (a)
(iii) $\begin{pmatrix} (1,-1) & \frac{dy}{dx} = \frac{1}{3} \\ y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \\ 0 & M1 \\ 0 & M1$		dv 7			
(iii) $y - 6x = 0$ $(6x)^2 - x \times 6x + 3x^2 - 5 = 0$ B1 M1 DE $\frac{-7}{-3}$; 3SF		$(1,-1)$ $\frac{dy}{dx} = \frac{1}{3}$	A1F	2	Both; follow on candidates y s
(iii) $\begin{array}{c} y - 6x = 0 \\ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 \end{array}$ B1 M1					OE $\frac{-7}{2}$; 3SF
$ (6x)^2 - x \times 6x + 3x^2 - 5 = 0 $ M1	(iii)	v - 6x = 0	B1		-3
	()	$(6r)^2 - r \times 6r + 3r^2 - 5 = 0$	 M1		
$36r^2 - 6r^2 + 3r^2 - 5 = 0$		$36r^2 - 6r^2 + 3r^2 = 5 - 0$	1711		
A1 AG convincingly obtained		$33x^2 - 5 = 0$	A1	3	AG convincingly obtained
Total 14		Total		14	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
6(a)(i)	$\overrightarrow{OC} = 2 \begin{bmatrix} 3\\2\\-1 \end{bmatrix} = \begin{bmatrix} 6\\4\\-2 \end{bmatrix}$	B1	1	(Penalise coordinates once only)
(ii)	$\overrightarrow{AB} = \begin{bmatrix} 3\\2\\-1 \end{bmatrix} - \begin{bmatrix} 2\\4\\1 \end{bmatrix} = \begin{bmatrix} 1\\-2\\-2 \end{bmatrix}$	M1 A1	2	$\overrightarrow{OA} - \overrightarrow{OB}$ or $\overrightarrow{OB} - \overrightarrow{OA}$ or 2/3 correct cpts. A0 for line <i>AB</i>
(b)(i)	$AC^{2} = (6-2)^{2} + (4-4)^{2} + (-1-2)^{2} = 25$	M1		Components of AC
	<i>AC</i> = 5	A1	2	AG
(ii)	$\overrightarrow{AB} \bullet \overrightarrow{AC} = \begin{bmatrix} 1 \\ -2 \\ -2 \end{bmatrix} \bullet \begin{bmatrix} 4 \\ 0 \\ -3 \end{bmatrix} = 4 + 6 = 10$	M1 A1F		Clear attempt to use \overrightarrow{AB} and \overrightarrow{AC} ft \overrightarrow{AB} from a(ii) and/or \overrightarrow{AC} from b(i)
	$3 \times 5 \times \cos \theta = 10$	M1		Use of $ a b \cos \theta = \mathbf{a.b}$ with one correct and $\mathbf{a.b}$ evaluated
	$\theta = 48.189 \approx 48$ °	A1	4	CAO (AWRT)
	Alternative: use of cos rule Find 3 rd side + use cos rule	(M2) (A1F) (A1)		ft on previously found vectors CAO (AWRT)
(c)	$\overrightarrow{BP} = \begin{bmatrix} \alpha - 3\\ \beta - 2\\ \gamma1 \end{bmatrix}$	B1		
	$\begin{bmatrix} 4\\0\\-3 \end{bmatrix} \bullet \overrightarrow{BP} = 0$	M1		Their \overrightarrow{BP}
	$4\alpha - 3\gamma - 15 = 0$	A1	3	AG convincingly obtained
	Total		12	

MPC4 (cont	MPC4 (cont)					
Q	Solution	Marks	Total	Comments		
7	$\int \frac{\mathrm{d}y}{y^2} = \int 6x \mathrm{d}x$	M1		Attempt to separate Either dx or dy in right place		
	$-\frac{1}{y} = 3x^2 (+C)$	A1A1		$-\frac{1}{y}$; $3x^2$		
	$x = 2 y = 1 \qquad C = -13$	M1		Use (2,1) to find a constant.		
	1	Al		CAO		
	$y = \frac{1}{13 - 3x^2}$	A1	6	CAO OE		
	Total		6			
8(a)(i)	(5000 - x) seen in a product	B1		Could be implied, eg $5000a - xa$		
	$\frac{\mathrm{d}x}{\mathrm{d}t} = kx(5000 - x)$	B1	2			
(ii)	$200 = k \times 1000 \times (5000 - 1000)$	M1		$\frac{dx}{dt} = 200, x = 1000$ in their diff. equation		
	<i>k</i> = 0.00005	A1	2	Condone t_s and $t = 0$ for M1 CAO OE		
(b)(i)	$t = 4\ln\left(\frac{4 \times 2500}{5000 - 2500}\right) = 5.5$ (hours)	M1 A1	2	$\begin{array}{c} x \rightarrow 2500 (\text{ or } 4 \ln 4) \\ \text{CAO} \end{array}$		
(ii)	20					
	$e^{\frac{50}{4}}$	B1				
	$e^{7.5} = \frac{4x}{5000 - x}$	M1		OE		
	$5000 \times e^{7.5} = x (4 + e^{7.5})$	m1		Soluble for <i>x</i>		
	$x = 4988.96 \Longrightarrow 4989$ rabbits infected	A1	4	Or 4988 or 4990; integer value only		
	Total		10			
	TOTAL		75			

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2007 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	l is for method	and accuracy		
E	mark is for explanation				
\sqrt{or} ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 2 \ , \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -8t$	B1, B1	2	CAO
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t}\frac{\mathrm{d}t}{\mathrm{d}x} = \frac{-8t}{2} = -4t$	M1 A1F	2	Chain rule in correct form ft on sign coefficient errors (not power of <i>t</i>)
(b)	$m_T = -4 , m_N = \frac{1}{4}$	B1F, B1F		ft on $\frac{dy}{dx}$ if f(t)
(c)	$x = 3 y = -3$ $\frac{y3}{x - 3} = \frac{1}{4} \Longrightarrow \frac{y + 3}{x - 3} = \frac{1}{4}$ $t = \frac{x - 1}{2}$	M1 A1 M1	4	Use candidate's (x, y) and m_N Any correct form; ISW; CAO
	$y = 1 - 4\left(\frac{x - 1}{2}\right)^2$	M1A1	3	Substitute for <i>t</i> Simplification not required but CAO Or equivalent methods / forms: $y = 2x - x^2$, $t^2 = \frac{1 - y}{1 - x}$,
				$\left(\frac{x-1}{2}\right)^2 = \frac{1-y}{4}$
	Total		11	
2(a)	$f\left(\frac{3}{2}\right) = 2\left(\frac{3}{2}\right)^3 - 7\left(\frac{3}{2}\right)^2 + 13$	M1		Substitute $\pm \frac{3}{2}$ in f(x)
	=4	Al	2	
(b)	$g\left(\frac{3}{2}\right) = 0 \Longrightarrow d + 4 = 0 \Longrightarrow d = -4$	M1A1	2	AG (convincingly obtained) SC Written explanation with $g\left(\frac{3}{2}\right) = 0$ not seen/clear E2,1,0
(c)	a = -2, $b = -3$	B1, B1	2	Inspection expected By division: M1 – complete method A1 CAO Multiply out and compare coefficients: M1 – evidence of use
	Total		6	$A_1 = 0001 a$ and b context
	lotal		0	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
3 (a)	$\cos 2x = 1 - 2\sin^2 x$	B1	1	
(b)(i)	$3\sin x - \cos 2x = 3\sin x - (1 - 2\sin^2 x)$ $= 3\sin x - 1 + 2\sin^2 x$	M1 A1	2	Candidate's $\cos 2x$ or $\sin^2 x$ AG
(ii)	$2\sin^{2} x + 3\sin x - 2 = 0$ (2sin x - 1)(sin x + 2) = 0	M1 M1		Soluble quadratic form Attempt to solve (allow one error in formula, allow sign errors)
	$\sin x = \frac{1}{2} \qquad x = 30 \qquad x = 150$	M1 A1	4	\sin^{-1} and two solutions ($0^{\circ} < x < 360^{\circ}$) A0 if radians
	Allow misread for $2\sin^2 x + 3\sin x - 1 = 0$	(M1)		Soluble quadratic form
	$\sin x = \frac{-3 \pm \sqrt{17}}{4}$	(M1)		Use of formula (allow one error)
	<i>x</i> =16.3°, 163.7°	(A1)		Max 3/4
(c)	$\int \frac{1}{2} (1 - \cos 2x) = \frac{x}{2} - \frac{\sin 2x}{4} (+c)$	M1A1	2	M1 – solve integral, must have 2 terms for $\sin^2 x$ from (a)
			9	
4(a)(i)	$\frac{3x-5}{x-3} = 3 + \frac{4}{x-3}$	B1, B1	2	By division: B1 for 3, B1 for $\frac{4}{x-3}$ or $B = 4$ By partial fractions: M1 multiply by $x - 3$ and using 2 values of <i>x</i> , A1 both correct
(ii)	$\int 3 + \frac{4}{x-3} \mathrm{d}x = 3x + 4\ln(x-3)(+c)$	M1A1F	2	M1 $\int 3 + \frac{4}{x-3} dx$ and attempt at integrals ft on A and B; condone omission of brackets around $x - 3$
	Alternative: By substitution $u = x - 3$ $\int \frac{3x-5}{x-3} dx = \int \frac{3u+4}{u} du$ $= 3(x-3) + 4\ln(x-3)$	(M1) (A1)		Integral in terms of u Correct, in x
(b)(i)	6x - 5 = P(2x - 5) + Q(2x + 5)	M1		Clear evidence of use of cover-up rule M2
	$x = \frac{5}{2} \qquad \qquad x = -\frac{5}{2}$	m1		
	10 = 10Q $-20 = -10PQ = 1$ $P = 2$	A1	3	
(ii)	$\int \frac{2}{2x+5} + \frac{1}{2x-5} \mathrm{d}x$	M1		Attempt at ln integral $(a \ln (2x+5) + b \ln (2x-5))$
	$\ln(2x+5) + \frac{1}{2}\ln(2x-5)(+c)$	M1 A1F	3	ft on P and Q ; must have brackets
	Total		10	

MPC4 (cont	VIPC4 (cont)					
Q	Solution	Marks	Total	Comments		
5(a)	$(1+x)^{\frac{1}{3}} = 1 + \frac{1}{3}x + \frac{1}{3}\left(-\frac{2}{3}\right)\frac{1}{2}x^{2}$	M1		$1 + \frac{1}{3}x + kx^2$		
		A1	2			
(b)(i)	$\sqrt[3]{8}\left(1+\frac{3}{8}x\right)^{\frac{1}{3}}$	B1		$8^{\frac{1}{3}}(1+kx)^{\frac{1}{3}}$		
	$= 2\left(1 + \frac{1}{3}\left(\frac{3}{8}x\right) - \frac{1}{9}\left(\frac{3}{8}x\right)^{2}\right)$	M1		Replacing x with kx in answer to (a)		
	$= 2 + \frac{1}{4}x - \frac{1}{32}x^2$	A1	3	For numerical expression which would evaluate to answer given		
	Alternative:					
	B1 – all powers of 8 correct: $8^{\frac{1}{3}} 8^{-\frac{2}{3}} 8^{-\frac{5}{3}}$					
	M1 – powers of $3x$ (condone $3x^2$)					
	$2 + \frac{1}{8^{\frac{2}{3}}}x - \frac{1}{9}\frac{1}{8^{\frac{5}{3}}}9x^2$					
	A1 – see some arithmetic processing					
	must see 9s in last term					
(ii)	$x = \frac{1}{3}: \sqrt[3]{8+1} = 2 + \frac{1}{4} \times \frac{1}{3} - \frac{1}{32} \times \left(\frac{1}{3}\right)^2$	M1		Using $x = \frac{1}{3}$ in given answer		
	$\sqrt[3]{9} = \frac{576 + 24 - 1}{288} = \frac{599}{288}$	A1	2	Any correct numerical expression = $\frac{599}{288}$		
	Total		7			

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
6(a)(i)	$\overrightarrow{BA} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} - \begin{bmatrix} 5\\4\\0 \end{bmatrix} = \begin{bmatrix} -2\\-6\\4 \end{bmatrix}$	M1A1	2	Attempt $\pm \overrightarrow{BA}$ (<i>OA</i> – <i>OB</i> or <i>OB</i> – <i>OA</i>)
(ii)	$\overrightarrow{BC} = \begin{bmatrix} 6\\2\\-4 \end{bmatrix}$	B1		Allow \overrightarrow{CB} ; or $\begin{bmatrix} -6\\-2\\4 \end{bmatrix} = \overrightarrow{BC}$ or $\overrightarrow{CB} = \begin{bmatrix} 6\\2\\-4 \end{bmatrix}$ May not see explicitly
	$\left \overline{BA}\right \left(=\sqrt{\left(-2\right)^{2} + \left(-6\right)^{2} + \left(4\right)^{2}}\right) = \sqrt{56}$	B1F		Calculate modulus of \overrightarrow{BA} or \overrightarrow{BC} ; for finding modulus of one of vectors they have used
	$\overrightarrow{BA} \bullet \overrightarrow{BC} = \begin{bmatrix} -2 \\ -6 \\ 4 \end{bmatrix} \bullet \begin{bmatrix} 6 \\ 2 \\ -4 \end{bmatrix} = -12 - 12 - 16$	M1		Attempt at $\overrightarrow{BA} \bullet \overrightarrow{BC}$ with numerical answer; or $\overrightarrow{AB} \bullet \overrightarrow{CB}$
		A1		for –40, or correct if done with multiples of vectors
	$\cos ABC = \frac{-40}{\sqrt{56}\sqrt{56}} = -\frac{5}{7}$	A1	5	AG (convincingly obtained)
				Cosine rule: M1 attempt to find 3 sides A1 lengths of sides M1 cosine rule A1F correct A1 rearrange to get $\cos ABC = \frac{-5}{7}$ (ft on length of sides)

MPC4 (cont				
Q	Solution	Marks	Total	Comments
6 (cont) (b)(i)	$\begin{bmatrix} 8\\-3\\2 \end{bmatrix} + \lambda \begin{bmatrix} 1\\3\\-2 \end{bmatrix} = \begin{bmatrix} 11\\6\\-4 \end{bmatrix} (\lambda = 3)$	M1A1	2	$\lambda = 3 \text{ verified in three equations}$ $M1 \text{ for } \begin{cases} 11 = 8 + \lambda \\ 6 = -3 + 3\lambda \\ -4 = 2 - 2\lambda \end{cases}$ A1 for $\lambda = 3$ shown for all three equations $\lambda \begin{bmatrix} 1 \\ 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 11 \\ 6 \\ -4 \end{bmatrix} - \begin{bmatrix} 8 \\ -3 \\ 2 \end{bmatrix} \therefore \lambda = 3 \text{ M1A1}$ SC: $\lambda = 3$ written and nothing else: SC1
(ii)	$\begin{bmatrix} 2\\6\\-4 \end{bmatrix} = 2 \begin{bmatrix} 1\\3\\-2 \end{bmatrix}$ \therefore same direction or same gradient or parallel	E1	1	
(c)	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA}$	B1		PI; \overrightarrow{OD} = correct vector expression which may involve \overrightarrow{AD}
	$= \begin{bmatrix} 11\\6\\-4 \end{bmatrix} + \begin{bmatrix} -2\\-6\\4 \end{bmatrix} = \begin{bmatrix} 9\\0\\0 \end{bmatrix} D \text{ is } (9,0,0)$	M1A1	3	M1 for substituting into vector expression for \overrightarrow{OD} NMS 3/3
	Total		13	
7(a)	$\tan(x+x) = \frac{\tan x + \tan x}{1 - \tan x \tan x} \left(= \frac{2 \tan x}{1 - \tan^2 x} \right)$	M1 A1	2	A = B = x used
(b)	$2 - 2\tan x - \frac{2\tan x(1 - \tan^2 x)}{2\tan x}$	M1		Substitute from (a)
	$2-2\tan x - (1-\tan x)(1+\tan x)$	M1		Simplification $2 - 2 \tan x - (1 - \tan^2 x)$
	$(1 - \tan x)(2 - (1 + \tan x))$	M1		$2-2\tan x-1+\tan^2 x$
	$(1-\tan x)^2$	A1	4	AG (convincingly obtained)
				$=(\tan x - 1)^2 = (1 - \tan x)^2$
				Any equivalent method
	Total		6	

MPC4 (cont				
Q	Solution	Marks	Total	Comments
8 (a)(i)	$\int \frac{\mathrm{d}y}{y} = \int \sin t \mathrm{d}t$	M1		Attempt to separate and integrate
	$\ln y = -\cos t + C$	A1,A1		A1 for ln y; A1 for -cost; condone missing C
	$y = Ae^{-\cos t}$	A1	4	A present; or $y = e^{-\cos t + C}$
(ii)	$y = 50, t = \pi$: $50 = Ae^{-\cos\pi} = Ae$	M1 A1		Substitute $y = 50$, $t = \pi$ to find constant Can have $50 = e^{1+C}$ if substituted in above $e^{C} = \frac{50}{e}$
	$y = 50e^{-1}e^{-\cos t}$	A1	3	AG (convincingly obtained)
	Alternative:			Alternative:
	Must have a constant in answer to (a)(i)			Substitute $y = 50$, $t = \pi$ into
	$y = Ae^{-\cos t}$ or $y = e^{-\cos t + c}$ or $\ln y = -\cos t + c$			$\ln y = -\cos t + \ln 50 - 1$ $\ln y = -\cos t + \ln 50 - 1$ A1
	$50 = Ae^{-\cos \pi}$ $50 = e^{-\cos \pi + c}$ $\ln 50 = -\cos \pi + c$	(M1)		$\ln \frac{y}{50} = -1 - \cos t (AG) $ A1
	50 = Ae 50 = e^{1+c} ln y = $-\cos t + \ln 50 - 1$	(A1)		
	$y = 50e^{-1-\cos t}$ $y = e^{-\cos t} \frac{50}{e} \ln\left(\frac{y}{50}\right) = -1 - \cos t$	(A1)		
(b)(i)	$t = 6: y = 50e^{-1}e^{-\cos 6} = 7.0417 \approx 7cm$	M1A1	2	Degrees 6.8 SC1 7 or 7.0 for A1
(ii)	$t = \pi \implies (\sin t = 0 \implies) \frac{\mathrm{d}y}{\mathrm{d}t} = 0$	B1		Condone x for t
	$\frac{d^2 y}{dt^2} = y \cos t + \frac{dy}{dt} \sin t$	M1		For attempt at product rule including $\frac{dy}{dt}$
	$t = \pi$	A1		term; must have $\frac{d^2 y}{dt^2} =$
	$\frac{d^2 y}{dt^2} = y \cos \pi + \frac{dy}{dt} \sin \pi$ $= -50 \implies \max$	A1	4	Accept = $-y$, with explanation that y is never negative

Q	Solution	Marks	Total	Comments
8(b)(ii)	Alternative:			
(cont)	$y = 50e^{-(1+\cos t)} = \frac{50}{e}e^{-\cos t}$			
	$\frac{\mathrm{d}y}{\mathrm{d}t} = \frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \sin t = 0 \text{ at } t = \pi$	(B1)		
	$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2} = \frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \cos t + \frac{50}{\mathrm{e}} \mathrm{e}^{-\cos t} \times \sin^2 t$	(M1) (A1)		Attempt at product rule Correct
	Substitute $t = \pi \rightarrow -50 \Longrightarrow \max$	(A1)		
	Total		13	
	TOTAL		75	

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2007 examination - June series

PMT

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy		
E	mark is for explanation				
or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	$\mathbf{F}\mathbf{W}$	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

June 07

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$2\left(-\frac{1}{2}\right)^2 + \left(-\frac{1}{2}\right) - 3 = -3$	M1A1	2	use of $\pm \frac{1}{2}$
	Alt algebraic division:			SC NMS –3 1/2 No ISW, so subsequent answer "3" AO
	$\frac{x}{2x+1)2x^2+x-3}$ $2x^2+x$	(M1)		complete division with integer remainder
	$\frac{2m+m}{-3}$ Alt	(A1)	(2)	remainder = -3 stated, or -3 highlighted
	$\frac{x(2x+1)-3}{2x+1}$	(M1)		attempt to rearrange numerator with $(2x+1)$ as a factor
		(A1)	(2)	remainder = -3 stated, or -3 highlighted
(b)	$\frac{(2x+3)(x-1)}{(x+1)(x-1)}$	B1 B1		numerator denominator hot necessarily in fraction
	$=\frac{2x+3}{x+1}$	B1	3	CAO in this form. Not $\frac{2x+3}{x+1}$ $\frac{x-1}{x-1}$
(b)	Alternative			
	$\frac{2x^2 - 2 + x - 1}{x^2 - 1}$			
	$=2+\frac{x-1}{x^2-1}$	(M1)		
	$=2 + \frac{x-1}{(x-1)(x+1)}$	(B1)		
	$=2+\frac{1}{x+1}$	(A1)	(3)	
	Total		5	
1				

PC4 (cont) Solution	Morder	Total	Comments
$\frac{\mathbf{Q}}{2(\mathbf{a})(\mathbf{i})}$	Solution $(1 + r)^{-1} = 1 + (-1)r + rr^{2} + ar^{3}$	Marks	Total	$p \neq 0$ $a \neq 0$
2(a)(l)	(1+x) = 1 + (-1)x + px + qx = 1 + x + x ² - x ³		2	p = 0, q = 0 SC 1/2 for $= 1, r + nr^2$
(ii)	-1 - x + x - x	AI	2	5C 1/2 101 - 1 - x + px
(11)	$(1+3x)^{-1} = 1 - 3x + (3x)^{-1} - (3x)^{-1}$	M1		x replaced by 3x in candidate's (a)(i);condone missing brackets
	$=1-3x+9x^2-27x^3$	A1	2	CAO SC x^3 -term : $1 - 3x + \frac{3}{2}x^2 = 1/2$
	Alt (starting again)			9
	$(1+3x)^{-1} = 1 - (3x) +$			
	$\frac{(-1)(-2)(3x)^2}{2!} + \frac{(-1)(-2)(-3)(3x)^3}{3!}$	(M1)		condone missing brackets accept 2 for 2!, 3.2 for 3!
	$=1-3x+9x^2-27x^3$	(A1)	(2)	CAO
(b)	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$	M1		correct partial fractions form, and multiplication by denominator
	1 + 4x = A(1 + 3x) + B(1 + x)			
	$x = -1, \ x = -\frac{1}{3}$	m1		Use (any) two values of x to find A and B
	$A = \frac{3}{2}, B = -\frac{1}{2}$	A1	3	A and B both correct
	Alt:			
	$\frac{1+4x}{(1+x)(1+3x)} = \frac{A}{1+x} + \frac{B}{1+3x}$	(M1)		correct partial fractions form, and multiplication by denominator
	1 + 4x = A(1 + 3x) + B(1 + x)			
	$A + B = 1, \ 3A + B = 4$	(m1)		Set up and solve
	$A = \frac{3}{2}, B = -\frac{1}{2}$	(A1)	(3)	A and B both correct
(c)(i)	$\frac{1+4x}{(1+x)(1+3x)} = \frac{3}{2(1+x)} - \frac{1}{2(1+3x)}$	M1		
	$=\frac{3}{2}(1-x+x^2-x^3)-\frac{1}{2}(1-3x+9x^2-27x^3)$	m1		multiply candidate's expansions by A and
	$-1-3r^2+12r^3$	A 1	3	<i>B</i> , and expand and simplify
	$-1 = 3\lambda + 12\lambda$		5	SC <i>A</i> and <i>B</i> interchanged, treat as
	Alt·			miscopy. $(1-4x+13x^2-40x^3)$
	$=\frac{1+4x}{(1-x)(1-x)^{-1}(1+3x)^{-1}} = (1+4x)(1+x)^{-1}(1+3x)^{-1}$			
	(1+x)(1+3x)			write og product uging ovnonsions
	$= (1+4x)(1-x+x^{2}-x^{3})(1-3x+9x^{2}-27x^{3})$	(M1)		condone missing brackets on $(1 + 4x)$ only
	$= 1 - 4x + 13x^2 - 40x^3 + 4x - 16x^2 + 52x^3$	(m1)		attempt to multiply the three expansions up to terms in x^3
	$=1-3x^2+12x^3$	(A1)	(3)	CAO
(ii)	x < 1 and $ 3x < 1$	M1		OE and nothing else incorrect
	$\left x\right < \frac{1}{3} \tag{0.33}$	A1	2	OE Condone ≤
	Total		12	

MPC4 (cont	t)			
Q	Solution	Marks	Total	Comments
3(a)	<i>R</i> = 5	B1		
	$\tan \alpha = \frac{3}{4}$ (OE) $\alpha = 36.9^{\circ}$ (ISW 216.9)	M1A1	3	SC1 $\tan \alpha = \frac{4}{3}, \alpha = 53.1^{\circ}$
				R, α PI in (b)
(b)	$\cos(x-\alpha) = \frac{2}{R}$	M1		
	$x - \alpha = 66.4^{\circ}$	A1		
	$x = 103.3^{\circ}$	A1F		
	$x = 330.4^{\circ}$	A1F	4	accept 330.5°, –1 each extra
				ft on acute α
(c)	minimum value $= -5$	B1F		ft on R
	$\cos(x-36.9) = -1$	M1		SC $\cos(x+36.9)$ treat as miscopy
	$x = 216.9^{\circ}$	A1	3	216.9 or better accept graphics calculator solution to this accuracy
				SC Find max:
				max = 5 at $(x + 36.9)$ stated 1/3
				Max 8/10 for work in radians
	Total		10	

MPC4 (cont)				
Q	Solution	Marks	Total	Comments
4(a)(i)	t = 0: x = 3	B1	1	
(ii)	$t = 14$: $x = 15 - 12e^{-1}$	M1		or $15 - 12e^{\frac{-14}{14}}$
	= 10.6	A1	2	САО
(b)(i)	$5 - 12e^{-\frac{t}{14}}$	M1		substitute $x = 10$; rearrange to form
	$-3 = -12e^{-1}$	1011		
				$p = q e^{-14}$
	$\ln\left(\frac{5}{2}\right) = -\frac{t}{2}$ (OE)	m1		take lns correctly
	(12) 14 (02)	1111		take his concerty
	$t = 14 \ln\left(\frac{12}{12}\right)$	A 1	2	must some from correct working
	$l = 14 \operatorname{m}\left(\frac{1}{5}\right)$	AI	3	must come from correct working
(ii)	$t = 12.256 \approx 12 \text{ days}$	B1F	1	ft on a , b if $a > b$; accept $t = 12$ NMS
				Accept 12 from incorrect working in b(i)
				Accept 13 if 12.2 or 12.3 seen
(c)(l)	$\frac{dx}{dt} = -\frac{1}{1} \times -12e^{-\frac{t}{14}}$	M1		differentiate: allow sign error
	dt = 14			dy
				condone $\frac{d}{dx}$ used consistently
	1 (15)	1		$1(12^{-\frac{1}{10}})$ 112 $^{-\frac{1}{10}}$ 15
	$=-\frac{1}{14}(x-15)$	ml		Or $\frac{14}{14} \begin{bmatrix} 12e & 14 \\ 12e & 14 \end{bmatrix}$ and $12e^{-14} = 15 - x$ seen
	$\frac{1}{15}$	A 1	2	AC he construct CSO
	$=\frac{14}{14}(13-x)$	AI	3	AG – be convinced CSO
	Alt: $t = -1.4 \ln(15 - x)$	(M1)		attempt to solve given equation for t
	And $t = -14 \text{ m} \left(\frac{12}{12} \right)$	(111)		attempt to solve given equation for t
	14(1)			
	$\frac{dt}{dt} = \frac{-14\left(-\frac{1}{12}\right)}{12}$	(m1)		differentiate contra with 1 access OF
	$dx = \left(\frac{15-x}{2}\right)$	(111)		differentiate wrt x, with $\frac{15-x}{15-x}$ seen, OE
	(12)			12
	$\frac{dt}{dt} = \frac{14}{3} \Rightarrow \frac{dx}{dt} = \frac{1}{3}(15-x)$	(A1)	(3)	AG = be convinced
	dx 15-x dt 14	(11)	(\mathbf{J})	
	Alt: (backwards)			
	$\int \frac{dx}{dt} = \int \frac{dt}{dt} = \pm 14 \ln (15 - x) = t + c$	(M1)		
	$J_{15-x} J_{14}$			
	Use $(0, 3) = \frac{14\ln(15 - r) + 14\ln(12 - t)}{14\ln(15 - r)}$	(m1)		
	(0,0). $(1,0) = x + 1 + 11 + 12 - t$	()		
	Solve for <i>x</i> : $x = 15 - 12e^{-\frac{1}{14}}$	(A1)	(3)	All steps shown
(ii)	rate of growth $= 0.5$ (one non dow)	D1	1	Accent 7
	rate of growth = 0.5 (cm per day)	BI	1	Ассері <u>14</u>
	Total		11	

Q	Solution	Marks	Total	Comments
5(a)	$x = 1, \ 5a^2 - a - 4 = 0$	M1		condone <i>y</i> for <i>a</i>
	(5a+4)(a-1)=0, a=1	A1	2	AG – be convinced, both factors seen
				or $a = -\frac{4}{5}$ or $1 \Longrightarrow a = 1$
				A0 for 2 positive roots
				(substitute $(1, 1) \Rightarrow 5 = 5$ no marks)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 4$	B1B1		(Ignore ' $\frac{dy}{dx}$ =' if not used, otherwise
	$=10xv^2+10x^2v\frac{dy}{dx}$	M1		loses final A1) attempt product rule, see two terms added
	dx	M1		chain rule, $\frac{dy}{dr}$ attached to one term only
		A1		condone 5×2 for 10
	$x = 1, y = 1$ $\frac{dy}{dx} + 4 = 10 + 10\frac{dy}{dx}$	M1		two terms, or more, in $\frac{dy}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{9} = \left(-\frac{2}{3}\right)$	A1	7	CSO
	Alt (for last two marks)			
	$\frac{dy}{dx} = \frac{10xy^2 - 4}{1 - 10x^2y}$	(M1)		find $\frac{dy}{dx}$ in terms of <i>x</i> , <i>y</i> and substitute
				x = 1, y = 1 must be from expression with
				two terms or more in $\frac{dy}{dx}$
	$(1,1) \Longrightarrow \frac{10-4}{1-10} = -\frac{6}{9}$	(A1)		
(c)	$\frac{y-1}{x-1} = -\frac{2}{3}$ (OE)	B1F	1	ft on gradient ISW after any correct form
	Total		10	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
6(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = -\sin\theta \qquad \frac{\mathrm{d}y}{\mathrm{d}\theta} = 2\cos 2\theta$	B1 B1	2	
(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos 2\theta}{\sin \theta}, \ \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2\cos \frac{\pi}{3}}{\sin \frac{\pi}{6}} = -2$	M1		use chain rule their $\frac{dy}{d\theta}$ their $\frac{dx}{d\theta}$ and
(b)	$y = 2\sin\theta\cos\theta = 2\sqrt{1-\cos^2\theta}\cos\theta$	A1 B1 B1	2	substitute $\theta = \frac{\pi}{6}$ use $\sin 2\theta = 2\sin\theta\cos\theta$ use $\sin^2\theta = 1 - \cos^2\theta$
	$y = 2\sqrt{1 - x^2} x$	M1		$\sin\theta$, $\cos\theta$ in terms of x
	$y^2 = 4x^2 \left(1 - x^2\right)$	A1	4	all correct CSO
	Alt			
	$y^2 = \sin^2 2\theta = (2\sin\theta\cos\theta)^2$	(B1)		use of double angle formula
	$= (4)\sin^2\theta\cos^2\theta = (4)(1-\cos^2\theta)\cos^2\theta$	(B1)		use of $s^2 + c^2 = 1$ to eliminate $\sin \theta$
	$= (4)(1-x^2)x^2$	(M1)		Substitute $\cos\theta$ for x
	$=4(1-x^2)x^2$	(A1)	(4)	CSO
	Total		8	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
7(a)	$\begin{bmatrix} 3 \\ -3 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix} = 3 - 6 + 3 = 0$	M1		attempt at sp, 3 terms, added
	$= 0 \Rightarrow$ perpendicular	A1	2	$= 0 \Rightarrow \text{ perpendicular seen}$ (or $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$) 3 Allow $\frac{-6}{\frac{3}{0}} \text{ but not } \begin{bmatrix} 3\\-6\\3 \end{bmatrix} = 0$
(b)	$8+3\lambda = -4 + \mu$ $6-3\lambda = 2\mu$ $-9-\lambda = 11-3\mu$ $\lambda = -2, \mu = 6$ verify third equation	M1 m1 A1 m1		set up any two equations solve for λ and μ substitute λ, μ in third equation
	intersect at $(2, 12, -7)$ Alt (for last two marks) substitute λ into l_1 and μ into l_2	A1 (m1)	5	САО
	intersect at $(2, 12, -7)$, condone $\begin{pmatrix} 2\\12\\-7 \end{pmatrix}$	(A1)		(2, 12, -7) found from both lines Note: working for (b) done in (a): award marks in (b)
7(c)	$\overrightarrow{AP} = \begin{pmatrix} 0 \\ 12 \\ -18 \end{pmatrix}$	M1		$\overrightarrow{AP} = \pm \left\{ \text{their } \overrightarrow{OP} - \begin{pmatrix} -4\\0\\11 \end{pmatrix} \right\}$
	$AP^2 = 504$	A1F		ft on P
	$AB^2 = 2AP^2$	M1		Calculate AB^2
	$AB = 12\sqrt{7}$	A1	4	OE accept 31.7 or better
	Total		11	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
8 (a)	$\int \frac{1}{\sqrt{1+2y}} \mathrm{d}y = \int \frac{1}{x^2} \mathrm{d}x$	M1		attempt to separate and integrate
	$\int \frac{1}{\sqrt{1+2y}} \mathrm{d}y = k\sqrt{1+2y}$	m1		
		A1		OE A1 for $\sqrt{1+2y}$ depends on both Ms
	$\sqrt{1+2y} = -\frac{1}{x}(+c)$	A1		A1 for $-\frac{1}{x}$ depends on first M1 only
	$x = 1, y = 4 \Longrightarrow c = 4$	m1		+c must be seen on previous line
		A1F	6	ft on k and $\pm \frac{1}{x}$ only
(b)	$1 + 2y = \left(4 - \frac{1}{x}\right)^2$	m1		need $k\sqrt{1+2y} = x$ expression with $+c'$ and attempt to square both sides
	$2y = 15 + \frac{1}{x^2} - \frac{8}{x}$	A1	2	terms on RHS in any order AG – be convinced CSO
	Total		8	
	TOTAL		75	

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2008 examination - January series
Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and	is for accuracy				
В	mark is independent of M or m marks and	d is for method	and accuracy			
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
-x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	С	candidate			
PI	possibly implied	Sf	significant figure(s)			
SCA	substantially correct approach	Dp	decimal place(s)			

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$3 = k\left(3 + x + 3 - x\right)$	M1		OE $\frac{A}{3-x} + \frac{B}{3+x} \Rightarrow 6A = 3 6B = 3$
	$k = \frac{1}{2}$	A1	2	or eg put $x = 0$, $\frac{3}{9} = k \left(\frac{1}{3} + \frac{1}{3} \right) \Longrightarrow k = \frac{1}{2}$
(b)	$\int_{1}^{2} \frac{3}{9-x^{2}} dx = -\frac{1}{2} \ln(3-x) + \frac{1}{2} \ln(3+x)$	M1 A1F		$a \ln(3 \pm x)$ ft on k (10)
	$= \frac{1}{2} ((\ln 5 - \ln 1) - (\ln 4 - \ln 2)) = \frac{1}{2} \ln \left(\frac{5}{2}\right)$	A1F	3	accept $\ln\left(\frac{10}{4}\right)$
				ft only for sign error in integral: $\frac{1}{2}\ln\left(\frac{5}{8}\right)$
	Total		5	

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Q	Solution	Marks	Total	Comments
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2(a)(i)	$f\left(\frac{1}{2}\right) = 2 \times \left(\frac{1}{2}\right)^3 + 3 \times \left(\frac{1}{2}\right)^2 - 18\left(\frac{1}{2}\right) + 8$	M1		use of $\pm \frac{1}{2}$ substituted in f (x)
$ \begin{array}{ c c c c c c } = \frac{1}{4} + \frac{3}{4} - 9 + 8 = 0 \Rightarrow factor & A1 & 2 & minimum seen: 2x\frac{1}{8} + 3x\frac{1}{4} - 18x\frac{1}{2} + 8 = 0 \\ \hline \text{(ii)} & f(x) = (2x-1)(x^2 + 2x - 8) & B1B1 & 2 & \text{or } p = 2, q = -8 \\ \hline \text{(iii)} & \frac{4x(x+4)}{(2x-1)(x+4)(x-2)} & M1 & \\ & = \frac{4x}{(2x-1)(x-2)} & A1 & 2 & CAO \\ \hline \text{(b)} & 2x^2 = A(x+5)(x-3) + B + Cx & M1 & \\ A = 2 & B1 & \\ 2A + C = 0 & -15A + B = 0 & M1 & \\ A = 2 & B1 & \\ 2A + C = 0 & -15A + B = 0 & M1 & \\ A = 2 & B1 & \\ C = -4 & B = 30 & A1 & 4 & \\ A \text{LTERNATIVE METHOD 1} & & \\ x^2 + 2x - 15 \frac{2}{2x^2} & (M1) & \\ x^2 + 2x - 15 \frac{2}{2x^2} & (B1) & \\ A = 2 & (A + 5)(x-3) + D(x-3) + E(x+5) & \\ x = 3 & 18 = 8E & E = \frac{9}{4} & \\ x = -5 & 50 = -8D & D = -\frac{25}{4} & (M1) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ A = 2 & (B1) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ A = 2 & (B1) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) & \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(-\frac{15}{4}\right)(-3) + \left(-15$					arithmetic seen and conclusion –
(ii) $f(x) = (2x-1)(x^{2}+2x-8)$ (iii) $\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x+4)(x-2)}$ (iii) $\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x-2)}$ (iv) $2x^{2} = A(x+5)(x-3) + B + Cx$ (iv) $A = 2$ (iv) $2x^{2} = A(x+5)(x-3) + B + Cx$ (iv) $B = B = 0$ (iv) $2x^{2} = A(x+5)(x-3) + B + Cx$ (iv) $B = B = 0$ (iv) $C = -4 B = 30$ (iv) $C = -4 C = -4 C = 4$ (iv) $C = -4 C = -4 C = 4$ (iv) $C = -4 C = -4 $		$=\frac{1}{4}+\frac{3}{4}-9+8=0 \Rightarrow \text{factor}$	A1	2	minimum seen: $2 \times \frac{1}{2} + 3 \times \frac{1}{4} - 18 \times \frac{1}{2} + 8 = 0$
(ii) $f(x) = (2x-1)(x^2 + 2x - 8)$ (iii) $\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x-2)}$ (b) $2x^2 = A(x+5)(x-3) + B + Cx$ A = 2 $2x^2 = A(x+5)(x-3) + B + Cx$ A = 2 2x + C = 0 $-15A + B = 0C = -4$ $B = 30A = 2B = 30A = 2B = 30A = 2B = 30C = -4A = 2B = 30C = -4A = 2B = 30C = -4A = 2C = -4C =$					8 4 2
(iii) $\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x-2)}$ (b) $2x^{2} = A(x+5)(x-3) + B + Cx$ $A1$ $= \frac{4x}{(2x-1)(x-2)}$ (c) $2x^{2} = A(x+5)(x-3) + B + Cx$ $A1$ $= 2$ $A1$ $= 30$ $A1$ $= 4$ $= 30$ $= 4$	(ii)	$f(x) = (2x-1)(x^2 + 2x - 8)$	B1B1	2	or $p = 2$, $q = -8$
(iii) $\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$ $= \frac{4x}{(2x-1)(x-2)}$ (b) $2x^{2} = A(x+5)(x-3) + B + Cx$ $A1$ 2 $A1$ 2 CAO (c) $2x^{2} = A(x+5)(x-3) + B + Cx$ $A1$ $A1$ 2 CAO $any equivalent method using PFs (see alternative method)$ $aquate coefficients or use 2 values of x to find B and C correct$ $\frac{2x^{2} + 4x - 30}{-4x + 30}$ $A1$ $A1$ 4 $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$ $A1$					
$\begin{array}{c c} (2A-1)(x+4)(X-2) \\ = \frac{4x}{(2x-1)(x-2)} \\ (b) & 2x^{2} = A(x+5)(x-3) + B + Cx \\ A = 2 \\ 2A + C = 0 & -15A + B = 0 \\ C = -4 & B = 30 \\ A = 2 \\ x^{2} + 2x - 15 \sqrt{2x^{2}} \\ \frac{2x^{2} + 4x - 30}{-4x + 30} \\ A = 2 \\ B = 30 \\ C = -4 \\ A \\ I \\ I$	(iii)	$\frac{4x(x+4)}{(2x-1)(x+4)(x-2)}$	M1		denominator (algebraic fraction not
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(2x-1)(x+4)(x-2)			required)
(b) $2x^{2} = A(x+5)(x-3) + B + Cx$ $A = 2$ $2A + C = 0 - 15A + B = 0$ $C = -4 B = 30$ ALTERNATIVE METHOD 1 $x^{2} + 2x - 15 \frac{2}{2x^{2}}$ $\frac{2x^{2}}{-4x+30}$ (M1) $A = 2$ $\frac{2x^{2} + 4x - 30}{-4x+30}$ (M1) $A = 2$ (B1) $A = 30$ (A1) $A = 2$ (B1) $A = 30$ (A1) $A = 2$ (B1) $A = 30$ (A1) $A = 4 + \frac{1}{2x^{2}} + \frac{1}{2$		$=\frac{4x}{(2x-1)(x-2)}$	A1	2	CAO
(b) $2x^2 = A(x+5)(x-3) + B + Cx$ MI A = 2 BI 2A + C = 0 $-15A + B = 0$ MI C = -4 $B = 30$ A1 4 ALTERNATIVE METHOD 1 $x^2 + 2x - 15 \sqrt{2x^2}$ (M1) $\frac{2x^2 + 4x - 30}{-4x + 30}$ (M1) A = 2 (B1) A = 2 (B1) A = 2 (B1) A = 2 (A1) A = 2 (B1) A = 2 (B1) A = 2 (B1) A = 2 (B1) A = 2 (A1) $2x^2 = A(x+5)(x-3) + D(x-3) + E(x+5)$ $x = 3$ $18 = 8E$ $E = \frac{9}{4}$ (M1) $x = -5$ $50 = -8D$ $D = -\frac{25}{4}$ (M1) $x = 0, 0 = -15A + (-\frac{25}{4})(-3) + (\frac{9}{4})(5)$ (B1) A = 2 (B1)					
$A = 2$ $2A + C = 0 - 15A + B = 0$ $C = -4 B = 30$ ALTERNATIVE METHOD 1 $x^{2} + 2x - 15 \frac{2}{92x^{2}}$ (M1) $\frac{2x^{2} + 4x - 30}{-4x + 30}$ (M1) $A = 2$ (M1) $A = 2$ (M1) $A = 2$ (B1) (A1) (A1) $A = 2$ (A1) $A = 2$ (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1)	(b)	$2x^{2} = A(x+5)(x-3) + B + Cx$	M1		any equivalent method using PFs (see alternative method)
$2A + C = 0 - 15A + B = 0$ $C = -4 B = 30$ ALTERNATIVE METHOD 1 $\frac{2 x^{2} + 2 x - 15 \sqrt{2 x^{2}}}{-4 x + 30}$ $\frac{2 x^{2} + 4 x - 30}{-4 x + 30}$ (M1) $A = 2$ $\frac{2 x^{2}}{-4 x + 30}$ (M1) $A = 2$ $\frac{2 x^{2}}{(x + 5)(x - 3)} = A + \frac{D}{x + 5} + \frac{E}{x - 3}$ (A1) $A = 3 18 = 8E E = \frac{9}{4}$ $x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (M1) $A = 2$ (B1) $A = 2$ (M1) $A = 2$ (M1		<i>A</i> = 2	B1		
$\begin{bmatrix} C = -4 & B = 30 \\ ALTERNATIVE METHOD 1 \\ x^{2} + 2x - 15 \sqrt{2x^{2}} \\ \frac{2}{2x^{2}} \\ -4x + 30 \\ \hline \\ A = 2 \\ B = 30 \\ C = -4 \\ ALTERNATIVE METHOD 2 \\ \frac{2x^{2}}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3} \\ 2x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5) \\ x = 3 & 18 = 8E & E = \frac{9}{4} \\ x = -5 & 50 = -8D & D = -\frac{25}{4} \\ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) \\ A = 2 \\ \end{bmatrix} $ (M1) (M2) (M1) (M2) (M1) (M2)		$2A + C = 0 \qquad -15A + B = 0$	M1		find B and C
ALTERNATIVE METHOD I $x^{2} + 2x - 15 \overline{\smash{\big)}2x^{2}}$ (M1) $\frac{2x^{2} + 4x - 30}{-4x + 30}$ (M1) A = 2 (B1) B = 30 (A1) C = -4 (A1) ALTERNATIVE METHOD 2 $\frac{2x^{2}}{(x + 5)(x - 3)} = A + \frac{D}{x + 5} + \frac{E}{x - 3}$ (A1) $2x^{2} = A(x + 5)(x - 3) + D(x - 3) + E(x + 5)$ (A1) $x = 3 18 = 8E E = \frac{9}{4}$ (M1) $x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (B1) (B1)		C = -4 $B = 30$	A1	4	both <i>B</i> and <i>C</i> correct
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		ALTERNATIVE METHOD I 2			
$\frac{2 x^{2} + 4 x - 30}{-4 x + 30}$ (M1) A = 2 (B1) A = 2 (A1) ALTERNATIVE METHOD 2 $\frac{2 x^{2}}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3}$ (A1) ALTERNATIVE METHOD 2 (A1) $\frac{2 x^{2}}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3}$ (A1) $2 x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5)$ (A1) $x = 3 18 = 8E E = \frac{9}{4}$ (M1) $x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (B1) (B1)		$x^{2} + 2x - 15 \overline{)2x^{2}}$	(M1)		complete division
A = 2 $B = 30$ $C = -4$ (B1) (A1) (A1) (A1) ALTERNATIVE METHOD 2 $\frac{2x^2}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3}$ (A1) $2x^2 = A(x+5)(x-3) + D(x-3) + E(x+5)$ $x = 3 18 = 8E E = \frac{9}{4}$ $x = -5 50 = -8D D = -\frac{25}{4}$ (M1) $x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (M1) (A1) (M1) (A1		$\frac{2x^2 + 4x - 30}{4x + 30}$	(111)		
$ \begin{array}{c} B = 30 \\ C = -4 \\ \text{ALTERNATIVE METHOD 2} \\ \frac{2 x^2}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3} \\ 2 x^2 = A(x+5)(x-3) + D(x-3) + E(x+5) \\ x = 3 18 = 8E E = \frac{9}{4} \\ x = -5 50 = -8D D = -\frac{25}{4} \\ x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) \\ A = 2 \end{array} $ (M1) find D and E		-4x+50 $A = 2$	(B1)		
C = -4 ALTERNATIVE METHOD 2 $\frac{2x^2}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3}$ $2x^2 = A(x+5)(x-3) + D(x-3) + E(x+5)$ $x = 3 18 = 8E E = \frac{9}{4}$ $x = -5 50 = -8D D = -\frac{25}{4}$ $x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (M1) find D and E $A = 2$ (B1)		B = 30	(A1)		
$ \frac{2x^{2}}{(x+5)(x-3)} = A + \frac{D}{x+5} + \frac{E}{x-3} $ $ 2x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5) $ $ x = 3 18 = 8E E = \frac{9}{4} $ $ x = -5 50 = -8D D = -\frac{25}{4} $ $ x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) $ (M1) (M1) (M1) (M1) (M1) (M1) (M1) (M1)		C = -4 ALTERNATIVE METHOD 2	(AI)		
$(x+5)(x-3) + x+5 + x-3$ $2x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5)$ $x = 3 + 18 = 8E = \frac{9}{4}$ $x = -5 + 50 = -8D = -\frac{25}{4}$ $x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ $A=2$ (M1) (M1) (M1) (M1)		$\frac{2x^2}{\overline{x^2}} = A + \frac{D}{\overline{x^2}} + \frac{E}{\overline{x^2}}$			
$2x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5)$ $x = 3 18 = 8E E = \frac{9}{4}$ $x = -5 50 = -8D D = -\frac{25}{4}$ $x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ (M1) (M1) (M1) (M1)		(x+5)(x-3) $x+5$ $x-3$			
$ \begin{array}{c} x = 3 18 = 8E E = \frac{9}{4} \\ x = -5 50 = -8D D = -\frac{25}{4} \\ x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) \\ A = 2 \end{array} $ (M1) find D and E		$2x^{2} = A(x+5)(x-3) + D(x-3) + E(x+5)$			
$ \begin{array}{c} x = -5 50 = -8D D = -\frac{25}{4} \\ x = 0, \ 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5) \\ A = 2 \end{array} $ (B1)		$x = 3$ $18 = 8E$ $E = \frac{9}{4}$	(M1)		find D and E
$x = 0, 0 = -15A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$ $A = 2$ (B1)		$x = -5 50 = -8D D = -\frac{25}{4}$	(111)		
A=2 (B1)		$x = 0, 0 = -15 A + \left(-\frac{25}{4}\right)(-3) + \left(\frac{9}{4}\right)(5)$			
		A=2	(B1)		
$\frac{D}{r+5} + \frac{E}{r-3} = \frac{-25}{4(r+5)} + \frac{9}{4(r-3)}$		$\frac{D}{x+5} + \frac{E}{x-3} = \frac{-25}{4(x+5)} + \frac{9}{4(x-3)}$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-25(x-3)+9(x+5)			
$=\frac{-25(x-5)(x-5)}{4(x+5)(x-3)}$		$=\frac{25(x+5)(x+5)}{4(x+5)(x-3)}$			
$= \frac{120 - 16x}{120 - 16x}$		= <u>120-16 x</u>			recombine to required forms
4(x+5)(x-3) (IVI1) recombine to required form		4(x+5)(x-3)	(M1)		recombine to required form
$=\frac{30-4x}{(x+5)(x-3)}$ (A1) CAO		$=\frac{30-4x}{(x+5)(x-3)}$	(A1)		CAO
Total 10				10	

MPC4	(cont)		

MPC4 - AQA GCE Mark Scheme	2008	January	series
----------------------------	------	---------	--------

Q	Solution	Marks	Total	Comments
3 (a)	$(1+x)^{\frac{1}{2}} = 1 + \frac{1}{2}x + kx^{2}$	M1		
	$=1+\frac{1}{2}x-\frac{1}{8}x^{2}$	A1	2	
(b)	$\left(1+\frac{3}{2}x\right)^{\frac{1}{2}} = 1+\frac{1}{2}\left(\frac{3}{2}x\right) - \frac{1}{8}\left(\frac{3}{2}x\right)^{2}$	M1		x replaced by $\frac{3}{2}x$ – condone missing brackets, but not incorrectly placed brackets eg $\left(\frac{3}{2}\right)x^2$ alternatively, start again and find correct expression
	$=1+\frac{3}{4}x-\frac{9}{32}x^{2}$	A1	2	correct evaluation
(c)	$\sqrt{\frac{2+3x}{8}} = \sqrt{\frac{2+3x}{4\times 2}} = k\left(1+\frac{3}{2}x\right)^{\frac{1}{2}}$	M1		manipulation to $k \times (answer to (b))$ and evaluated $\Rightarrow a+bx+cx^2$
	$=\frac{1}{2}+\frac{3}{8}x-\frac{9}{64}x^2$	A1	2	a, b, c fractions or decimals only
				Or use $(a+x)^n$ formula (condone one error for M1)
	Total		6	
4(a)(i)	A = 20	B1	1	
(ii)	$\frac{2000}{A} = k^{60}$	M1		log 100
	$k = (100)^{\frac{1}{60}} = 1.079775$	A1	2	AG; or $k = 10^{\frac{10000}{60}} = 10^{0.0333}$ or $\sqrt[60]{100}$ or $\sqrt[30]{10}$ or $e^{\frac{\ln 100}{60}} = e^{0.076}$ or $e^{0.077}$ or 1.0797751(6) seen
(iii)	$P = 20 \times k^{2008-1885}$	M1		
()	= 251780 ≈ 252000	A1	2	CAO nearest 1000
(b)	$15 \times 1.082709^{t} = 20 \times 1.079775^{t}$	M1		equate prices
	$\frac{15}{20} = \left(\frac{1.079775}{1.082709}\right)^t$	M1		<i>t</i> as a single index, or correct log expression at this stage
	$t = \frac{\log 0.75}{\log 0.997290}$	m1		expression for <i>t</i>
	$t = 106.017 \Longrightarrow 1991$	A1	4	SC Answer only/Trial and error 106 seen (2 out of 4) 1991 (4 out of 4)
	Total		9	

Q	Solution	Marks	Total	Comments
5(a)(i)	$t = \frac{1}{2} x = 2 \times \frac{1}{2} + \frac{1}{\left(\frac{1}{2}\right)^2} y = 2 \times \frac{1}{2} - \frac{1}{\left(\frac{1}{2}\right)^2}$	M1		
	$x = 5 \qquad \qquad y = -3 \qquad \qquad (2)$	A1	2	
(ii)	$\frac{dy}{dt} = 2 + 2t^{-3}$ $\frac{dx}{dt} = 2 - 2t^{-3}$	M1A1		2 and $\frac{d}{dt}\left(\frac{1}{t^2}\right)$ attempted in both derivatives
	$t = \frac{1}{2} \qquad \frac{dy}{dx} = \frac{\frac{2+\frac{1}{18}}{\frac{1}{8}}}{2-\frac{2}{18}} = -\frac{9}{7}$	MI A1		use chain rule; expressions can be in terms of t or evaluated CAO or any equivalent fraction (not decimals)
	$y + 3 = -\frac{9}{7}(x-5)$	B1F	5	ft on x, y and gradient
	7			if $y = mx + c$ used, <i>c</i> must be found correctly and the equation must be re- written
(b)	$x - y = \frac{2}{t^2} \qquad x + y = 4t$	M1		either correct expression or both of $x - y = 4t$ and $x + y = \frac{2}{t^2}$
	$\frac{2}{(x-y)} = \left(\frac{x+y}{4}\right)^2$	M1		eliminate <i>t</i>
	$32 = (x - y)(x + y)^2$	A1	3	or $(x - y)(x + y)^2 = \frac{2}{t^2} \times (4t)^2 = 32$ k = 32 alone, no marks
	Total		10	
6	$3x\frac{dy}{dx} + 3y - 4y\frac{dy}{dx} = 0$	M1		attempt implicit differentiation
		A1 A1 B1		product chain constant
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2}$	A1	5	CSO
	ALTERNATIVE METHOD			
	$x = \frac{2}{3}y + \frac{4}{3y}$	(M1)		solve for $x =$ expression in y and differentiate with respect to y
	$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2}{3} - \frac{4}{3y^2}$	(A1A1)		
	$y = 1, \ \frac{\mathrm{d}x}{\mathrm{d}y} = \frac{2}{3} - \frac{4}{3}$	(M1)		substitute $y = 1$
	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{3}{2}$	(A1)		CSO
	Total		5	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
7(a)(i)	R = 10	B1		R = 10
	$\tan \alpha = \frac{8}{6}, \alpha = 53.1$	B1F	2	For α ; ft incorrect <i>R</i>
(ii)	$\sin(2x+53.1) = 0.7$	M1		
	2x + 53.1 = 44.4	A1F		one correct answer ; ft α and R
	135.6 or 135.7, 404.4, 495.6 or 495.7	A1		3 other correct answers – ignore extras
	<i>x</i> = 41.2 or 41.3, 175.6 or 175.7,	A1	4	four solutions
	221.2 or 221.3, 355.6 or 355.7			CAO (with decimal place discrepancies) Answers only: 0/4
	$\sin 2x = 2\sin x \cos x$	B1		identities for $\sin 2x$ and $\cos 2x$ in any
(b)(i)	$\cos 2x = \cos^2 x - \sin^2 x$	B1		correct form
	$\frac{\sin 2x}{1 - \cos 2x} = \frac{2\sin x \cos x}{1 - (1 - 2\sin^2 x)} =$	M1		use of candidate's double angle formulae
	$\frac{2\sin x \cos x}{\cos x} = \frac{\cos x}{\cos x} = \frac{1}{\cos x}$	A1	4	AG, CSO
	$2\sin^2 x \sin x \tan x$			
(ii)	$\frac{1}{\tan x} = \tan x \qquad \tan x = \pm 1$	M1A1		(see * below)
	x = 45,	B1		x=45
	135, 225, 315	Al	4	if answers given without working, B1 max
				if $\frac{1}{\tan x}$ = tan x seen and followed by
				correct answers without working 4 out of 4
	Total		14	

* Comments for 7(b)(ii)

If hence ignored, so working in sines and cosines, must simplify as far as:

$\cos^2 x = \sin^2 x$	or	$\cos^2 x = \frac{1}{2}$	or	$\sin^2 x = \frac{1}{2}$	for M1
$\cos 2x = 0$	or	$\cos x = \pm \frac{1}{\sqrt{2}}$	or	$\sin x = \pm \frac{1}{\sqrt{2}}$	for A1

MPC4 (cont			T ()	A A
Q	Solution	Marks	Total	Comments
8	$\int y \mathrm{d}y = \int 3\cos 3x \mathrm{d}x$	M1		attempt to separate and integrate $py^2 = q \sin 3x$ seen \Rightarrow implies separation
	$\frac{1}{2}y^2 = \sin 3x (+C)$	A1A1		integrals – accept $\frac{1}{3} \times 3\sin 3x$
	$\left(\frac{\pi}{2},2\right) \frac{1}{2} \times 4 = \sin\frac{3\pi}{2} + C$	M1		use $\left(\frac{\pi}{2}, 2\right)$ to find constant
	$c = 5$ $y^2 = 2\sin 3x + 6$	A1	5	CSO (in any correct form)
	Total		5	
9(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 4\\1\\-2 \end{bmatrix} - \begin{bmatrix} 2\\5\\1 \end{bmatrix} = \begin{bmatrix} 2\\-4\\-3 \end{bmatrix}$	M1A1	2	M1 for $\pm (\overrightarrow{OA} - \overrightarrow{OB})$
(ii)	$(\mathbf{r}=)\begin{bmatrix}2\\5\\1\end{bmatrix}+\lambda\begin{bmatrix}2\\-4\\-3\end{bmatrix}$	B1F	1	ft on \overrightarrow{AB} ; OE
(b)(i)	$\begin{bmatrix} 1\\ -3\\ -1 \end{bmatrix} + \mu \begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix} = \begin{bmatrix} -2\\ -3\\ 5 \end{bmatrix}$	M1		μ found and verified or statement $\mu = -3$ satisfies all components
	$1 + \mu = -2$ $\mu = -3$ -1 - 2 $\mu = 5$ $\mu = -3$	A1	2	$\mu = -3$ alone B1
	ALTERNATIVE METHOD			
	$\mu \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} = \begin{bmatrix} -3 \\ 0 \\ 6 \end{bmatrix}, \text{ which is satisfied by } \mu = -3$			
(ii)	$(\begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}) \begin{bmatrix} -2 \end{bmatrix} \begin{bmatrix} 4+2\lambda \end{bmatrix}$	M1		$\overrightarrow{PQ} = \overrightarrow{OQ} - \overrightarrow{OP}$ with \overrightarrow{OQ} in parametric form in terms of λ (can be inferred later)
	$\overrightarrow{PQ} = \begin{vmatrix} 5 \\ +\lambda \end{vmatrix} - 4 \begin{vmatrix} -3 \\ -3 \end{vmatrix} = \begin{vmatrix} 8 - 4\lambda \end{vmatrix}$	1011		$\left[6+2\lambda \right]$
	$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -3 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} -4 - 3\lambda \end{bmatrix}$	A1		or $4-4\lambda$ $-7-3\lambda$
	$\begin{bmatrix} 4+2\lambda\\ 8-4\lambda\\ -4-3\lambda \end{bmatrix} \bullet \begin{bmatrix} 1\\ 0\\ -2 \end{bmatrix}$	M1		$\overrightarrow{PQ} \bullet \begin{bmatrix} 1\\0\\-2 \end{bmatrix} \text{ with } \overrightarrow{PQ} \text{ in terms of } \lambda$
	$(4+2\lambda) + (-2)(-4-3\lambda) = 0$	m1		(can be interied later) linear expression in λ equated to 0
	$\lambda = -1.5$	A1F		ft on sign/arithmetic error in \overrightarrow{PQ} or
	<i>Q</i> is (-1, 11, 5.5)	A1	6	equation CAO
	Total		11	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2008 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

Μ	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for	or accuracy			
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$f\left(-\frac{1}{3}\right) = 27 \times \left(-\frac{1}{3}\right)^3 - 9 \times \left(-\frac{1}{3}\right) + 2$	M1		Use of $\pm \frac{1}{3}$ or complete division with integer remainder M1
	=-1+3+2=4	A1	2	remainder = 4 indicated A1
(b)(i)	$f\left(-\frac{2}{3}\right) = -8 + 6 + 2 = 0$	B1	1	AG
(b)(ii)	$f(x) = (3x+2)(ax^{2}+bx+c)$	B1		$(3x+2)$ or $\left(x+\frac{2}{3}\right)$ is a factor PI
	a = 9 c = 1	M1		quadratic factor; find coefficients; 2 correct
	$x^2 \text{ term } 3b + 2a = 0$			equate coefficients and solve for b
	x term $3c+2b=-9$ b=-6 or (could be shown as) $9x^2-6x+1$	A1		correct quadratic factor or a , b , and c correct
				or use division or factor theorem to seek another factor (see alternative methods at end of scheme)
	f(x) = (3x+2)(3x-1)(3x-1)	A1	4	SC (see alternative methods at end of scheme)
(b)(iii)	$9x^{2} + 3x - 2 = (3x - 1)(3x + 2)$	M1		factorise denominator correctly or complete division
	$\frac{27x^3 - 9x + 2}{9x^2 + 3x - 2} = 3x - 1$	A1	2	simplified result indicated
	Total		9	

- (-	PC4 (cont)					
Q	Solution	Marks	Total	Comments		
2(a)	$\frac{dx}{dt} = 4 \qquad \frac{dy}{dt} = -\frac{1}{2t^2}$ $\frac{dy}{dx} = -\frac{1}{2t^2} \times \frac{1}{4}$	M1 A1 M1		differentiate. 4; at^{-2} seen both derivatives correct use chain rule candidates' $\frac{dy}{dt} / \frac{dx}{dt}$		
	$t = \frac{1}{2} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	A1	4	CSO		
(b)	gradient of normal = 2 $(x, y) = (5, 0)$ $\frac{y}{x-5} = 2$	B1F M1 A1F	3	F if gradient $\neq \pm 1$ calculate and use (x, y) on normal F on gradient of normal ACF		
(c)	$x-3=4t$ or $y+1=\frac{1}{2t}$ (x-3)(y+1)=2	B1 M1 A1	3	or $t = \frac{x-3}{4}$ or $\frac{1}{t} = 2(y+1)$ eliminate <i>t</i> ; allow one error accept $y = \frac{1}{2(x-3)} - 1$ ACF		
	Total		10	$\frac{4}{4}$ SC allow marks for part (c) if done in part (a)		
	1000		10			
3(a)	$\sin(x+2x) = \sin x \cos 2x + \cos x \sin 2x$ $= \sin x (1-2\sin^2 x) + \cos x (2\sin x \cos x)$	M1 B1B1		double angles; ACF ISW condone missing <i>x</i>		
	$= \sin x (1 - 2\sin^2 x) + 2\sin x (1 - \sin^2 x)$ = $3\sin x - 2\sin^3 x - 2\sin^3 x$	A1		all in sin <i>x</i> , correct expression		
	$=3\sin x - 4\sin^3 x$	A1	5	CSO AG		
(b)	$\sin^{3} x = a \sin x + b \sin 3x$ $\int \sin^{3} x dx = -a \cos x - \frac{b}{3} \cos 3x$ $\int \sin^{3} x dx = \frac{1}{4} \left(-3 \cos x + \frac{1}{3} \cos 3x \right) \left(+C - \frac{1}{3} \cos 3x \right) \left(+C$	M1 A1F A1	3	attempt to solve for $\sin^3 x$ where $a \neq 0$ and $b \neq 0$ either integral correct F on a, b CAO alternative method by parts (see end of		
	Total		8	mark scheme)		

<u>MPC4 (C</u>	APC4 (cont)					
Q	Solution	Marks	Total	Comments		
4(a)(i)	$(1-x)^{\frac{1}{4}} = 1 + \frac{1}{4}(-x) + \frac{1}{2} \times \frac{1}{4}\left(-\frac{3}{4}\right)(-x)^{2}$ $= 1 - \frac{1}{4}x - \frac{3}{32}x^{2}$	M1 A1	2	$1 \pm \frac{1}{4}x + kx^{2}$ equivalent fractions or decimals		
(a)(ii)	$\left(81 - 16x\right)^{\frac{1}{4}} = 81^{\frac{1}{4}} \left(1 - \frac{16}{81}x\right)^{\frac{1}{4}}$	B1				
	$= k \left(1 - \frac{1}{4} \times \frac{16}{81} x - \frac{3}{32} \left(\frac{16}{81} x \right)^2 \right)$	M1		x replaced by $\frac{16}{81}x$		
	= 3() = $3 - \frac{4}{27}x - \frac{8}{729}x^{2}$	A1	3	or start binomial again condone one error (missing bracket; x or x^2 ; sign error) CSO AG use of $(a+bx)^n$ ignoring hence (see end of mark scheme)		
(b)	$3 - \frac{4}{27} \times \frac{1}{16} - \frac{8}{729} \left(\frac{1}{16}\right)^2$ = 2.9906979	M1 A1	2	use $x = \frac{1}{16}$ seven decimal places only		
	Total		7			

MPC4 (c	ont)			
Q	Solution	Marks	Total	Comments
5(a)(i)	$\cos\alpha = \frac{3}{5}$	B1	1	ACF
(a)(ii)	$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$	M1		
	$=\frac{3}{5}\cos\beta + \frac{4}{5}\sin\beta$	A1	2	ACF
(a)(iii)	$\sin\beta = \frac{12}{13}$	B1		
	$\cos(\alpha - \beta) = \frac{63}{65}$	B1	2	$\frac{63}{65}$ NMS B1B1
(b)(i)	$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}$	M1		
	$2 \tan x = 1 - \tan^2 x$ $\tan^2 x + 2 \tan x - 1 = 0$	A1	2	CSO AG
(b)(ii)	$\tan x = \frac{-2 \pm \sqrt{4+4}}{2}$	M1		must solve quadratic equation by formula or by completing the square condone one slip
	$=-1\pm\sqrt{2}$	A1		$\pm\sqrt{2}$ required
	$2x = 45^{\circ} \Rightarrow x = 22\frac{1}{2}^{\circ}$ is acute			
	$\Rightarrow \tan 22\frac{1}{2}^{\circ} = \sqrt{2} - 1$	E1	3	explain selection of positive root
	Total		10	

Q	Solution	Marks	Total	Comments
6(a)	$\frac{2}{(x^2 - 1)} = \frac{A}{x - 1} + \frac{B}{x + 1}$			
	2 = A(x+1) + B(x-1)	M1		
	x = 1 $x = -1$	m1		use two values of <i>x</i> or equate coefficients and solve
	$A = 1 \qquad B = -1$	A1	3	A + B = 0 and $A - B = 2both A and B$
(b)	$\int \frac{2}{x^2 - 1} \mathrm{d}x = p \ln(x - 1) + q \ln(x + 1)$	M1		ln integrals
	$=\ln(x-1)-\ln(x+1)$	A1F	2	F on A and B condone missing brackets
(c)	$\int \frac{\mathrm{d}y}{y} = \int \frac{2}{3(x^2 - 1)} \mathrm{d}x$	M1		separate and attempt to integrate on one side
	$\ln y = \frac{1}{3} \left(\ln (x-1) - \ln (x+1) \right) \ (+C)$	A1 A1F		left hand side F from part (b) on right hand side
	(3,1) $\ln 1 = \frac{1}{3} (\ln 2 - \ln 4) + C$	m1		use (3, 1) to attempt to find a constant
	$3\ln y = \ln(x-1) - \ln(x+1) - (\ln 2 - \ln 4)$			
	$3\ln y = \left(\ln\left(\frac{x-1}{x+1}\right) + \ln 2\right)$			
	$\ln y^3 = \ln\left(\frac{2(x-1)}{x+1}\right)$			
	$y^3 = \frac{2(x-1)}{x+1}$	A1	5	CSO AG
	Total		10	

MPC4 (c	IPC4 (cont)					
Q	Solution	Marks	Total	Comments		
7(a)	$AB^{2} = (5-3)^{2} + (3-2)^{2} + (0-1)^{2}$	M1		use $\pm (\overrightarrow{OB} - \overrightarrow{OA})$ in sum of squares of components allow one slip in difference		
	$AB = \sqrt{30}$	A1	2	accept 5.5 or better		
(b)	$\begin{bmatrix} 2\\5\\-1 \end{bmatrix} \bullet \begin{bmatrix} 1\\0\\-2 \end{bmatrix} = 2 + 3 = 5$	M1		$\pm \overrightarrow{AB} \bullet$ direction <i>l</i> evaluated condone one component error		
		A1		5 or – 5		
	$\cos\theta = \frac{5}{\sqrt{30\sqrt{10}}}$	B1F M1		F on either of candidates' vectors use $ a b \cos\theta = a \bullet b$; values needed		
	$\theta = 73^{\circ}$	A1	5	CAO (condone 73.2, 73.22 or 73.22)		
(c)	$\overrightarrow{AC} = \begin{bmatrix} 5+\lambda \\ 3 \\ -2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 2+\lambda \\ 5 \\ -1-3 \\ -3 \\ -1 \end{bmatrix}$	M1		for $\overrightarrow{OC} - \overrightarrow{OA}$ or $\overrightarrow{OA} - \overrightarrow{OC}$ with \overrightarrow{OC} in terms of λ condone one component error		
		A1				
	$(2+\lambda)^2 + 5^2 + (-1-3\lambda)^2 = 30$	m1				
	$10\lambda^2 + 10\lambda = 0$					
	$(\lambda = 0 \text{ or}) \lambda = -1$	A1				
	$(\lambda = 0 \Rightarrow (5,3,0) \text{ is } B)$					
	$\lambda = -1 \Rightarrow C$ is $(4,3,3)$	A1	5	condone $\begin{bmatrix} 4\\3\\3 \end{bmatrix}$		
	Tota	ıl	12			

<u>MPC4 (o</u>	74 (cont)						
Q	Solution	Marks	Total	Comments			
8(a)(i)	$p\frac{\mathrm{d}x}{\mathrm{d}t} = q$ $\frac{\mathrm{d}x}{\mathrm{d}x} = -kx$	M1	2	where p and q are functions			
(a)(ii)	$\frac{dt}{dt} = -kx$ -500 = -k 20000 or 500 = k 20000	M1	2	condone sign error or missing 0 k can be on either side of the equation			
	$k = \frac{5}{200} (= 0.025)$	A1	2	CSO both (a)(i) and (a)(ii)			
(b)(i)	<i>A</i> = 1300	B1	1				
(b)(ii)	$100 > Ae^{-0.05 t}$	M1		condone = for >; condone 99 for 100			
	$\ln\left(\frac{100}{A}\right) > -0.05 t$	m1		take logs correctly condone 0.5			
	<i>t</i> > 51.3	A1		or by trial and improvement (see end of mark scheme)			
	population first exceeds 1900 in 2059	A1F	4	F if M1 m1 earned and t>0 following A			
	Total		9				
	TOTAL		75				

MPC4 (cont)

Alternative methods permitted in the mark scheme

Q	Solution	Marks	Total	Comments
1(b)(ii)	ALTERNATIVE METHOD 1			
	(3x+2) is a factor	B1		Ы
	use factor theorem	M1		use factor theorem or algebraic division to find another factor
	$f\left(\frac{1}{3}\right) = 0 \Longrightarrow (3x-1)$ is a factor			
	f(x) = (3x+2)(3x-1)(ax+b)	A1		
	f(x) = (3x+2)(3x-1)(3x-1)	A1	4	
	ALTERNATIVE METHOD 2			
	(3x+2) is a factor	B1		PI by division
	divide $27x^3 - 9x + 2$ by $(3x + 2)$	M1		complete division to $ax^2 + bx + c$
	$9x^2 - 6x + 1$	A1		
	f(x) = (3x+2)(3x-1)(3x-1)	A1	4	
1(b)(ii)	SPECIAL CASE			
	(3x+2)(3x-1)(ax+b)		2	
2(a)	$y = \frac{2}{x-3} - 1$ and differentiate	M1		differentiate expression in <i>y</i> and <i>x</i>
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{\left(x-3\right)^2}$	A1		correct
	<i>x</i> = 5			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2}{\left(5-3\right)^2}$	m1		find and therefore use <i>x</i> (and <i>y</i>)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	A1	4	

<u>MPC4 (c</u>	4 (cont)						
Q	Solution	Marks	Total	Comments			
3(b)	ALTERNATIVE METHOD 1						
	$\int \sin^3 x dx = \int \sin^2 x \sin x dx$	M1		identify parts and attempt to integrate			
	$-\sin^2 x \cos x - \int -2\cos x \sin x \cos x dx$						
	$=-\sin^2 x \cos x - \frac{2}{3}\cos^3 x (+C)$	A2	3				
	ALTERNATIVE METHOD 2						
	$\int \sin^3 x dx = \int \sin^2 x d(-\cos x)$	M1		condone sign error			
	$=\int -(1-\cos^2 x)d(\cos x)$						
	$= -\cos x + \frac{1}{3}\cos^3 x (+C)$	A2	3				
	ALTERNATIVE METHOD 3						
	$\int \sin x \sin^2 x dx$						
	$\int \sin x (1 - \cos^2 x) \mathrm{d}x$	M1		this form and attempt to integrate			
	$= -\cos x + \frac{1}{3}\cos^3 x (+C)$	A2	3				
4(a)(ii)				using $(a+bx)^n$ from FB			
	$(81 - 16x)^{\frac{1}{4}} = 81^{\frac{1}{4}} + \frac{1}{4}81^{-\frac{3}{4}}(-16x) + \frac{1}{4}(-16x) + \frac{1}{4}(-$	$-\frac{3}{4}\Big)\frac{1}{2}81^{-\frac{3}{2}}$	$\frac{7}{4}(-16x)^{2}$	2			
		M1 A1		condone one error			
	$= \left(3 - \frac{4}{27}x - \frac{8}{729}x^2\right)$	A1	3	CSO completely correct			
8(b)(ii)	$t = 51 \rightarrow 101.5$ $t = 52 \rightarrow 96.6$	M1		t = 51 or $t = 52$ considered			
	$\Rightarrow 51 < t < 52$ population first exceeds 1900 in 2059	A3	4	CAO			

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2009 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

Μ	mark is for method					
m or dM	mark is dependent on one or more M marks and is for method					
А	mark is dependent on M or m marks and is for accuracy					
В	mark is independent of M or m marks and is for method and accuracy					
E	mark is for explanation					
\sqrt{or} ft or F	follow through from previous					
	incorrect result	MC	mis-copy			
CAO	correct answer only	MR	mis-read			
CSO	correct solution only	RA	required accuracy			
AWFW	anything which falls within	FW	further work			
AWRT	anything which rounds to	ISW	ignore subsequent work			
ACF	any correct form	FIW	from incorrect work			
AG	answer given	BOD	given benefit of doubt			
SC	special case	WR	work replaced by candidate			
OE	or equivalent	FB	formulae book			
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme			
–x EE	deduct <i>x</i> marks for each error	G	graph			
NMS	no method shown	с	candidate			
PI	possibly implied	sf	significant figure(s)			
SCA	substantially correct approach	dp	decimal place(s)			

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4	MPC4					
Q	Solution	Marks	Total	Comments		
1 (a)						
(i)	f(-1) = 0	B1	1			
(ii)	$f\left(-\frac{1}{2}\right) = 4\left(-\frac{1}{8}\right) - 7\left(-\frac{1}{2}\right) - 3$	M1		Use of $\pm \frac{1}{2}$		
	$=-\frac{1}{2}+\frac{7}{2}-3=0 \Longrightarrow$ factor	A1	2	Need to see simplification (at least		
				$\left(-\frac{1}{2}\right)^3 = -\frac{1}{8}$, '=0' and conclusion		
(iii)	Third factor is $(2x-3)$	B1		PI		
	$\frac{(x+1)(2x+1)(2x-3)}{(x+1)(2x-3)}$	M1		$\frac{3 \text{ linear factors}}{2 \text{ linear factors}}$		
	(x+1)(2x+1)					
	simplifies to $2x-3$	A1		Simplified result stated. Alternative; see end.		
				Use remainder theorem.		
	Alternative					
	Complete division to $2x + b$	(M1)				
	Complete division to $2x-3$	(A1)				
	Simplifies to $2x-3$	(A1)	3	Simplified result stated		
(b)	$g(-\frac{1}{2}) = -\frac{1}{2} + \frac{7}{2} + d = 2$	M1				
	d = -1	A1				
	Alternative					
	Complete division leading to rem $= 2$	(M1)		Remainder $= d + p = 2$		
	d = -1	(A1)	2			
	Total		8			
2(a)	$R = \sqrt{10}$	B1		Accept $R = 3.16$ or better.		
	$\tan \alpha = 3$	M1		OE (Can be implied by 71.57° seen)		
	$\alpha = 1.25$	A1	3	A0 if extra answers within given range		
				SC 1 $\tan \alpha = \frac{1}{3}$ $\alpha = 0.32$		
(b)(i)	min value = $-\sqrt{10}$ (or $\ge \sqrt{-10}$)	B1F	1	ft on R		
(ii)	$\sin(x-\alpha) = -1$	M1		or $\sin^{-1}\frac{3\pi}{2}$		
	x = 5.96	A1F	2	ft on their α (to 2 dp) + $\frac{3\pi}{2}$		
	Total		6			

MPC4 (cont)	1		1
Q	Solution	Marks	Total	Comments
3 (a)				
(i)	$\frac{2x+7}{2} = 2 + \frac{3}{2}$	B1		
	x+2 $x+2$	B1	2	
(ii)	$\int \frac{2x+7}{2x+7} = 3\ln(x+2) + 2x + C$	B1F		Either term correct
	$\int \frac{1}{x+2} x+2$	B1F	2	Both correct; constant required; condone
				missing bracket
				ft on A, B
(b)(i)	$28 + 4x^2 =$			
	$P(5-x)^2 + Q(1+3x)(5-x)$	M1		
	+R(1+3x)			
	r = 5 $r = -1$	m1		Two values of r used to find P and P
	$\begin{array}{ccc} x - 5 & x - \frac{-3}{3} \\ P - 8 & P - 1 \end{array}$			SC R = 8 P = 1 NMS can score B1 B1
	$R = 0 \qquad F = 1$ $r = 0 \implies 28 = 25P \pm 5O \pm R$	m1		Set $K = 0, T = 1$ finds can score D1,D1 Third value of x used to find Q
	$A = 0 \implies 20 = 251 + 5Q + K$ $Q = -1$			Third value of x used to find Q
	$\mathcal{Q} = 1$	AI		
	Alternative			•
	$28 \pm 4x^2 =$			
	28 + 4x =			
	$P(5-x)^{-} + Q(1-3x)(5-x)$	(M1)		
	+R(1+3x)			
	=(25P+5Q+R)+			
	$(-10P+14O+3R)x+(P-3O)x^{2}$	(m1)		Collect terms and form equations
	P - 3O = 4			
	14O + 3R - 10P = 0	(A1)		Correct equations
	25P + 5O + R = 28			
	P = 1 $Q = -1$ $R = 8$	(m1)		Solve for $P Q$ and R
	~	(A1)	5	
(ii)	$\int \frac{1}{1} - \frac{1}{1} + \frac{8}{1} dx$	M1		Use partial fractions
	J_{1+3x} 5-x $(5-x)^{2}$	1011		
	$-\frac{1}{2}\ln(1+3r) + \ln(5-r) + \frac{8}{8} + (C)$	m1		$a\ln(1+3x)+b\ln(5-x)$
	$-3^{-1}(1+3x) + 11(5-x) + 5-x^{-1}(0)$	A1F		OE; both ln integrals correct; needs ()
		A1F	4	Other term correct
				ft on their P, Q, R
				SC. If an D.O. D found in (1)(i) and i
				SC: If no P,Q, R found in (b)(1), can gain method marks by incerting other values or
				method marks by inserting other values of retaining the letters (max $2/4$)
				$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $
	Total		13	
L	10001	1		

MPC4 (cont	VIPC4 (cont)						
Q	Solution	Marks	Total	Comments			
4(a)	$(1-x)^{\frac{1}{2}} = 1 + \frac{1}{2}(-x) + px^{2}$	M1					
(i)	$-1 - \frac{1}{2}r - \frac{1}{2}r^2$	A 1	2				
	-1 2^{χ} 8^{χ}	AI	2				
(ii)	$\int dx = x^{\frac{1}{2}}$	D.I		$(1)^{\frac{1}{2}}(1)^{\frac{1}{2}}$			
()	$\sqrt{4-x} = 2\left(1-\frac{x}{4}\right)^2$	B1		or $(4)^2 (1-\frac{x}{4})^2$			
	$= \left(2 \right) \left(1 - \frac{1}{2} \left(\frac{x}{4} \right) - \frac{1}{8} \left(\frac{x}{4} \right)^2 \right)$	M1		x replaced by $\frac{x}{4}$; condone missing ()			
				$\frac{1}{1}$			
	- · · · · ²			Or start again with $\left(1-\frac{x}{4}\right)^2$			
	$=2-\frac{x}{4}-\frac{x}{64}$	A1		CAO or decimal equivalent			
	Alternative						
	$(4-x)^{\frac{1}{2}} = 4^{\frac{1}{2}} + \frac{1}{2} \times 4^{-\frac{1}{2}} (-x)$	(M1)		Use of $(a+x)^n$ from formula book			
	$+\frac{\frac{1}{2}\left(-\frac{1}{2}\right)}{2}4^{-\frac{3}{2}}(-x)^{2}$	(A1)		Condone missing brackets and 1 error			
	$-2 x x^2$	(1 1)	2				
	$-2-\overline{4}-\overline{64}$	(A1)	3				
(D)	$x = 1$ $\sqrt{3} \approx 2 - \frac{1}{4} - \frac{1}{64}$	M1		x = 1 used in their expansion			
	=1.734 (3dp)	A1	2	CSO			
	Total		7				
5 (a)	$\sin 2x = 2\sin x \cos x$	B1	1	OE, eg sin $x \cos x + \sin x \cos x$ etc			
(L)	$\cos x = 0$ $x = 90, 270$	B1		Both required			
(D)	$10\sin x + 3 = 0$	M1	4	G10			
	x = 197.5 342.5	AIAI	4	CAU if extra values in given range may 1/2			
(c)	$\cos 2x - \cos^2 x - \sin^2 x$	D 1		n extra values in given range, max 1/2			
(0)	$\cos 2x = \cos x - \sin x$	ы M1		$\sin 2x \text{ expanded and } \cos 2x \text{ in terms of}$			
	$2 \sin x \cos x + 1 - 2 \sin x = 1 + \sin x$	1011		$\sin x$ used			
		A1					
	$2\sin x(\cos x - \sin x) = \sin x$						
	$2(\cos x - \sin x) = 1$	A1	4	CSO; need to see $\sin x$ taken out as factor			
	· /			or cancelled			
	Total		9				

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
6 (a)	$x^2 \frac{dy}{dx} + 2xy$	M1 A1		Product rule used. Allow 1 error
	$+3y^2 \frac{dy}{dy}$	B1		Chain rule
	dx = 2	B1		RHS and equation with no spurious
				$\frac{dy}{dx}$ unless recovered.
	$(2,1), 4\frac{dy}{dx} + 4 + 3\frac{dy}{dx} = 2$	M1		Substitute (2,1)
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{2}{7}$	A1	6	CSO
(b)	$\frac{dy}{dx} = 0 \Longrightarrow$	M1		Derivative = 0 used
	xy = 1	A1		OE
	$x^{2} \times \frac{1}{x} + \frac{1}{x^{3}} = 2x + 1$	m1		Use $xy = k$ to eliminate y on LHS
	$\frac{1}{x^3} = x + 1$	A1	4	Answer given; CSO
	Total		10	
7(a) (i)	$\int \frac{\mathrm{d}x}{\mathrm{e}^{\frac{1}{2}x}} = \int -kt \mathrm{d}t$	B1		Separate; condone missing integral signs
	$-2e^{-\frac{1}{2}x} = -k\frac{t^2}{2} (+C)$	B1B1	3	
(ii)	$-2e^{-\frac{1}{2}x} = -k\frac{t^2}{2} - 2e^{-3}$	M1		Use $(6,0)$ to find constant
	$\ln\left(e^{-\frac{1}{2}x}\right) = \ln\left(k\frac{t^2}{4} + e^{-3}\right)$	M1		Take logarithms correctly; condone one side negative. Must have a constant.
	$-\frac{1}{2}x = \ln\left(k\frac{t^2}{4} + e^{-3}\right)$			
	$x = -2\ln\left(\frac{kt^2}{4} + e^{-3}\right)$	A1	3	Answer given; CSO
(b) (i)	$t = 10$ $x = -2\ln\left(\frac{0.004 \times 10^2}{10^2} + e^{-3}\right)$	M1		
	$= 3.8 \implies 3800$	A1	2	CAO
(;;)	$0.004 \times t^2$ 3	M1		
(11)	$x=0$ $\frac{0.007\times 1}{4} + e^{-3} = 1$		2	CAO
	<i>t</i> = 30.8	AI	2	Treat 0.04 or 0.0004 as misread (-1)
	Total		10	

MPC4 (cont)			<u> </u>
Q	Solution	Marks	Total	Comments
8(a) (i)	$\overline{AB} = \begin{bmatrix} 3\\1\\-2 \end{bmatrix} - \begin{bmatrix} 2\\1\\-1 \end{bmatrix} = \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	M1 A1	2	$ \pm \left(\overrightarrow{OA} - \overrightarrow{OB} \right) $ A0 if answer as coordinates
(ii)	$\overrightarrow{OB} \bullet \overrightarrow{AB} = 3 \times 1 + 1 \times 0 + (-2) \times (-1) = 5$	M1		Evaluate to single value
	$\cos\theta = \frac{\overrightarrow{OB} \bullet \overrightarrow{AB}}{\left \overrightarrow{OB} \right \times \left \overrightarrow{AB} \right }$ $\left \overrightarrow{OB} \right = \sqrt{14} \left \overrightarrow{AB} \right = \sqrt{2}$	M1		Use formula for $\cos \theta$ with any 2 vectors and at least one of the corresponding modulii 'correct'
	$\cos\theta = \frac{5}{\sqrt{7 \times 2}\sqrt{2}} = \frac{5}{2\sqrt{7}}$	A1		CSO; AG so need to see intermediate step eg $\frac{5}{\sqrt{7 \times 2}\sqrt{2}}$ or $\frac{5}{\sqrt{28}}$
	Alternative			
	cos rule attempted with cos B	(M1)		
	cos rule correct with cos B	(A1)		
	derive correct given form	(A2)	4	
(b)	$\mathbf{r} = \begin{bmatrix} 6\\2\\-4 \end{bmatrix} + \lambda \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	M1 A1F	2	$\overrightarrow{OC} + \lambda \overrightarrow{AB}$. Allow one slip ft on \overrightarrow{AB} ; needs r or $\begin{bmatrix} x \\ y \end{bmatrix}$
(c)	$\overrightarrow{OD} \bullet \overrightarrow{AB} = \begin{bmatrix} 6+\lambda\\2\\-4-\lambda \end{bmatrix} \bullet \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	M1		
	$6 + \lambda + 4 + \lambda = 0$	ml		
	$\lambda = -5$	A1F		ft on equation of line
	D 1s (1,2,1)	A1		CAO
	Alternative $\begin{bmatrix} a \\ b \end{bmatrix} \bullet \begin{bmatrix} 1 \\ 0 \end{bmatrix} = a - c = 0$	(M1)		Let <i>D</i> be (a,b,c) Scalar product evaluated and equated to 0
	$\begin{bmatrix} c \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix}$ $a = 6 + \lambda, b = 2, c = -4 - \lambda$	(m1) (A1)		Use equation of line
	a + c = 2			
	a=1 $b=2$ $c=1$	(A1)	4	
	Total		12	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2009 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2009 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is for method and accuracy				
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
-x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$f\left(\frac{1}{3}\right) = 3 \times \frac{1}{27} + 8 \times \frac{1}{9} - 3 \times \frac{1}{3} - 5$	M1		Use $\frac{1}{3}$ in evaluating f(x)
	=-5	A1	2	No ISW
				Evidence of Remainder Theorem
(b)	$x^2 + 3x$			
	$3x-1)3x^3+8x^2-3x-5$	M1		Division with x^2 and an x term
	$\frac{7}{3x^3} - x^2$			seen; $x^2 + px$
	$\frac{1}{9x^2 - 3x}$ $\frac{9x^2 - 3x}{9x^2 - 3x}$			
	$a=1$ $b=3$ or $x^2+3x+\frac{c}{3x-1}$	A1		Explicit or in expression
	<i>c</i> =-5	B1		Condone $+\frac{-5}{3x-1}$
	Altomativa			
	(2 + 1)(2 + 1)			
	$\frac{(3x-1)(x+px)}{3x-1} - \frac{5}{3x-1}$	(M1)		Split fraction and attempt factors
	2 - 5	(A1)		a=1 $b=3$
	$x^2 + 3x - \frac{3x - 1}{3x - 1}$	(B1)		c=-5
	Alternative			
	$f(x) = 3ax^3 + (3b-a)x^2 - bx + c$	(M1)		Multiply by $(3x-1)$ and attempt to collect
	a = 1 $b = 3$	(A1)		terms
	c = -5	(B1)		
		(21)		
	Alternative			Multiply by $(3r-1)$ and attempt to find a
	$f(x) = (ax^2 + bx)(3x - 1) + c$	(M1)		by a_{1}^{2} substitute 3 values of x and form 3
	$x=0 \Longrightarrow c=-5$	(B1)		simultaneous equations and attempt to
	$x=1 \Rightarrow 2a+2b+c=3$	(21)		solve; or substitute 3 values of x into
	$x = 2 \Longrightarrow 20a + 10b + c = 45$			given equation
	a=1 $b=3$	(A1)	3	
	Total		5	

MPC4 (cont	.)			
Q	Solution	Marks	Total	Comments
2(a)	$\frac{\mathrm{d}x}{\mathrm{d}t} = -\frac{1}{t^2} \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = 1 - \frac{1}{2t^2}$	B1B1		
	$\frac{dy}{dx} = \frac{1 - \frac{1}{2t^2}}{-\frac{1}{t^2}} \left(=\frac{2t^2 - 1}{-2}\right)$	M1		Their $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$; condone 1 slip
		A1		CSO; ISW
	$y = \frac{1}{x} + \frac{x}{2}$	(B1)		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{x^2} + \frac{1}{2}$	(B1)		
	Substitute $x = \frac{1}{t}$	(M1)		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -t^2 + \frac{1}{2}$	(A1)	4	CSO
(b)	$t = 1 \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{2}$	M1		Substitute $t=1$ in $\frac{f(t)}{g(t)} \neq k$
	$m_T = -\frac{1}{2} \Longrightarrow m_n = 2$	B1F		F on $m_T \neq 0$; if in $t \rightarrow$ numerical later
	$(x, y) = \left(1, \frac{3}{2}\right)$	B1		PI $\frac{3}{2} = m(\times 1) + c$
	$(y-\frac{3}{2})=2(x-1)$ or $y=2x+c, c=-\frac{1}{2}$	A1	4	ISW, CSO (a) and (b) all correct
(c)	$y = \frac{1}{\frac{1}{t}} + \frac{1}{2} \times \frac{1}{t}$	M1		Attempt to use $t = \frac{1}{x}$ to eliminate t
	$=\frac{1}{x}+\frac{x}{x}$	Δ1		
	$x^{2} 2$ $2xy = 2 + x^{2} \Rightarrow x^{2} - 2xy + 2 = 0$	A1		Correct algebra to AG with $k=2$ allow $k=2$ stated
				$k=2$, no working or from $(1,\frac{3}{2})$: $0/3$
	Alternative or			
	$\left \left(\frac{1}{t}\right)^2 - 2\left(\frac{1}{t}\right)\left(t + \frac{1}{2t}\right) \right xy = \frac{1}{t}\left(t + \frac{1}{2t}\right)$	(M1)		Substitute and multiply out
	$=-2$ $=1+\frac{x^2}{2}$	(A1)		Eliminate t
	$\Rightarrow x^2 - 2xy + 2 = 0$	(A1)	3	Conclusion, $k = 2$
			11	

PC4 (cont)			
Q	Solution	Marks	Total	Comments
3 (a)	$(1-x)^{-1} = 1 + (-1)(-x) + \frac{1}{2}(-12)(-x)^{2}$	M1		$1\pm x+kx^2$
	$=1+x+x^2$	A1	2	Fully simplified
(b)(i)	$3x-1=A(2-3x)+B(1-x) x=1 \qquad x=\frac{2}{3}$	M1 m1		Use 2 values of x or equate coefficients and solve $-3A-B=3$ $2A+B=-1$
	$A = -2 \qquad B = 3$	A1	3	NMS 3/3 if both correct, 1/3 if one correct
(ii)	$\left(\frac{3x-1}{(1-x)(2-3x)} = \frac{-2}{1-x} + \frac{3}{2-3x}\right)$			
	$\frac{-2}{1-x} = -2 - 2x - 2x^2$	B1F		F on $(1-x)^{-1}$ and A
	$\frac{1}{2-3x} = \frac{1}{2} \left(1 - \frac{3}{2} x \right)^{-1}$	B1		
	$= (p) \left(1 + kx + (kx)^2 \right)$	M1		$p, k = \text{candidate's } \frac{1}{2}, \frac{3}{2}, k \neq \pm 1$
	$=(p)\left(1+\frac{3}{2}x+\frac{9}{4}x^{2}\right)$	A1		Use (a) or start binomial again; condone missing brackets, and one sign error
	$\frac{3x-1}{(1-x)(2-3x)} = -2(1-x)^{-1} + 3(2-3x)^{-1}$	M1		Valid combination of both expansions
	$= -\frac{1}{2} + \frac{1}{4}x + \frac{11}{8}x^2$	A1		CSO
	Alternative			
	$(2-3x)^{-1} = \frac{1}{2} \left(1 - \frac{3}{2}x\right)^{-1}$	(B1)		$\int k = \text{candidate's } \frac{3}{2} k \neq \pm 1$
	$(1-kx)^{-1} = 1+kx+(kx)^{2}$	(M1)		Use (a) or start binomial again;
	$=1 + \frac{3}{2}x + \frac{9}{4}x^2$	(A1)		error
	$\frac{3x-1}{(1-x)(2-3x)} = (3x-1)(1-x)^{-1}(2-3x)^{-1}$	(M1)		(3x-1) × both expansions
	3x-1 = -1 + 1 r + 11 r ²	(m1)		Multiply out; collect terms to form
	$(1-x)(2-3x)^{-2}$ 2 4 4 8 x	(A1)	6	$a+bx+cx^2$
	Alternative for $(2-3x)^{-1}$			Using $(a+bx)^n$
	$2^{-1} + (-1)(2)^{-2}(-3x) + \frac{(-1)(-2)(2)^{-3}(-3x)^{2}}{2}$	(M1)		Condone missing brackets, and 1 error
	$=\frac{1}{2} + \frac{3}{4}x + \frac{9}{8}x^2$	(A1) (A1)		First two terms x^2 term

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
(c)	-2 < 3x < 2	M1		PI, or any equivalent form
	$\Rightarrow -\frac{2}{3} < x < \frac{2}{3}$	A1	2	Condone \leq ; accept $\pi \geq \frac{2}{3}$ or $x \geq -\frac{2}{3}$
				CSO; allow $ \pm x \le \frac{2}{3}$, or
				$x < \frac{2}{3}$ and $x > -\frac{2}{3}$
	Total		13	
4(a)(i)	A=12499	B1	1	Stated in (i) or (ii)
(ii)	$k^{36} = \frac{7000}{\text{their } A}$	M1		$p = \frac{7000}{12499} = 0.560044803$
	$k = \sqrt[36]{0.56(00448)} = 0.9840251(26)$ or $(0.56(00448))^{\frac{1}{36}}$ or $k = \sqrt[36]{\frac{7000}{12499}}$ k = 0.984025	A1	2	Correct expression for k or 7 th dp seen. $k=10^{\frac{1}{36}\log p}$ or $k=10^{-0.00699}$ $k=e^{\frac{1}{36}\ln p}$ or $k=e^{-0.016103}$ AG
(b)	$k' = \frac{5000}{\text{their } A}$	M1		$\frac{5000}{12499}$ = 0.400032; condone 4999
		1		
	$t\log(k) = \log(\frac{5000}{A}) (t = 56.89)$	ml		Correct use of logs
	n=57	A1		<i>n</i> integer; $n = 57$ CAO
	Alternative ; trial and improvement on $5000=12499 \times 0.984025^{t}$ 2 values of $t \ge 40$ 1 value of t 50 < t < 60 n=57	(M1) (m1) (A1)	3	
	Special case, answer only n=57 3/3 n=56 0/3 n=56.9 2/3			
	Total		6	

0	Solution	Marks	Total	Comments
5	$8x+2y\frac{dy}{dy}-3y+3x\frac{dy}{dy}$	IVIUI IX5	Iotui	Comments
	dx + 2y dx = 3y + 3x dx			
	$8x \text{ and } 4 \rightarrow 0$	B1		
	$2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	$3y+3x\frac{dy}{dx}$	M1		Two terms with one $\frac{dy}{dr}$
	dx dy 1	A1		
	at (1,3) (gradient) $\frac{1}{dx} = \frac{1}{3}$	A1	5	CSO
	Total		5	
6(a)(i)	$\cos 2x = 2\cos^2 x - 1$	B1		Seen in question, in consistent variable
	$3(2\cos^2 x - 1) + 7\cos x + 5$	MI		Substitute calificate s $\cos 2x$ in terms of $\cos x$
	$6\cos^2 x + 7\cos x + 2(=0)$	A1	3	
(ii)	$(2\cos r+1)(3\cos r+2)$	M1		Attempt factors; formula
	1 2		•	('a' and 'c' correct; allow one slip)
	$\cos x = -\frac{1}{2} \qquad \cos x = -\frac{2}{3}$	Al	2	Accept $-0.5, -0.67$
				$x = \cos^{-1}\left(-\frac{1}{2}\right); \cos^{-1}\left(-\frac{2}{3}\right)$
(b)(i)	$R = \sqrt{58}$	B1		Accept 7.6 or better
	$\alpha = \sin^{-1}\left(\frac{3}{\text{their }R}\right)$	M1		OE $\alpha = \sin^{-1}\left(\frac{3}{7}\right)$
	=23.2°	A1	3	AWRT 23.2° (23.1985)
(ii)	$\alpha + \theta = \sin^{-1}\left(\frac{4}{\text{their }R}\right)$	M1		Candidate's R , α
	$\theta = 8.5^{\circ}$	A1F		F on α , AWRT, condone 8.6
$(\mathbf{a})(\mathbf{i})$	$\theta = 125.1^{\circ}$	A1	3	Two solutions only, but ignore out of range
(C)(I)	$h^2 = 1 + (2\sqrt{2})^2$	M1		Pythagoras with h or sec x
	$h=3 \Longrightarrow \cos \beta = \frac{1}{3}$	A1	2	AG
(ii)	$\sin 2\beta = 2\sin\beta\cos\beta$	M1		
	$\sin 2\beta = \frac{4}{9}\sqrt{2}$	A1	2	CSO; accept $p = \frac{4}{9}$ (not 0.444)
	Total		15	
MPC4 (cont)			
------------	--	-------	-------	--
Q	Solution	Marks	Total	Comments
7(a)	$(AB^{2} =)(4-3)^{2} + (0-2)^{2} + (1-5)^{2}$	M1		Condone one sign error in one bracket
	$AB = \sqrt{21}$	A1	2	Accept 4.58 or better
(b)	$4=6+2\lambda \implies \lambda=-1$	M1		$\lambda = -1$
	$0 = -1 + (-1) \times (-1)$			
	$1=5+(-1)\times 4$	A1	2	$\lambda = -1$ confirmed in other two equations $\begin{bmatrix} 6 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix}$
				Accept for M1A1 -1 -1 $=$ 0 5 4 1
	Special case			M1 condone 1 slip
	$\begin{bmatrix} 6\\-1\\5 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-1\\4 \end{bmatrix} = \begin{bmatrix} 4\\0\\1 \end{bmatrix}, \lambda \begin{bmatrix} 2\\-1\\4 \end{bmatrix} = \begin{bmatrix} -2\\1\\-4 \end{bmatrix}$			
	$\lambda = -1$	(B2)		
(c)	$\begin{bmatrix} 3\\-2\\5 \end{bmatrix} + \mu \begin{bmatrix} -1\\3\\8 \end{bmatrix} = \begin{bmatrix} 6\\-1\\5 \end{bmatrix} + \lambda \begin{bmatrix} 2\\-1\\4 \end{bmatrix}$	M1		Equate vector equations PI by two equations in λ or μ
	$3-\mu=6+2\lambda$ -2+3 $\mu=-1-\lambda$ eliminate λ or μ	m1		Form (any) two simultaneous equations and solve for λ or μ
	$\lambda = -2$ or $\mu = 1$	A1		$\begin{bmatrix} 2 \end{bmatrix}$
	C has coordinates $(2, 1, -3)$	A1		CAO condone $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$
	$BC^{2} = (2-4)^{2} + (0-1)^{2} + (1-3)^{2}$ $BC = \sqrt{21}$	M1		Use <i>C</i> to find <i>BC</i> or <i>AC</i> or to find two angles
	$AB = BC (=\sqrt{21})$	A1	6	$AB = BC$ or $\angle A = \angle C$ (=20.2°) stated
	Total		10	

Q	Solution	Marks	Total	Comments
8(a)	$\int x \mathrm{d}x = \int 150 \cos 2t \mathrm{d}t$	B1		Correct separation; condone missing J
	5 5			signs; must see dx , dt
	$\frac{1}{2}x^2 = 75\sin 2t$ (+C)	B1B1		Correct integrals
	2			Accept $\frac{1}{2} \times 150$
	$\left(20,\frac{\pi}{4}\right)$ $\frac{1}{2}\times20^2 = 75\sin\left(2\times\frac{\pi}{4}\right) + C$	M1		<i>C</i> present. Use $\left(20, \frac{\pi}{4}\right)$ to find <i>C</i>
	<i>C</i> =125	A1F		F on $x^2 = k \sin 2t$
	$x^2 = 150\sin 2t + 250$	A1	6	Correct integrals and evaluation of <i>C</i>
(b)(i)	$t = 12$, $r^2 = 150 \sin 26 + 250$ (-264.28)	M1		Evaluate $v^2 = f(12)v + v^2 = k \sin 2t + c$
	$t = 13$ $x = 130 \sin 20 + 230 (= 304.38)$	1111		Evaluate $x = 1$ (15); $x = k \sin 2t + c$
	x = 19.1 (cm)	A1	2	AWRT
(ii)	120			
	$x = 11 \sin 2t = -\frac{129}{150} (=-0.86)$	M1		
	or $2t = -1.035, 4.176$			
	t=2.1(seconds)	A1	2	AWRT
	Total		10	
	TOTAL		75	

General Certificate of Education

Mathematics 6360

MPC4 Pure Core 4

Mark Scheme

2010 examination - January series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX Dr Michael Cresswell Director General

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy		
E	mark is for explanation				
$\sqrt{100}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	c	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

Key to mark scheme and abbreviations used in marking

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	f(-1) = -15 + 19 - 4 = 0	B1	1	
(ii)	$f\left(\frac{2}{5}\right)$	M1		evaluate or complete division leading to a numerical remainder
	$\left(15 \times \frac{8}{125} + 19 \times \frac{4}{25} - 4\right) = 0 \Rightarrow \text{factor}$	A1	2	Or decimal equivalent $(0.96 + 3.04 - 4)$ or zero remainder \Rightarrow factor
(b)	(x+1) is a factor	B1		Stated or implied.
	Third factor is $(3x+2)$	M1 A1		Any appropriate method to find third factor
	$\frac{15x^2 - 6x}{f(x)} = \frac{3x(5x - 2)}{(x + 1)(5x - 2)(3x + 2)}$	M1		$\begin{cases} (5x-2)(3x^2 \pm 5x \pm 2) + \text{attempt} \\ \text{to factorise} \\ \text{Factorise numerator correctly} \\ \text{and attempt to simplify} \end{cases}$
	$=\frac{3x}{x}$	A 1	~	C50 ISW
	(x+1)(3x+2)	AI	5	CSO no ISW
2(a)	Total	D1	8	Account $P = 3.16$ or botton
2(a)	$R = \sqrt{10}$			Accept $K = 5.10$ of better
	$\alpha = 1.249$ ignore extra out of range	A1	3	AWRT 1.25 SC $\alpha = 0.322$ B1 radians only
(b)(i)	minimum value $=-\sqrt{10}$	B1F	1	F on R
(ii)	$\cos(x-\alpha) = -1$ x = 4.391	M1 A1F	2	AWRT 4.39 51.56° or57° or better
(c)	$\cos(x-\alpha) = \frac{2}{\sqrt{10}}$	M1		
	$x - \alpha = \pm 0.886$ 5.397 ignore extra out of range	A1		Two values, accept 2dp and condone 5.4 condone use of degrees
	x = 0.36296 2.13512	A1F		F on $x - \alpha$, either value. AWRT
	x = 0.363 2.135	A1	4	CSO 3dp or better
	Total		10	
(C)	$10\sin^2 x - 12\sin x + 3 = 0$	M1		Or equivalent quadratic using $\cos x$ (ie $\sin^2 x + \cos^2 x = 1$ used)
	$\sin x = \text{two numerical answers}$ $-1 \le \text{ans} \le 1$	A1F		Or equivalent using $\cos x$
	x = one correct answer	A1F		
	x = 0.363 2.135	A1		CSO 3 dp or better

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
3(a)(i)	$(1+x)^{\frac{1}{3}} = 1 \pm \frac{1}{3}x + kx^{2}$	M1		$1 \pm \frac{1}{2}x + kx^2$
	$=1 - \frac{1}{3}x + \frac{2}{9}x^2$	A1	2	5
(ii)	$\left(1+\frac{3}{4}x\right)^{-\frac{1}{3}} = 1-\frac{1}{3}\times\frac{3}{4}x+\frac{2}{9}\left(\frac{3}{4}x\right)^{2}$	M1		x replaced by $\frac{3}{4}x$ or start binomial again; condone missing brackets
	$=1 - \frac{1}{4}x + \frac{1}{8}x^2$	A1	2	
(b)	$\sqrt[3]{\frac{256}{4+3x}} = k\left(1+\frac{3}{4}x\right)^{-\frac{1}{3}}$	M1		$k \neq 1$
		1011		$\kappa \neq 1$
	$= 4\left(1 - \frac{1}{4}x + \frac{1}{8}x^{2}\right)$	A1F		F on (a)(ii) $k = 4$, accept $\sqrt[3]{64}$ or $64^{\frac{1}{3}}$
	$=4-x+\frac{1}{2}x^{2}$ or	A1	3	CSO fully simplified
	$a = 4 b = -1 c = \frac{1}{2}$			Be convinced
	Total		7	
4 (a)	$10x^{2} + 8 = 2(x+1)(5x-1) +$	M1		A and B terms correct
	A(5x-1) + B(x+1)	A1		
	$r = -1$ $r = \frac{1}{2}$	m1		Use two values of <i>x</i> to find <i>A</i> and <i>B</i> , or
	$A = -3 \qquad B = 7$	A1	4	set up and solve 8+5A+B=0
				-2 - A + B = 8
				SC1 NWS A & B correct $\frac{4}{4}$
				SC2 NWS A or B correct $\frac{1}{4}$
(b)	$\int \frac{10x^2 + 8}{(x+1)(5x-1)} \mathrm{d}x = \int 2 - \frac{3}{x+1} + \frac{7}{5x-1} \mathrm{d}x$	M1		Use the partial fractions
	=2x+C	B1 M1		$a \ln (x+1) + b \ln (5x-1)$ condone missing brackets
	$-3\ln(x+1) + \frac{7}{5}\ln(5x-1)$	A1F	4	F on A and B
	Total		8	
5	$x^2 + xy = e^y$			
	$2x + y + x \frac{dy}{dy} = e^{y} \frac{dy}{dy}$	B 1		2x
	$2x + y + x \frac{dx}{dx} = c \frac{dx}{dx}$	M1		Use product rule
		A1 B1		RHS
	$(-1,0) \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -1$	A1	5	CSO
	Total		5	
		•		•

Q	Solution	Marks	Total	Comments
6(a)(i)	$\sin 2\theta = 2\sin\theta\cos\theta$	B1		
	$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$	B1	2	OE condone use of x etc, but variable must be consistent
(ii)	$\sin\theta = \frac{4}{5} \Longrightarrow \sin 2\theta = 2 \times \frac{4}{5} \times \frac{3}{5} = \frac{24}{25}$	B1		AG Use of 106.26° B0
	or $2 \times \sin\left(\cos^{-1}\frac{3}{5}\right) \times \frac{3}{5}$			
	$\cos 2\theta = \frac{9}{25} - \frac{16}{25} = -\frac{7}{25}$	B1	2	- 0.28
(b)(i)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 6\cos 2\theta , \frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\sin 2\theta$	M1 A1		Attempt both derivatives. ie $p \cos 2\theta$ Both correct. $q \sin 2\theta$
	$\frac{dy}{dx} = -\frac{4}{3} \frac{\sin 2\theta}{\cos 2\theta} \qquad \text{ISW}$	A1	3	CSO OE
(ii)	$P\left(\frac{72}{25}, -\frac{28}{25}\right)$	B1F		(2.88,- 1.12)
	Gradient = $=-\frac{4}{3} \times -\frac{24}{7}$	M1		Their $\frac{q\sin 2\theta}{p\cos 2\theta}$ or $\frac{p\cos 2\theta}{q\sin 2\theta}$
				must be working with rational numbers
	Tangent $y + \frac{28}{25} = \frac{32}{7} \left(x - \frac{72}{25} \right)$ ISW	A1	3	Any correct form. 7y = 32x - 100 Fractions in simplest form Equation required
	TT - 4 - 1		10	

MPC4 (cont	.)	[_]		
Q	Solution	Marks	Total	Comments
7	$\int y \mathrm{d}y = \int \cos\left(\frac{x}{3}\right) \mathrm{d}x$	B1		Separate; condone missing integral signs.
	$\frac{1}{2}y^2 = 3\sin\left(\frac{x}{3}\right) + (C)$	B1 B1		Accept $\frac{\sin\left(\frac{x}{3}\right)}{\frac{1}{3}}$
	$\left(\frac{\pi}{2},1\right) \qquad \frac{1}{2} = 3\sin\frac{\pi}{6} + C$	M1		$ \begin{cases} \text{Use}\left(\frac{\pi}{2},1\right) \text{to find } C \end{cases} $
				$\left[\text{must be in form } \text{py}^2 = q \sin\left(\frac{x}{3}\right) + C \right]$
	C = -1	A1F		
	$y^2 = 6\sin\left(\frac{x}{3}\right) - 2$	A1	6	CSO
	Total		6	
8 (a)	$0 = 2 + \lambda \Longrightarrow \lambda = -2$	M1		
	Check $-1 + -2 \times -3 = -1 + 6 = 5$			
	$-5 - 2 \times 2 = -5 \times -4 = -9$	A1	2	OE
(b)	$\overrightarrow{BC} = \begin{bmatrix} 9\\2\\3 \end{bmatrix} - \begin{bmatrix} 0\\5\\-9 \end{bmatrix} = \begin{bmatrix} 9\\-3\\12 \end{bmatrix}$	M1 A1	2	$\pm \left(\overrightarrow{OC} - \overrightarrow{OB}\right)$
(c)(i)	$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{AD} = \overrightarrow{OA} + 2\overrightarrow{BC}$	M1		
	$\overrightarrow{OD} = \begin{bmatrix} 2\\-1\\-5 \end{bmatrix} + \begin{bmatrix} 18\\-6\\24 \end{bmatrix} = \begin{bmatrix} 20\\-7\\19 \end{bmatrix}$ D is (20, -7, 19)	A1	2	AG
(ii)	$\overrightarrow{PD} = \overrightarrow{OD} - \overrightarrow{OP} =$			
	$\begin{bmatrix} 20\\ -7\\ 19 \end{bmatrix} - \begin{bmatrix} 2+p\\ -1-3p\\ -5+2p \end{bmatrix} = \begin{bmatrix} 18-p\\ -6+3p\\ 24-2p \end{bmatrix}$	M1 A1		Find \overrightarrow{PD} in terms of p condone $\overrightarrow{PD} = \overrightarrow{OP} - \overrightarrow{OD}$ here
	$\overrightarrow{PD} \cdot \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix} = 0$	B1		
	$(18-p)\times1+(-6+3p)\times-3+(24-2p)\times2=0$	ml	-	
	p = 6	AI	5	CSO OE working with DP
	Total		11	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
9(a)(i)	t = 0 $h = A(1-1) = 0$	B1	1	
(ii)	$57 = A\left(1 - e^{-\frac{12}{4}}\right)$	M1		
	$A = \frac{57}{\left(1 - e^{-3}\right)} \approx 60$	A1	2	Or 59.9 seen. $A = \text{correct expression} \approx 60 \text{ 2 sf}$
(b)(i)	$h = 48 \qquad \frac{48}{60} = 1 - e^{-\frac{1}{4}t}$	M1		
	$\ln\left(e^{-\frac{1}{4}t}\right) = \ln\left(\frac{1}{5}\right)$	m1		
	$-\frac{1}{4}t = -\ln 5 \Longrightarrow t = 4\ln 5$	A1	3	
(ii)	$\frac{\mathrm{d}h}{\mathrm{d}t} = -\frac{1}{4} \times -60 \times \mathrm{e}^{-\frac{1}{4}t}$	M1		Differentiate, condone sign errors
	$60e^{-\frac{1}{4}t} = 60 - h \Longrightarrow \frac{dh}{dt} = \frac{1}{4}(60 - h)$	m1		Eliminate $e^{-\frac{1}{4}t}$
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 15 - \frac{h}{4}$	A1	3	CSO, AG
(iii)	<i>h</i> =8	B1	1	
	Total		10	
	TOTAL		75	

Version 1.0

JA/

General Certificate of Education June 2010

Mathematics

MPC4

Pure Core 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk

Copyright © 2010 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Key to mark scheme and abbreviations used in marking

М	mark is for method				
m or dM	mark is dependent on one or more M marks and is for method				
А	mark is dependent on M or m marks and is for accuracy				
В	mark is independent of M or m marks and is	for method and a	accuracy		
Е	mark is for explanation				
$\sqrt{10}$ or ft or F	follow through from previous				
	incorrect result	MC	mis-copy		
CAO	correct answer only	MR	mis-read		
CSO	correct solution only	RA	required accuracy		
AWFW	anything which falls within	FW	further work		
AWRT	anything which rounds to	ISW	ignore subsequent work		
ACF	any correct form	FIW	from incorrect work		
AG	answer given	BOD	given benefit of doubt		
SC	special case	WR	work replaced by candidate		
OE	or equivalent	FB	formulae book		
A2,1	2 or 1 (or 0) accuracy marks	NOS	not on scheme		
–x EE	deduct <i>x</i> marks for each error	G	graph		
NMS	no method shown	с	candidate		
PI	possibly implied	sf	significant figure(s)		
SCA	substantially correct approach	dp	decimal place(s)		

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded. However, there are situations in some units where part marks would be appropriate, particularly when similar techniques are involved. Your Principal Examiner will alert you to these and details will be provided on the mark scheme.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1 (a)	$f\left(\frac{1}{4}\right) = 8 \times \frac{1}{64} + 6 \times \frac{1}{16} - 14 \times \frac{1}{4} - 1$	M1		Use $x = \frac{1}{4}$ in evaluation
	=-4	A1	2	NMS 2/2; no ISW
(b)(i)	$g(\frac{1}{4}) = \text{number}(s) + d = 0$	M1		Use factor theorem to find d
(~)(-)		A 1	2	See some processing
	a = s	AI	2	NMIS 2/2
(ii)	$g(x) = (4x-1)(2x^2 + bx - 3)$	B1F		a = 2 $c = -3$; F on d ($c = -d$)
	x^2 6=4b-2 or x -14=-b-12	M1		Any appropriate method; PI
	<i>b</i> = 2	A1	3	NMS 2/2
	Total		7	
	Alternatives:			
(a)	$2x^2 + 2x - 3$			
	$4x-1)8x^{3}+6x^{2}-14x-1$	(M1)		Complete division with integer remainder
	$8x^3 - 2x^2$			
	$8x^2 - 14x$			
	$8x^2 - 2x$			
	-12x - 1 -12x + 3			
	-4	(A1)	(2)	Remainder = -4 stated
(b)(i)	Division as for (a) $\Rightarrow d-3$ last line	(M1)		Candidate's -3
	d = 3	(A1)	(2)	
2 (a)	$\frac{dx}{dt} = -3$ $\frac{dy}{dt} = 6t^2$	B1		Both derivatives correct; PI
	$dt \qquad dt$			
	$\frac{dy}{dx} = -\frac{0l}{2}$	M1		Correct use of chain rule
	ax = 5	Δ1	3	CSO
	<i>2i</i>	AI	5	
	1			1
(b)	$t = 1$ $m_{\rm T} = -2$ $m_{\rm N} = \frac{1}{2}$	M1		Substitute $t=1$ $m_N = -\frac{1}{m_T}$
	2	A1F		F on gradient: $m_{\pi} \neq +1$
		7111		
	Attempt at equation of normal using			
	(x, y) = (-2, 3)	MI		Condone one error
	Normal has constinue $2 \frac{1}{2} (1 + 2)$	A 1	4	
	Normal has equation $y-3 = \frac{1}{2}(x+2)$	AI	4	CSO; ACF
(c)	$t = \frac{1-x}{1-x}$ or $t = \frac{3}{2} \frac{y-1}{1-x}$	M1		Correct expression for t in terms of x or y
	3 V 2			
	$y = 1 + 2\left(\frac{1-x}{x}\right)^{3}$	A1	2	ACF
	Total		9	

Q	Solution	Marks	Total	Comments
3(a)(i)	7x-3 = A(3x-2) + B(x+1)	M1		
	$x = -1 \qquad x = \frac{2}{3}$	m1		Substitute two values of x and solve for A and B
	A=2 $B=1$	A1	3	Or solve $7 = 3A + B$ -3 = -2A + B condone one error
(ii)	$\int \frac{7x-3}{(x+1)(3x-2)} \mathrm{d}x =$			
	$p\ln(x+1) + q\ln(3x-2)$	M1		Condone missing brackets
	$= 2\ln(x+1) + \frac{1}{3}\ln(3x-2) (+c)$	A1F	2	F on A and B; constant not required
(b)	$\frac{6x^2 + x + 2}{2x^2 - x + 1} = \frac{6x^2 - 3x + 3 + 4x - 1}{2x^2 - x + 1}$	M1		
	$=3+\frac{4x-1}{2}$	B1		P=3
	$2x^2 - x + 1$	Al	3	Q = 4 and $R = -1$
	Alternatives:		8	
	And hull ves.			
(a)(i)	By cover up rule			
	$x = -1 \qquad A = \frac{-7 - 3}{-5}$			
	$x = \frac{2}{3} \qquad B = \frac{\frac{14}{3} - 3}{\frac{5}{3}}$	(M1)		$x = -1$ and $x = \frac{2}{3}$
	$A = 2 \qquad B = 1$	(A1,A1)	(3)	SC NMS A and B both correct 3/3 One of A or B correct 1/3
(b)	$\frac{3}{2}$	(M1)		Complete division, with $ax + b$ remainder
	$\frac{2x^2 - x + 1}{6x^2 - 3x + 3}$	(B1)		P = 3 stated
	4x - 1	(A1)	(3)	Q = 4 and $R = -1$ stated or written as expression
	or $6x^{2} + x + 2 = P(2x^{2} - x + 1) + Qx + R$			
	$=2Px^2+(Q-P)x+P+R$	(M1)		Multiply across and equate coefficients or use numerical values of x
	P=3	(B1)		P = 3 stated
	Q-P=1			
	P+K=2			Q - A and $R1$ stated or written as
	Q=4 and $R=-1$	(A1)	(3)	\mathcal{L} = + and \mathcal{K} = -1 stated of written as expression

MPC4 (cont				
Q	Solution	Marks	Total	Comments
4(a)(i)	$(1+x)^{\frac{3}{2}} = 1 + \frac{3}{2}x + kx^{2}$	M1		
	$=1+\frac{3}{2}x+\frac{3}{8}x^{2}$	A1	2	
(ii)	$(16+9x)^{\frac{3}{2}} = 16^{\frac{3}{2}} \left(1+\frac{9}{16}x\right)^{\frac{3}{2}}$	B1		
	$= k \left(1 + \frac{3}{2} \times \frac{9}{16} x + \frac{3}{8} \left(\frac{9}{16} x \right)^2 \right)$	M1		x replaced by $\frac{9}{16}x$ or start binomial again
				Condone missing brackets
	$= 64 + 54x + \frac{243}{32}x^2$	A1	3	Accept $7.59375x^2$
	_			
(b)	$x = -\frac{1}{3}$	M1		Use $x = -\frac{1}{3}$
	$13^{\frac{3}{2}} \approx 46 + \frac{27}{32}$	A1	2	46 seen with $a = 27$ $b = 32$, or $\left(\frac{k \times 27}{k \times 32}\right)$
	Total		7	
	Alternative:			
(a)(ii)	$(1, 2, 2)^{\frac{3}{2}}$			
	$(16+9x)^2 =$			Use $(a+bx)^n$ from FB Allow one error
	$16^{\frac{1}{2}} + \frac{3}{2} \times 16^{\frac{1}{2}} \times 9x + \frac{3}{2} \times \frac{1}{2} \times \frac{1}{2} \times 16^{-\frac{1}{2}} \times (9x)^2$	(M1)		Condone missing brackets.
	$= 64 + 54x + \frac{243}{32}x^2$	(A2)	(3)	Accept $7.59375x^2$
5(a)(i)	$\cos 2x = 1 - 2\sin^2 x$	B1		ACF in terms of sin (PI later)
	$3(1-2\sin^2 x) + 2\sin x + 1 = 0$	M1		Substitute candidate's $\cos 2x$ in terms of $\sin x$ (at least 2 terms)
	$-6\sin^2 x + 2\sin x + 4 = 0$			
	$3\sin^2 x - \sin x - 2 = 0$	A1	3	AG
(ii)	$(3\sin x + 2)(\sin x - 1) = 0$	M1		Factorise correctly or use formula
	$\sin r = -\frac{2}{3} \sin r = 1$	Δ1	2	correctly Both: condone -0.67 or -0.66 or better
	$\sin x - \frac{1}{3}$ $\sin x - 1$		2	
(b)(i)	$R = \sqrt{13}$	B1		Accept 3.6 or better
	$\tan \alpha = \frac{2}{3}$ $\alpha = 33.7$	M1A1	3	OE; accept $\alpha = 33.69(0)$
(**)	$3^{-1}(-1)$	N(1		-1
(11)	$2x - \alpha = \cos\left(\frac{\pi}{R}\right)$	MI		Candidate s K. Or $\cos(2x - \alpha) = \frac{1}{R}$
	$2x - \alpha = 106.1^{\circ}, 253.9^{\circ}$			
	$x = 69.9^{\circ}, 143.8^{\circ}$		3	One correct answer Both correct, no extras in range
	Total		11	Bour concet, no extras in range
L	Iotui	1		

Q	Solution	Marks	Total	Comments
6(a)	$x^3 + \cos \pi = 7 \Longrightarrow x^3 - 1 = 7$	M1		Or $x = \sqrt[3]{7 - \cos \pi}$
	x = 2	A1	2	CSO
(b)	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^{3}y\right) = 3x^{2}y + x^{3}\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		2 terms added, one with $\frac{dy}{dx}$
		A1		
	$\frac{\mathrm{d}}{\mathrm{d}x}(\cos\pi y) = -\pi\sin\left(\pi y\right)\frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	At (2,1) $3 \times 4 + 8 \frac{dy}{dx} - \pi \sin \pi \frac{dy}{dx} = 0$	M1		Substitute candidate's x from (a) and $y = 1$ with 0 on RHS and both derivatives attempted and no extra derivatives
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{2}$	A1	5	CSO; OE
	Total		7	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
7(a)	$\overrightarrow{OB} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix}$ $\overrightarrow{AB} = \begin{bmatrix} 1\\ -1\\ 2 \end{bmatrix} - \begin{bmatrix} 4\\ -3\\ 2 \end{bmatrix} = \begin{bmatrix} -3\\ 2\\ 0 \end{bmatrix}$	B1 M1 A1	3	PI Use $\pm \left(\overrightarrow{OB} - \overrightarrow{OA} \right)$
(b)(i)	$4+2\lambda = -1+\mu$ -3 = 3-2\mu 2+\lambda = 4-\mu -6 = -2\mu	M1 m1		$\begin{bmatrix} 4+2\lambda \\ -3 \\ 2+\lambda \end{bmatrix} = \begin{bmatrix} 1+\mu \\ 3-2\mu \\ 4-\mu \end{bmatrix}$ or set up 3 equations Solve for λ and μ
	$\lambda = 4 - 3 - 2 \qquad \lambda = -1$	A1		Both correct
	$4 + 2\lambda = 4 - 2 = 2$ -1+ μ = -1+3 = 2	A1	4	Independent check with conclusion: minimum "intersect"
(ii)	<i>P</i> is $(2, -3, 1)$	B1	1	
(c)	$\overrightarrow{OC} = \overrightarrow{OA} + \overrightarrow{AC}$ $= \overrightarrow{OA} + \overrightarrow{PB}$			Or $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$ $= \overrightarrow{OB} + \overrightarrow{PA}$
	$\overrightarrow{OC} = \begin{bmatrix} 4 \\ -3 \\ 2 \end{bmatrix} + \begin{bmatrix} 1-2 \\ -13 \\ 2-1 \end{bmatrix}$	M1		$\overrightarrow{OA} + \overrightarrow{PB}$ in components
	C is $(3, -1, 3)$	A1		
	or $\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC}$ $= \overrightarrow{OB} + \overrightarrow{AP}$			
	$\overrightarrow{OC} = \begin{bmatrix} 1\\-1\\2 \end{bmatrix} + \begin{bmatrix} 2-4\\-33\\1-2 \end{bmatrix}$	M1		$\overrightarrow{OB} + \overrightarrow{AP}$ in components
	C is $(-1, -1, 1)$	A1	4	
	Total		12	

MPC4 (cont)

Q	Solution	Marks	Total	Comments
	Alternative:			
7(c)	$\overrightarrow{AP} = \overrightarrow{BC}$			
	$\left \overrightarrow{AP} \right = \left \overrightarrow{BC} \right =$			
	$\sqrt{(2-4)^2 + (-33)^2 + (1-2)^2}$			
	$=\sqrt{5}$	(M1)		
	$\overrightarrow{BC} = k \begin{pmatrix} 2\\0\\1 \end{pmatrix} \qquad \overrightarrow{BC} = \sqrt{k}\sqrt{5}$			
	so $k = \pm 1$	(A1*)		For $k = 1$ and $k = -1$
	$\overrightarrow{OC} = \overrightarrow{OB} + k \begin{pmatrix} 2\\0\\1 \end{pmatrix}$			
	$= \begin{pmatrix} 1\\-1\\2 \end{pmatrix} + \begin{pmatrix} 2\\0\\1 \end{pmatrix} \text{ or } \begin{pmatrix} 1\\-1\\2 \end{pmatrix} - \begin{pmatrix} 2\\0\\1 \end{pmatrix}$	(M1)		Either
	$= \begin{pmatrix} 3\\-1\\3 \end{pmatrix} \text{ or } \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$	(A1)	(4)	Both
	*If $k = 1$ or $k = -1$ (ie only one k), one correct point gets $2/4$			

MPC4 (cont)					
Q	Solution	Marks	Total	Comments	
8 (a)	$\int \frac{\mathrm{d}x}{\sqrt{x+1}} = \int -\frac{1}{5} \mathrm{d}t$	B1		Correct separation; or $\frac{dt}{dx} = -5(x+1)^{-\frac{1}{2}}$ Condone missing integral signs	
	$2\sqrt{x+1} = -\frac{1}{5}t \qquad (+C)$	B1B1		Correct integrals; condone $\frac{\sqrt{x+1}}{\frac{1}{2}}$	
	$x = 80$ $t = 0$ $C = 2\sqrt{81}$	M1		Use $(0, 80)$ to find a constant <i>C</i>	
	=18	A1F		F on integrals if in form $\sqrt{x+1} = qt+c$	
	$x = \left(9 - \frac{1}{10}t\right)^2 - 1$	A1	6	OE; CSO; $x =$ correct expression in t	
(b)	$t = 60 \qquad x = f(60) \\ = 8$	M1 A1	2	Evaluate $f(60)$, ie $x = (C \text{ not required})$ CSO	
(c)(i)	$\frac{\mathrm{d}A}{\mathrm{d}t} = kA(9-A)$	M1		$\frac{dA}{dt} = \text{product involving } A; k \text{ required}$ Condone terms in t	
		A1	2		
(ii)	$4.5 = \frac{9}{1 + 4e^{-0.09t}}$	M1		Condone one slip in denominator	
	$e^{-0.09t} = \frac{1}{4}$	A1			
	$-0.09t = \ln\left(\frac{1}{4}\right)$	m1		Take In correctly	
	$t = \frac{\ln\left(\frac{1}{4}\right)}{-0.09}$				
	=15.4 (hours)	A1	4	CAO; condone more than 3sf if correct 15.40327068 Allow 15h 24m	
	Total		14		
	TOTAL		75		

Version 1.0

General Certificate of Education (A-level) January 2011

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\sqrt{or} ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

	Mark Scheme – General Cer	tificate of Education (A-level)) Mathematics – Pure Core 4	– Januarv 2011
--	---------------------------	---------------------------------	-----------------------------	----------------

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$R = \sqrt{29}$	B1		Accept 5.4 or 5.38, 5.39, 5.385
	$R\sin\alpha = 5$ or $R\cos\alpha = 2$ or $\tan\alpha = \frac{5}{2}$	M1		
	$\alpha = 68.2^{\circ}$	A1	3	Condone $\alpha = 68.20^{\circ}$
(b)(i)	(maximum value =) $\sqrt{29}$	B1ft	1	ft on <i>R</i>
(II)	$\sin(x+\alpha) = 1$ x = 21.8° only	M1		Or $x + \alpha = 90$, $x + \alpha = \frac{\pi}{2}$
		A1	2	No ISW
	Total		6	

|--|

MPC4 (cont) Solution	Marks	Total	Comments
$\frac{Q}{2(a)(i)}$	$\frac{f(1) - O(1)^3 + 18(1)^2}{f(1)^2 + 18(1)^2}$		Total	f(-1) attempted
	$1\left(-\frac{1}{3}\right) = 9\left(-\frac{1}{3}\right) + 18\left(-\frac{1}{3}\right) - \left(-\frac{1}{3}\right) - 2$	MI		$1\left(-\frac{1}{3}\right)$ and the piece
	$=9(-\frac{1}{27})+18(\frac{1}{9})-(-\frac{1}{3})-2$			NOT long division
	$= -\frac{1}{3} + 2 + \frac{1}{3} - 2 = 0$			
	\Rightarrow (3x+1) is a factor	A1	2	Shown = 0 plus statement
(ii)	$(\mathbf{f}(x) =) (3x+1) (3x^2 + kx - 2)$	M1		3 and -2
	k = 5	A1		
	$(\mathbf{f}(x) =) (3x+1)(3x-1)(x+2)$	A1	3	
(iii)	$9x^3 + 21x^2 + 6x = x(9x^2 + 21x + 6)$	M1		<i>x</i> and attempt to factorise quadratic equation.
	=3x(3x+1)(x+2)	A1		Correct factors
	$\frac{9x^3 + 21x^2 + 6x}{f(x)} = \frac{3x}{3x - 1}$	A1	3	cso no ISW
(b)	$9\left(\frac{2}{3}\right)^3 + p\left(\frac{2}{3}\right)^2 - \frac{2}{3} - 2 = -4$	M1		Condone missing brackets, but must have $= -4$
	p = -9	A1	2	
			10	
2(a)(ii)	Alternative Using long division			
	$3x^2 + 5x - 2$	(M1)		$3x^2 + ax + b$
	$3x+1)\overline{9x^3+18x^2-x-2}$			
	$9x^3 + 3x^2$			
	$\overline{15x^2-x}$			
	$15x^2 + 5x$			
	$\overline{-6x-2}$	(A1)		$3x^2 + 5x - 2$
	-6x-2			
	(f(x) =) (3x+1)(3x-1)(x+2)	(A1)	(3)	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core	4 – January 2011

Q	Solution	Marks	Total	Comments
2(a)(iii)	Alternative			
	$\frac{f(x) + q(x)}{f(x)}$, where q is a quadratic expression	(M1)		
	$= 1 + \frac{(3x+1)(x+2)}{(3x+1)(3x-1)(x+2)}$ $= 1 + \frac{1}{(3x+1)(3x-1)(x+2)}$	(A1)		
	3x-1	(A1)	(3)	

MPC4 (cont				<u> </u>
Q	Solution	Marks	Total	Comments
3(a)	3 + 9x = A(3 + 5x) + B(1 + x)	M1		PI by correct A and B
	$x = -1 \qquad x = -\frac{3}{5}$	ml		Substitute two values of <i>x</i> and solve for <i>A</i> and <i>B</i> .
	$A = 3 \qquad B = -6$	A1	3	
	Alternative Equating coefficients			
	3 + 9x = A(3 + 5x) + B(1 + x)	(M1)		
	3 = 3A + B $9 = 5A + B$	(m1)		Set up simultaneous equations and solve. Condone 1 error.
	$A = 3 \qquad B = -6$	(A1)	(3)	
	Alternative Cover up rule			
	$x = -1 \qquad A = \frac{3 - 9}{3 - 5}$	(M1)		$x = -1$ and $x = -\frac{3}{5}$
	$x = -\frac{5}{5} \qquad B = \frac{5 - \frac{5}{5}}{1 - \frac{3}{5}}$			and attempt to find A and B.
	$A = 3 \qquad B = -6$	(A1 A1)	(3)	SC NMS A and B both correct: $3/3$
	$(1+x)^{-1} = 1 - x + kx^2$		(3)	One of A and B correct $1/3$
(b)	$=1-x+x^2$			
	$\left(3+5x\right)^{-1} = 3^{-1} \left(1+\frac{5}{3}x\right)^{-1}$	MII		
	$\left(1 + \frac{5}{3}x\right)^{-1} = 1 - \frac{5}{3}x + \left(\frac{5}{3}x\right)^2$	AI B1		
	$=1-\frac{5}{3}x+\frac{25}{9}x^{2}$	DI		Condona missing brackets: allow one sign
	<u>3+9x</u>	M1		error
	(1+x)(3+5x)	AI		
	$=3(1-x+x^{2})-6\times 3^{-1}\left(1-\frac{3}{3}x+\frac{25}{9}x^{2}\right)$			Use PFs and simplify to $a+bx+cx^2$
		MI		or expand product of $(3+9x)$ and binomial expansions and simplify to $a+bx+cx^2$
	$=1+\frac{1}{3}x-\frac{23}{9}x^{2}$	A1	7	

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 4 – January 2011

MPC4 (cont				
Q	Solution	Marks	Total	Comments
(c)	$\frac{5x}{3} < 1$ oe or $\frac{5x}{3} > -1$ oe	M1		Condone \leq instead of $<$
	$ x < \frac{3}{5}$ or $-\frac{3}{5} < x < \frac{3}{5}$	A1	2	CAO
			12	

|--|

MPC4 (cont)		<u> </u>	
Q	Solution	Marks	Total	Comments
4(a)(i)	$\frac{\mathrm{d}x}{\mathrm{d}x} = 3e^t \qquad \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 2e^{2t} + 2e^{-2t}$	M1		Both derivatives attempted and one
	dt dt	A1		Both correct
	$t = 0$ gradient $= \frac{4}{3}$	A1	3	cso Condone $\frac{dy}{dx} = \frac{4}{3}$
(ii)	$y = \frac{4}{3}(x-3) \qquad \text{oe}$	B1ft	1	ft on non-zero gradient
(b)	$e^{2t} = \frac{x^2}{9}$ or $9e^{2t} = x^2$ or $e^t = \frac{x}{3}$ or $e^{2t} = \left(\frac{x}{3}\right)^2$			
	or $t = \ln\left(\frac{x}{3}\right)$ or $2t = \ln\left(\frac{x^2}{9}\right)$	M1		
	$y = \frac{x}{9} - \frac{y}{x^2}$	A1	2	Equation required
			6	

|--|

C4 (cont)			
Q	Solution	Marks	Total	Comments
5(a)	$m - 10 \times 2^{-\frac{14}{8}}$	M1		
	$\approx 3 \text{ (gm)}$	A1	2	Condone 2.97 or better
(b)	$2^{-\frac{d}{8}} = \frac{1}{16}$	M1		NOT 2.9 as final answer
	$\frac{d}{8} = 4 \Longrightarrow d = 32$	A1	2	cso
(c)	$0.01m_0 = m_0 \times 2^{-\frac{t}{8}}$	M1		m_0 can be numerical
	$\ln\left(0.01\right) = -\frac{t}{8}\ln\left(2\right)$	M1		Take logs correctly from their equation leading to a linear equation in <i>t</i> .
	<i>t</i> = 53.15		2	
	<i>n</i> = 54	Al	3	CSO
			7	

Q	Solution	Marks	Total	Comments
6(a)(i)	$\tan 2x = \frac{2\tan x}{1 + \tan^2 x}$	B1		Condone numerator as $\tan x + \tan x$
	$1 - \tan^2 x 2 \tan x + \tan x (1 - \tan^2 x) = 0$	M1		Multiplying throughout by their denominator
	$\tan x = 0$ or $(2+1-\tan^2 x) = 0 \Longrightarrow \tan^2 x = 3$	A1	3	AG Must show $\tan x = 0$ and $\tan^2 x = 3$
	Alternative			
	$\tan 2x = \frac{\sin 2x}{\cos 2x} = \frac{2\sin x \cos x}{\cos^2 x - \sin^2 x}$			
	$\frac{2\sin x\cos x}{\cos^2 x - \sin^2 x} + \frac{\sin x}{\cos x} = 0$	(B1)		
	$2\sin x\cos^2 x + \sin x\left(\cos^2 x - \sin^2 x\right) = 0$			
	$\sin x (2\cos^2 x + \cos^2 x - \sin^2 x) = 0$	(M1)		
	$\Rightarrow \sin x = 0 \ \text{and} \ 3\cos^2 x = \sin^2 x \ \Rightarrow \tan x = 0 \ \text{and} \ \tan^2 x = 3 \ \end{cases}$	(A1)	(3)	
(ii)	x = 60 AND $x = 120$	B1	1	Condone extra answers outside interval eg 0 and 180
(b)(i)	$2\sin x \cos x = \cos x.f(x)$	M1		Where $f(x) = \cos^2 x - \sin^2 x$ or $2\cos^2 x - 1$ or $1 - 2\sin^2 x$
	$2\sin x \cos x = \cos x \left(1 - 2\sin^2 x\right)$ $(\cos x \neq 0) 2\sin x = 1 - 2\sin^2 x$	A1		
	$\frac{2\sin^2 x + 2\sin x - 1}{2\sin^2 x + 2\sin x - 1} = 0$	A1	3	AG

Mark Scheme – General Certificate of Education (A-level) Mathematics – Pure Core 4 – January 2011

(ii)	$\sin x = \frac{-2 \pm \sqrt{4 - 4 \times 2 \times (-1)}}{2 \times 2}$ $\sin x = \frac{-2 \pm 2\sqrt{3}}{4}$	M1 A1		Correct use of quadratic formula or completing the square or correct factors $\sqrt{12}$ must be simplified and must have \pm
	$\sin x = \frac{-1 - \sqrt{3}}{2} \text{ has no solution} \\ \sin x = \frac{\sqrt{3} - 1}{2} \end{cases}$	E1	3	Reject one solution and state correct solution.
			10	

MPC4				
Q	Solution	Marks	Total	Comments
7 (a)(i)	$\int \frac{\mathrm{d}x}{\sqrt{x}} = \int \sin\left(\frac{t}{2}\right) \mathrm{d}t$	B1		Correct separation; condone missing integral signs.
	$2\sqrt{x} = -2\cos\left(\frac{t}{2}\right)(+k)$	M1		$p\sqrt{x} = q\cos\left(\frac{t}{2}\right)$ Condone missing + k
	$x = \left(-\cos\left(\frac{t}{2}\right) + C\right)^2$	A1	3	Must have previous line correct
(ii)	(1,0) $2 = -2 + k$ or $1 = (-1+C)^2$	M1		Use $(1,0)$ to find a constant
	k = 4 or $C = 2$	A1ft		ft on $C = p - q$ from (a)(i)
	$x = \left(2 - \cos\left(\frac{t}{2}\right)\right)^2$	A1	3	cso applies to (a)(ii)
(b)(i)	Greatest height when $\cos(bt) = -1$	M1		
	Greatest height = $9 (m)$	A1ft	2	ft is (their $a + 1$) ²
(ii)	$\cos\!\left(\frac{t}{2}\right) = 2 - \sqrt{5}$	M1		$\cos bt = a - \sqrt{5}$
	$t = 2\cos^{-1}(2-\sqrt{5}) = 3.6$ (seconds 1dp)	A1	2	condone 3.6 or better (3.618)
			10	

MPC4 (cont)			
Q	Solution	Marks	Total	Comments
8(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 6 \\ 0 \end{bmatrix} - \begin{bmatrix} 3 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$	M1		$\pm \left(\overrightarrow{OB} - \overrightarrow{OA}\right)$ implied by 2 correct components
	$AB = \begin{bmatrix} 0 \\ 3 \end{bmatrix} = \begin{bmatrix} -2 \\ 4 \end{bmatrix} = \begin{bmatrix} -2 \\ -1 \end{bmatrix}$	A1	2	
(ii)	$\begin{bmatrix} 3\\2 \end{bmatrix} \begin{bmatrix} 2\\1 \end{bmatrix} \begin{bmatrix} 2\\2 \end{bmatrix}$	M1		Scalar product with correct vectors; allow one component error.
	$\begin{bmatrix} 2 \\ -1 \end{bmatrix} \bullet \begin{bmatrix} -1 \\ 3 \end{bmatrix} = 6 - 2 - 3 = 1$	A1ft		ft on AB
	$\cos\theta = \frac{sp}{\sqrt{14}\sqrt{14}}$	m1		Correct form for $\cos \theta$ with one correct modulus
	$\cos\theta = \frac{1}{14} \qquad \theta = 85.9^{\circ}$	A1	4	cso 85.9 or better
(b)(i)	$\overrightarrow{OD} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} + 2\begin{bmatrix} 2\\-1\\3 \end{bmatrix} = \begin{bmatrix} 7\\-4\\10 \end{bmatrix}$	M1		Implied by 2 correct components
	line l_2 $\mathbf{r} = \begin{bmatrix} 7 \\ -4 \\ 10 \end{bmatrix} + \mu \begin{bmatrix} 3 \\ 2 \\ -1 \end{bmatrix}$	A1ft	2	$\mathbf{r} = \text{ or } \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ required } \text{ ft on } \overrightarrow{AB}$
(ii)	$\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{bmatrix} 1+3p\\-4+2p\\7-p \end{bmatrix}$	M1		$\mu = p$ at C Find \overrightarrow{BC} in terms of p
	$\overrightarrow{AD} = \begin{bmatrix} 4\\-2\\6 \end{bmatrix} \left \overrightarrow{BC} \right = \sqrt{56}$	B1ft		PI B1 is for $\left \overrightarrow{BC}\right = \sqrt{56}$
	$(1+3p)^{2} + (-4+2p)^{2} + (7-p)^{2} = 56$	m1		
	$14p^{2} - 24p + 66 = 56$ $7p^{2} - 12p + 5 = 0$ (7p - 5)(p - 1) = 0	m1		ft on \overrightarrow{BC} Simplification to quadratic equation with all terms on one side
	$p = \frac{5}{7}$ and $p = 1$	A1		Exact fraction required
	<i>C</i> is at $\left(9\frac{1}{7}, -2\frac{4}{7}, 9\frac{2}{7}\right)$	A1	6	cso Accept as column vector
			14	

MPC4 (co	nt)	•	•	
Q	Solution	Marks	Total	Comments
8(b)(ii)	Alternative : Using equal angles $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} = \begin{bmatrix} 1+3p\\-4+2p\\7-p \end{bmatrix}$	(M1)		$\mu = p \text{ at } C$ Find \overrightarrow{BC} in terms of p
	$\overrightarrow{AD} = \begin{bmatrix} 4\\-2\\6 \end{bmatrix} \left \overrightarrow{BC} \right = \sqrt{56}$	(B1ft)		
	$(\cos\theta) = \frac{\overrightarrow{BA} \bullet \overrightarrow{BC}}{\sqrt{14}\sqrt{56}} = \frac{\begin{bmatrix} -3\\ -2\\ 1 \end{bmatrix} \bullet \begin{bmatrix} 1+3p\\ -4+2p\\ 7-p \end{bmatrix}}{\sqrt{14}\sqrt{56}} = \frac{1}{14}$	(m1)		Condone \overrightarrow{AB} used. Allow $ \overrightarrow{BC} $ in terms of p , in which case previous B1 is implied
	-3-9p+8-4p+7-p=2 $p=\frac{5}{7}$	(m1) (A1)		Reduce to linear or quadratic equation in p .
	C is at $\left(9\frac{1}{7}, -2\frac{4}{7}, 9\frac{2}{7}\right)$	(A1)	(6)	

MPC4 (cont				
Q	Solution	Marks	Total	Comments
8(b)(ii)	Alternative : using symmetry (i) $\left \overrightarrow{AD} \right = \left \overrightarrow{BC} \right = \sqrt{56}$	(B1ft)		$\overrightarrow{AD} = \begin{bmatrix} 4\\-2 \end{bmatrix}$
	$\left \overrightarrow{DC}\right = \left \overrightarrow{AB}\right - \left \overrightarrow{AD}\right \cos\theta - \left \overrightarrow{BC}\right \cos\theta$	(M1)		$\begin{vmatrix} 6 \\ \text{Substitute values and evaluate} \\ \left \overline{AB} \right - \left \overline{AD} \right \cos \theta - \left \overline{BC} \right \cos \theta \end{vmatrix}$
	$\left \overrightarrow{DC}\right = \frac{10}{\sqrt{14}}$	(A1ft)		F on \overrightarrow{AB} and $\cos\theta$
	$\left \overrightarrow{DC}\right = p\left \overrightarrow{AB}\right \Longrightarrow \frac{10}{\sqrt{14}} = p\sqrt{14}$	(m1)		Set up equation in <i>p</i>
	$p = \frac{5}{7}$	(A1)		
	C is at $\left(9\frac{1}{7}, -2\frac{4}{7}, 9\frac{2}{7}\right)$	(A1)	(6)	
	Alternative using symmetry (ii) $\left \overrightarrow{AD} \right = \sqrt{56}$	(B1ft)		
	$\left \overrightarrow{AE} \right = \left \overrightarrow{AD} \right \cos \theta = \sqrt{56} \times \frac{1}{14} = \frac{2}{\sqrt{14}}$	(M1) (A1ft)		Substitute values and evaluate for $\left \overrightarrow{AD} \right \cos \theta$. F on $\cos \theta$
	$\left \overrightarrow{AE} \right = q \left \overrightarrow{AB} \right \Longrightarrow \frac{2}{\sqrt{14}} = q \sqrt{14}$	(m1)		Set up equation to find <i>p</i>
	and $ AE = FB \Rightarrow p = 1 - 2q$ $q = \frac{2}{14}$ $p = \frac{5}{7}$ C is at $\left(9\frac{1}{7} - 2\frac{4}{7}, 9\frac{2}{7}\right)$	(A1)		
	(7, 7, 7)	(A1)	(6)	
	TOTAL		75	
Version 1.0

General Certificate of Education (A-level) June 2011

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2011 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	(f(-2)=)0	B1	1	ISW (0 seen is B1)
(b)	$f\left(\frac{3}{2}\right) = 4\left(\frac{3}{2}\right)^3 - 13\left(\frac{3}{2}\right) + 6$	M1		Clear attempt at $f\left(\frac{3}{2}\right)$ with 3 terms
				Factor theorem required; NOT long division
	$4 \times \frac{27}{8} - 13 \times \frac{3}{2} + 6$ or $13.5 - 19.5 + 6$			Must see this, or equivalent
	$=0 \Rightarrow (2x-3)$ is a factor	A1	2	Shown $= 0$ and statement.
(c)	Any appropriate method to find third factor	M1		Full long division Compare coefficients Factor Theorem $f(\frac{1}{2})$
	(x+2)(2x-3)(2x-1)	A1		Or $(2x^2 + x - 6)(2x - 1)$ NMS M1A1 SC1 $(2x + 1)$ or $(1 - 2x)$ or $(x - \frac{1}{2})$ or $(\frac{1}{2} - x)$ for third factor
	$2x^2 + x - 6 = (x + 2)(2x - 3)$	M1		Factorise numerator correctly or cancel $2x^2 + x - 6$
	$\frac{2x^2 + x - 6}{f(x)} = \frac{1}{2x - 1}$	A1	4	No ISW
			7	

Q	Solution	Marks	Total	Comments
2(a)(i)	(<i>A</i> =)80	B1	1	Ignore units
(ii)	$2000 = A \times k^{25}$	M1		A or their value from (a)(i)
	$k = \sqrt[25]{25} \text{ or } 25^{\overline{25}}$ or $k = 10^{0.04 \log 25}$ or $e^{0.04 \ln 25}$ $\Rightarrow k = 1.137411$ AG	A1	2	Correct expression for <i>k</i> , or 1.13741146seen, and correct answer to 6 d.p.
(b)	$\ln\left(\frac{100000}{their A}\right) = t \ln k$	M1		Take logs correctly. Condone miscopied k $\ln 1250 = t \ln k$ or $t = \log_k 1250$
	t = 55.38	A1		Condone 55.3 or 55.4 PI
	$\Rightarrow 2016$	A1	3	
			6	
2(b)	Alternative By trial and improvement $1250 = k^t$	M1		Attempt to calculate k^{55} and k^{56} .
	t = 56 or $55 < t < 56$	A1		
	$\Rightarrow 2016$	A1	3	

Q	Solution	Marks	Total	Comments
3 (a)(i)	$(1-x)^{\frac{1}{3}} = 1 - \frac{1}{3}x$	M1		Condone $1^{\frac{1}{3}} + -\frac{1}{3}x$ for M1
	$=1 - \frac{1}{3}x - \frac{1}{9}x^2$	A1	2	Must simplify coefficients including signs
(ii)	$(125-27x)^{\frac{1}{3}} = 125^{\frac{1}{3}} \left(1-\frac{27}{125}x\right)^{\frac{1}{3}}$	B1		May have 5 instead of $125^{\frac{1}{3}}$
	$\left(1 - \frac{27}{125}x\right)^{\frac{1}{3}} = \left(1 - \frac{1}{3} \times \frac{27}{125}x - \frac{1}{9}\left(\frac{27}{125}x\right)^{2}\right)$	M1		Attempt to replace x by $\pm \frac{27}{125}x$ condone missing brackets, or start binomial again.
	$=5 - \frac{9}{25}x - \frac{81}{3125}x^2$	A1	3	Condone $5 + \frac{-9}{25}x + \frac{-81}{3125}x^2$
(b)	$x = \frac{2}{9}$ used in answer to (a)(ii)	M1		Condone $x = \frac{6}{27}$ or $x = 0.222$ or better
	$\sqrt[3]{119} \approx 5 - \frac{9}{25} \times \frac{2}{9} - \frac{81}{3125} \left(\frac{2}{9}\right)^2$ = 4.91872	A1	2	This answer only and must
			7	follow from correct expansion
3(a) (ii)	Alternative using $(a+bx)^n$ $(125-27x)^{\frac{1}{3}} = 125^{\frac{1}{3}} + \frac{1}{3} \times 125^{-\frac{2}{3}} \times (-27x)$	M1		Allow one error; condone missing brackets
	$+\frac{1}{3}\left(-\frac{2}{3}\right)\frac{1}{2} \times 125^{-\frac{5}{3}}\left(-27x\right)^{2}$ $=5-\frac{9}{25}x-\frac{81}{2125}x^{2}$	A2	3	
	25 3125		-	

Q	Solution	Marks	Total	Comments
4 (a)(i)	$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) = -6\sin 2\theta$, $\left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right) = -2\sin\theta$	M1		$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right) p \sin 2\theta$ or $r \sin \theta \cos \theta$
				$\left(\frac{\partial}{\partial\theta}\right) q \sin\theta$
		A1		Both correct.
	dy $-2\sin\theta$	M1		Use chain rule $\frac{\frac{dy}{d\theta}}{d\theta}$;
	$\frac{1}{\mathrm{d}x} = \frac{1}{-6\sin 2\theta}$			$\frac{dx}{d\theta}$
	$2\sin\theta$ 1			
	$=\frac{2\sin\theta}{6\times2\sin\theta\cos\theta}=\frac{1}{6\cos\theta}$	A1	4	k = 6 must come from correct working seen AG
(ii)	$\theta = \frac{\pi}{2}$ $m_{\rm T} = \frac{1}{2}$	B1ft		ft on k $\left(\frac{1}{k \times \frac{1}{2}}\right)$
	3 3			k need not be numerical
	$m_{\rm N} = -3$	B1ft		ft on $m_{\rm T}$
	$(x, y) = \left(-\frac{3}{2}, 1\right)$	B1		
	Normal $y-1 = -3\left(x+\frac{3}{2}\right)$	B1	4	CAO; any correct form, ISW. 2y+6x+7=0
				2y + 0x + 7 = 0
(b)	$\sin^2 x = \frac{1}{2}(1 - \cos 2x)$	MI		n L goog 2 r. Allow different
(0)		A1		letters for x or mixture eg θ even
				for A1and the following A1ft
	$\int p \mathrm{d}x = px \qquad \int q \cos 2x = \frac{1}{2}q \sin 2x$	A1ft		Both integrals correct; $ft on p and q$
	$\begin{bmatrix} \frac{\pi}{4} \\ \int \sin^2 x dx & \begin{bmatrix} x & 1 \\ \sin^2 x \end{bmatrix}$			
	$\int_{-\frac{\pi}{4}}^{-\frac{\pi}{4}} \sin x dx = \left[\frac{\pi}{4}\sin 2x\right]$			
	$-(\pi_{-}1)-(-\pi_{-}(-1))$	m1		Correct use of limits:
	$-\left(\frac{1}{8}-\frac{1}{4}\right)-\left(-\frac{1}{8}-\left(-\frac{1}{4}\right)\right)$			$F(\frac{\pi}{4}) - F(-\frac{\pi}{4})$ or $2F(\frac{\pi}{4})$
				$F(x) = px + r \sin 2x$ and $\sin \frac{\pi}{2}$,
				$\sin\left(-\frac{\pi}{2}\right)$ must be evaluated
				correctly for m1
	$=\frac{\pi}{2}-\frac{1}{2}$	A 1	~	CSO OF ISW
	4 2	AI	5	COUL ISW
<u> </u>			13	

4 (b)	Alternative			
	$\int \sin^2 x dx = -\sin x \cos x - \int -\cos x \cos x dx$ $= -\sin x \cos x + \int 1 - \sin^2 x dx$	M1 m1		Use parts; condone sign slips Use $\cos^2 x = 1 - \sin^2 x$
	$2\int \sin^2 x \mathrm{d}x = -\sin x \cos x + x$	A1		
	$2\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}}\sin^2 x \mathrm{d}x = G\left(\frac{\pi}{4}\right) - G\left(-\frac{\pi}{4}\right)$	m1		Correct use of limits
	$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \sin^2 x dx = \frac{\pi}{4} - \frac{1}{2}$	A1	5	

Q	Solution	Marks	Total	Comments
5 (a)		B1		$\pm \left(\overrightarrow{OA} - \overrightarrow{OB}\right)$
	$\overrightarrow{AB} = \begin{bmatrix} -1 \\ 3 \end{bmatrix} - \begin{bmatrix} 1 \\ -2 \end{bmatrix} = \begin{bmatrix} -2 \\ 5 \end{bmatrix}$			Co-ordinate form only is B0 Condone one component incorrect
	Line through A and B	M1		$\overrightarrow{OA} + \lambda \mathbf{d}$ or $\overrightarrow{OB} + \lambda \mathbf{d}$ where $\mathbf{d} = \overrightarrow{AB}$ or \overrightarrow{BA} all in components and identified.
	$\mathbf{r} = \begin{bmatrix} 5\\1\\-2 \end{bmatrix} + \lambda \begin{bmatrix} -1\\-2\\5 \end{bmatrix} \text{ or } \mathbf{r} = \begin{bmatrix} 4\\-1\\3 \end{bmatrix} + \lambda \begin{bmatrix} -1\\-2\\5 \end{bmatrix}$	A1	3	OE r or $\begin{bmatrix} x \\ y \\ z \end{bmatrix}$ required Condone missing brackets on \overrightarrow{OA} or \overrightarrow{OB}
(b)(i)	$5 - \lambda = -8 + 5\mu$ $1 - 2\lambda = 5$ $-2 + 5\lambda = -6 - 2\mu$	M1		Clear attempt to set up and solve at least two simultaneous equations in μ and a different parameter. Allow in column vector form.
	$\lambda = -2$ $\mu = 3$	A1		One of λ or μ correct OE
	$-2+5\times-2 = -12 \qquad -6-2\times3 = -12$ Both equal -12 so intersect	E1		Verify intersect, λ and μ correct or verify (7,5,-12) is on both lines; statement required
	<i>P</i> is $(7, 5, -12)$	B1	4	CAO condone $P = \begin{bmatrix} 7\\5\\-12 \end{bmatrix}$ OE
(ii)	$\overrightarrow{BC} = \begin{bmatrix} -8+5\mu\\5\\-6-2\mu \end{bmatrix} - \begin{bmatrix} 4\\-1\\3 \end{bmatrix}$	B1		and missing brackets $\overrightarrow{BC} = \overrightarrow{OC} - \overrightarrow{OB} \text{or}$ $\overrightarrow{CB} = \overrightarrow{OB} - \overrightarrow{OC}$
	$\begin{bmatrix} 3\\6\\-15 \end{bmatrix} \bullet \overrightarrow{BC} = 0$	M1		Clear attempt at $\pm \overrightarrow{BP}$ or $\pm \overrightarrow{AB}$ or $\pm \overrightarrow{AP}$ in components sp with $\overrightarrow{BC} = 0$
	$-36 + 15\mu + 36 + 135 + 30\mu = 0$	m1		Linear equation in μ using <i>their</i> \overrightarrow{BC} and solved for μ .
	$\mu = -3$	A1		sign slip
	C is $(-23,5,0)$	A1	5	CSO Condone column vector.
1		1	12	1

Q	Solution	Marks	Total	Comments
6 (a)	$(C=)\frac{2}{e}$ or $2e^{-1}$ or $2\left(\frac{1}{e}\right)$ or $2\left(e^{-1}\right)$	B1	1	One of these answers only. Not 0.736 but allow ISW.
(b)	$\frac{d}{dx}(2y) = 2\frac{dy}{dx}$	B1		
	$\frac{\mathrm{d}x}{\mathrm{d}x}\left(\mathrm{e}^{2x}y^2\right) = 2\mathrm{e}^{2x}y^2 + \mathrm{e}^{2x}2y\frac{\mathrm{d}y}{\mathrm{d}x}$	M1		Product; 2 terms added, one with $\frac{dy}{dx}$;
		A1 A1		A1 for each term
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(x^2+C\right)=2x$	B1		
	$\frac{\mathrm{d}y}{\mathrm{d}x} =$	M1		Solve <i>their</i> equation correctly for $\frac{dy}{dx}$
	$\frac{x-e^{2x}y^2}{e^{2x}y+1}$	A1	7	Condone factor of 2 in both numerator and denominator. ISW
(c)	Evaluate $\frac{dy}{dx}$ at $\left(1,\frac{1}{e}\right)$	M1		Substitute $x = 1$ and $y = \frac{1}{e}$ into numerator of $\frac{dy}{dx}$; allow one slip
	numerator = $1 - e^2 e^{-2} = 0 \Rightarrow$ stationary point	A1	2	Conclusion required; must score full marks in part (b) Allow $1-1=0$ or $2-2=0$
			10	

Q	Solution	Marks	Total	Comments
Q7 (a)	$\frac{\mathrm{d}A}{\mathrm{d}t} = -k$	B1 B1	2	
(b)(i)	$A = -kt(+ C)$ $C = 4\pi \times 60^{2}$	M1 A1		Integrate C correct from $A = \pm kt + C$
	$4\pi \times 30^2 = -9k + 4\pi \times 60^2$	m1		Use $r = 30$ $t = 9$ and attempt to find k, as far as $k =$ $k = 1200\pi$
	$A = -1200\pi t + 14400\pi$ = 1200\pi (12-t)	A1	4	AG CSO
(ii)	t = 12 (days)	B1	1	
			7	

Q	Solution	Marks	Total	Comments
Q8 (a)	$1 = A(1-x)^{2} + B(1-x)(3-2x) + C(3-2x)$	M1		Attempt to clear fractions
	$ x = 1 \qquad x = \frac{3}{2} \qquad x = 0 $ $ C = 1 \qquad 1 = A \left(-\frac{1}{2} \right)^2 \qquad 1 = A + 3B + 3C $	m1		Use any two (or three) values of <i>x</i> to set up two (or three) equations
	$A = 4 \qquad B = -2 \qquad C = 1$	A1 A1	4	Two values correct All values correct
(b)	$\int \frac{1}{2\sqrt{y}} \mathrm{d}y = \int \frac{4}{3-2x} - \frac{2}{1-x} + \frac{1}{\left(1-x\right)^2} \mathrm{d}x$	B1ft		Separate using partial fractions; correct notation; condone missing integral signs but dy and dx must be in correct place. ft on their <i>A</i> , <i>B</i> , <i>C</i> and on each integral.
	$\int \frac{1}{2\sqrt{y}} \mathrm{d}y = \sqrt{y} =$	B1		OE $\int \frac{k}{\sqrt{y}} \mathrm{d}y = 2k\sqrt{y}$ is B1
	$-2\ln(3-2x) + 2\ln(1-x)$	B1ft B1ft		Condone missing brackets on one ln integral.
	$+\frac{1}{1-x} (+C)$	B1ft		Condone omission of $+C$
	$x = 0 y = 0 \Rightarrow 0 = -2\ln 3 + 0 + 1 + C$	M1		Use $(0,0)$ to find <i>C</i> . Must get to $C = \dots$
	$C = 2\ln 3 - 1$	A1		Correct <i>C</i> found from correct equation. <i>C</i> must be exact, in any form but not decimal.
	$\sqrt{y} = 2\ln\left(\frac{3-3x}{3-2x}\right) + \frac{1}{1-x} - 1$	m1		Correct use of rules of logs to progress towards requested form of answer . <i>C</i> must be of the form $r \ln s + t$
	$y^{\frac{1}{2}} = 2\ln\left(\frac{3-3x}{3-2x}\right) + \frac{x}{1-x}$	A1	9	OE CSO condone B0 for separation
			13	
	TOTAL		75	

Q8	Alternative			
(a)	$1 = A(1-x)^{2} + B(1-x)(3-2x) + C(3-2x)$	M1		
	1 = A + 3B + 3C	m1		Set up three simultaneous
	0 = -2A - 5B - 2C			equations
	0 = A + 2B			
		A 1		Two values correct
	$A = 4 \qquad B = -2 \qquad C = 1$	A1 A1	4	All values correct

General Certificate of Education (A-level) January 2012

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)	2x + 3 = A(2x + 1) + B(2x - 1)	M1		
	$x = \frac{1}{2} \qquad x = -\frac{1}{2}$ $A = 2 \qquad B = -1$	m1 A1	3	Use two values of <i>x</i> to find <i>A</i> and <i>B</i> Both
(b)	$4x^{2}-1\overline{\smash{\big)}12x^{3}-7x-6}$ $12x^{3}-\underline{3x}$	M1		Complete division leading to values for <i>C</i> and <i>D</i>
	-4x-6 $C=3$ $D=-2$	A1 A1	3	C=3 $D=-2$ stated or written in expression. SC B1 C=3, D not found or wrong;
(c)	$\int 3x - 2\left(\frac{2}{2x - 1} - \frac{1}{2x + 1}\right) dx$	M1		D = -2, C not found or wrong. Use parts (a) and (b) to obtain integrable form
	$3\frac{x}{2}$	A1ft		ft on C
	$-2\left(\ln(2x-1) - \frac{1}{2}\ln(2x+1)\right)$	A1ft		Both correct; ft on <i>A</i> , <i>B</i> and <i>D</i> Condone missing brackets
	$\frac{3}{2}(4-1) - 2\left(\left(\ln 3 - \frac{1}{2}\ln 5\right) - \left(\ln 1 - \frac{1}{2}\ln 3\right)\right)$	m1		Correct substitution of limits
	$\frac{9}{2} - 3\ln 3 + \ln 5 = \frac{9}{2} + \ln\left(\frac{5}{27}\right)$	A1	5	$p = \frac{9}{2} \qquad q = \frac{5}{27}$
		Total	11	

MPC4: January 2012 - Mark scheme

(a) Condone poor algebra for M1 if continues correctly.

(b) Complete division for M1; obtain a value for C(Cx) and a remainder ax + b

(c) Form $\int Cx + \left(\frac{P}{2x-1} + \frac{Q}{2x+1}\right) dx$ using candidate's *P*, *Q*, *C* for M1. Condone missing dx. $\int Cx dx = C \frac{x^2}{2}$ for A1ft ISW extra terms eg $\frac{12}{4x^2-1}$ for first three terms only; max 3/5 Candidate's C; must have a value. $\int \frac{4x+6}{4x^2-1} dx = \int \frac{4x}{4x^2-1} + \frac{6}{4x^2-1} dx$ is an integrable form, as $\int \frac{1}{x^2-a^2} dx = \frac{1}{2a} \ln\left(\frac{x-a}{x+a}\right)$ is in the formula book, but they **must** try to integrate to show they know this, **or** use partial fractions again with $\begin{pmatrix} 6 & 3 & 3 \\ 0 & 3 & 3 \end{pmatrix}$ for M1

$$\frac{1}{4x^2 - 1} = \frac{1}{2x - 1} - \frac{1}{2x + 1}$$
 for M1
Substitute limits into $C\frac{x^2}{2} + m\ln(2x - 1) + n\ln(2x + 1)$, or equivalent, for m1;
substitution must be completely correct.

Condone
$$\frac{9}{2} - \ln\left(\frac{27}{5}\right)$$
 for A1

Q	Solution	Marks	Total	Comments
1 (a)	Alternative; equating coefficients			
	2x + 3 = A(2x + 1) + B(2x - 1)	M1		
	x term $2 = 2A + 2B$			Set up simultaneous equations
	constant $3 = A - B$	ml	2	and solve.
	$A = 2 \qquad B = -1$	AI	3	Both
	Alternative: cover up rule			
	Alternative, cover up fute $2\times 1+3$ (4)			
	$x = \frac{1}{2}$ $A = \frac{2 \times \frac{1}{2} + 3}{2 \times \frac{1}{2} + 1}$ $\left[= \frac{4}{2} \right]$	M1		$x = \frac{1}{2}$ and $x = -\frac{1}{2}$ used to find A
	$2 \times \frac{1}{2} + 1$ (2)			and B
	$x = -\frac{1}{2}$ $B = \frac{2 \times (-\frac{1}{2}) + 3}{(-\frac{1}{2}) + 3} \left(= \frac{2}{-\frac{1}{2}} \right)$			
	$2 \qquad 2 \times \left(-\frac{1}{2}\right) - 1 \left(-2\right)$			SC NMS
	$A = 2 \qquad B = -1$			A and B both correct $3/3$
		A1A1	3	One of A or B correct $1/3$
1 (b)	Alternative			
	$\frac{12x^3 - 7x - 6}{12x^3 - 3x - 4x - 6} = \frac{12x^3 - 3x - 4x - 6}{12x^3 - 3x - 4x - 6}$			
	$4x^2-1$ $4x^2-1$	MI		
	$=3x-\frac{2(2x+3)}{2}$			
	$-3x^{2}-1$			
	<i>C</i> = 3	A1		C = 3 $D = -2$ stated or written
	D = -2	A1	3	in expression
				SC B1
				C = 3, D not found or wrong;
				D = -2, <i>C</i> not found or wrong.
	Alternative			
	$12x^3 - 7x - 6 = 4Cx^3 - Cx + 2Dx + 3D$	3.61		
	<i>C</i> = 3	MI		Complete method for C and D
	D = -2	A1		C = 3, D = -2 stated or
		A1	3	written in expression.
				SC B1
				C = 3, D not found or wrong;
				D = -2, C not found or wrong.
	Alternative			
	x = 0 $x = 1$	MI		Use two values of r to set up
	$6 = -3D$ $-\frac{1}{2} = C + \frac{5}{2}D$	IVII		simultaneous equations
	$3^{-1} $			sintuneous equations
	<i>C</i> = 3			
	D = -2	A1		C = 3 $D = -2$ stated or written
		A1	3	in expression.
				SC B1
				C = 3, D not found or wrong;
				D = -2, C not found or wrong.

Q	Solution	Marks	Total	Comments
2(a)(i)	$\tan\alpha = \frac{4}{3}$	B1	1	Fraction required Allow 1.333 (recurring)
(ii)	1, 2, $\sqrt{3}$ seen (from Pythagoras) or	M1		
	$4 = 1 + \cot^{2} \beta$ $\tan \beta = -\frac{1}{\sqrt{3}}$ $\frac{4}{\sqrt{3}} - \frac{1}{\sqrt{3}}$	A1	2	Use $\csc^2 \beta = 1 + \cot^2 \beta$ SC B1 $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$
(b)	$\tan(\alpha + \beta) = \frac{5\sqrt{3}}{1 - \frac{4}{3}\left(-\frac{1}{\sqrt{3}}\right)}$	M1		Use $\tan(\alpha + \beta)$ formula
	Remove fractions within fractions	m1		Correct manipulation to form $\frac{a+b\sqrt{3}}{c+d\sqrt{3}}$ a b c d integers
	$=\frac{4\sqrt{3}-3}{3\sqrt{3}+4}$	A1	3	m = 4 $n = 3or any multiple$
		Total	6	
(b)	Alternative $\tan(\alpha + \beta)$			
	$=\frac{\sin\left(\alpha+\beta\right)}{\cos\left(\alpha+\beta\right)}=\frac{\frac{4}{5}\times\left(-\frac{\sqrt{3}}{2}\right)+\frac{3}{5}\times\frac{1}{2}}{\frac{3}{5}\times\left(-\frac{\sqrt{3}}{2}\right)-\frac{4}{5}\times\frac{1}{2}}$	M1		Use formulae for $sin(\alpha + \beta)$ and $cos(\alpha + \beta)$
	Remove fractions within fractions	m1		Correct manipulation to form $a+b\sqrt{3}$ a h c d integers
	$=\frac{-4\sqrt{3}+3}{-3\sqrt{3}-4} \left(=\frac{4\sqrt{3}-3}{3\sqrt{3}+4}\right)$	A1		$\frac{1}{c+d\sqrt{3}}$ we do to a medgers m = -4 n = -3 or any multiple
(a)(ii) Special case B1 for $\frac{1}{\sqrt{3}}$ or $\frac{\sqrt{3}}{3}$				
(b) M1 for substituting candidates values for $\tan \alpha$ and $\tan \beta$ into correct formula. Completely correct or_completely_correct ft on $\tan \alpha$, $\tan \beta$.				
Special case answer is $\frac{12+3\sqrt{3}}{9-4\sqrt{3}}$ or $\times \frac{a}{a}$ where <i>a</i> is integer or $\sqrt{3}$ for M1m1A0				

3 (a) $(1+6x)^{\frac{2}{3}} = 1 + \frac{2}{3} \times 6x + = 1 + 4x - 4x^{2}$ (b) $(8+6x)^{\frac{2}{3}} = 8^{\frac{2}{3}} (1 + \frac{6}{8}x)^{\frac{2}{3}} = 1 + 4(\frac{x}{8}) - 4$ $(8+6x)^{\frac{2}{3}} = 4 + 2x - \frac{1}{4}x$	kx^{2} $\frac{2}{3}$ $\left(\frac{x}{8}\right)^{2}$	M1 A1 B1	2	Simplified coefficients required
(a) $(1+6x)^{2} = 1 + \frac{1}{3} \times 6x + \frac{1}{3} = 1 + 4x - 4x^{2}$ (b) $(8+6x)^{\frac{2}{3}} = 8^{\frac{2}{3}} (1+\frac{6}{8}x)^{\frac{2}{3}} = 1 + 4(\frac{x}{8}) - 4$ $(8+6x)^{\frac{2}{3}} = 4 + 2x - \frac{1}{4}x$	$\frac{2}{3} \left(\frac{x}{8} \right)^2$	MI A1 B1	2	Simplified coefficients required
$= 1 + 4x - 4x^{4}$ (b) $(8+6x)^{\frac{2}{3}} = 8^{\frac{2}{3}}(1+\frac{6}{8}x)^{\frac{2}{3}}$ $(1+\frac{6}{8}x)^{\frac{2}{3}} = 1 + 4(\frac{x}{8}) - 4$ $(8+6x)^{\frac{2}{3}} = 4 + 2x - \frac{1}{4}x$	$\frac{2}{3}$ $\left(\frac{x}{8}\right)^2$	A1 B1	2	Simplified coefficients required
(b) $(8+6x)^{\frac{2}{3}} = 8^{\frac{2}{3}} (1+\frac{6}{8}x)^{\frac{2}{3}}$ $(1+\frac{6}{8}x)^{\frac{2}{3}} = 1+4(\frac{x}{8})-4$ $(8+6x)^{\frac{2}{3}} = 4+2x-\frac{1}{4}x$	$\frac{2}{3}$ + $\left(\frac{x}{8}\right)^2$	B1		
(b) $(8+6x)^{\overline{3}} = 8^{3} (1+\frac{6}{8}x)^{\overline{3}}$ $(1+\frac{6}{8}x)^{\frac{2}{3}} = 1+4(\frac{x}{8})-4$ $(8+6x)^{\frac{2}{3}} = 4+2x-\frac{1}{4}x$	$\frac{1}{3}$ $\left(\frac{x}{8}\right)^2$	B1		
$\left(1 + \frac{6}{8}x\right)^{\frac{2}{3}} = 1 + 4\left(\frac{x}{8}\right) - 4$ $\left(8 + 6x\right)^{\frac{2}{3}} = 4 + 2x - \frac{1}{4}x$	$\left(\frac{x}{8}\right)^2$			OE
$(1 + \frac{1}{8}x)^3 = 1 + 4(\frac{1}{8})^2 = 4$ $(8 + 6x)^{\frac{2}{3}} = 4 + 2x - \frac{1}{4}x$	$\left(\frac{8}{8}\right)$			
$\left(8+6x\right)^{\frac{2}{3}} = 4+2x-\frac{1}{4}x$		M1		<i>x</i> replaced by $\frac{x}{8}$ in answer to (a)
$(8+6x)^{\frac{2}{3}} = 4+2x-\frac{1}{4}x$				Condone missing brackets, allow
	2			one error.
		A1	3	Simplified coefficients required.
(c) $(100 = 10^2 8 + 6x = 1)$	$0 \qquad x = \frac{1}{3})$			
$1 \cdot 2 \cdot 1 \cdot 1 \cdot (1)^2$				
$4 + 2 \times \frac{1}{3} - \frac{1}{4} \times \frac{1}{3}$				Use $r = 1$ in binomial expansion
	167	M1		Use $x = \frac{1}{3}$ in binomial expansion from part (b)
=	36	A 1	2	$\frac{167}{2}$
		AI	Z	$\sqrt[3]{100} \approx \frac{107}{36}$
				50
		Total	7	
$\begin{array}{c c} 3 & \text{Alternative} \\ \mathbf{(b)} & 2 & 2 \end{array}$	2			OE
$(8+6x)^{\overline{3}} = 8^{\overline{3}} \left(1 + \frac{6}{8}x\right)^{\overline{3}}$	3			
$(1+\frac{6}{3}r)^{\frac{2}{3}}-1+\frac{2}{3}(\frac{6}{3}r)+$	$\frac{2(2-1)!(6r)^2}{2}$			Condona missing brookets
$\left(1+\frac{1}{8}\lambda\right)^{2}=1+\frac{1}{3}\left(\frac{1}{8}\lambda\right)^{2}$	$\frac{1}{3}\left(\frac{1}{3}-1\right)\frac{1}{2}\left(\frac{1}{8}\right)$			allow one error
$(8+6x)^{-\frac{1}{3}} = 4+2x-\frac{1}{4}x$	2			
Alternative	4			
$8^{\frac{2}{3}} + \frac{2}{3} \times 8^{\frac{1}{3}} \times 6x + \frac{2}{3}(\frac{2}{3})$	$(-1)\frac{1}{2} \times 8^{-\frac{4}{3}} \times (6x)^2$			Use binomial formula; condone
$4 + 2x - \frac{1}{2}x^2$)2 ()			one error and missing brackets.
(a)(b) ²				
Condone 1^3 for 1 for N	/11			

Q	Solution	Marks	Total	Comments		
4 (a)	$P = 500e^{\frac{1}{8} \times 60}$ = 904 000	M1 A1	2	Must use $t = 60$ Nearest thousand required 904000 only		
(b)(i)	$\left(e^{\frac{1}{8}t}\right)^2 = \frac{500000}{500}$	M1				
	$t = 8 \ln \sqrt{1000}$	M1		OE Take logs correctly leading to expression for <i>t</i> .		
	t = 27.6 (minutes)	A1	3	Accept 27.631		
(ii)	$500e^{\frac{1}{8}T} - 500000e^{-\frac{1}{8}T} = 45000$	M1		Set up equation; condone one error; allow in <i>t</i> .		
	$\times \frac{\mathrm{e}^{8}}{500} \Longrightarrow \left(\mathrm{e}^{\frac{1}{8}T}\right) -1000 = 90\mathrm{e}^{\frac{1}{8}T}$			Condone inequality. $\frac{1}{-T}$		
	$\left(e^{\frac{1}{8}T}\right)^2 - 90e^{\frac{1}{8}T} - 1000 = 0$	A1		Multiply by $\frac{e^8}{500}$ and rearrange		
	$e^{\frac{1}{8}T} = 100$ ($e^{\frac{1}{8}T} = -10$ rejected)	M1		Solve quadratic equation (retaining positive root).		
	t = 36.8 (minutes)	A1	4	CAO		
		Total	9			
4 (b)(i)	Alternative $e^{\frac{1}{8}t} = 1000e^{-\frac{1}{8}t} \Longrightarrow e^{\frac{1}{4}t} = \frac{500000}{500}t = 4\ln 1000$	M1 M1		Take logs correctly leading to		
	t = 27.6 (minutes)	A1	3			
	$e^{\overline{8}^{t}} = 1000e^{-\overline{8}^{t}} \Longrightarrow \ln\left(e^{\overline{8}^{t}}\right) = \ln 1000 + \ln\left(e^{-\overline{8}^{t}}\right)$	M1		Take logs correctly.		
	t = 4111000 t = 27.6 (minutes)	M1 A1	3			
(b)(ii) M1 for solve quadratic equation Let $x = e^{\frac{1}{8}t}$ solve quadratic equation $x^2 - 90x - 1000 = 0$ by inspection, $x = 100$ seen; factors $(x - 100)(x + 10)$ with 100 and 10 seen;						
	complete square $x = 45 \pm \sqrt{3025}$ all correct					
 	formula $x = \frac{90 \pm \sqrt{90^2 + 4000}}{2}$ all correct					
Final an	swer; must have $t = 36.8$ for A1					
(b)(i) 2	(b)(i) 27.6 as final answer NMS 3/3 27.6 following wrong working AO (FIW) but could still score M mark(s)					

Q	Solution	Marks	Total	Comments
5(a)	$xy^{2} + 3y = \left(8t^{2} - t\right)\left(\frac{3}{t}\right)^{2} + 3\left(\frac{3}{t}\right)$	M1		Substitute and expand
	$=72-\frac{9}{t}+\frac{9}{t}=72$	A1	2	<i>k</i> = 72
(b)(i)	$\frac{\mathrm{d}x}{\mathrm{d}t} = 16t - 1 \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = -\frac{3}{t^2}$	B1B1		
	$t = \frac{1}{4} \qquad \frac{dy}{dx} = \frac{-\frac{3}{\left(\frac{1}{4}\right)^2}}{16 \times \frac{1}{2} - 1}$	M1		Use chain rule $\left(\frac{dy}{dx} = \frac{-3}{16t^3 - t^2}\right)$ and calculate gradient
	= -16	A1		using $t = \frac{1}{4}$
	$t = \frac{1}{4} \qquad x = \frac{8}{16} - \frac{1}{4} \qquad y = \frac{3}{\frac{1}{4}}$	M1		Calculate x and y using $t = \frac{1}{4}$
	$x = \frac{1}{4} \qquad \qquad y = 12$	A1		Both correct
	tangent $y = -16x + 16$	A1	7	ACF CSO
(ii)	$y = -16 \times \frac{3}{2} + 16 = -8$	M1		$y-12 = -16\left(x-\frac{1}{4}\right)$ ISW Substitute $x = \frac{3}{2}$ into
	$\frac{3}{2}(-8)^2 + 3 \times (-8) = 96 - 24 = 72$	A1	2	candidate's tangent; calculate y y = -8 used to verify 72
		Total	11	y = 0 used to verify 72
5(a)	Alternative	Total	11	
	$x = 8\left(\frac{3}{y}\right)^2 - \frac{3}{y}$	M1		Eliminate <i>t</i>
	$xy^2 + 3y = 72$	A1	2	<i>k</i> = 72
(b)(i)	Alternative			
	$2xy\frac{dy}{dx} + y^2$	M1A1		Product rule attempted; two
	$+3\frac{\mathrm{d}y}{\mathrm{d}x}=0$	B1		terms added, one with $\frac{dx}{dx}$
	$t = \frac{1}{4} x = \frac{8}{16} - \frac{1}{4} y = \frac{3}{\frac{1}{4}}$	M1		Calculate x and y using $t = \frac{1}{4}$
	$x = \frac{1}{4} \qquad \qquad y = 12$	A1		Both correct.
	$\left(\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-y^2}{2xy+3}\right) \frac{\mathrm{d}y}{\mathrm{d}x} = -16$	m1		Calculate gradient from candidate's expression.
	tangent $y = -16x + 16$	A1	7	ACF CSO $y-12 = -16\left(x-\frac{1}{4}\right)$ ISW

DN/	т
F IVI	1

Q	Solution	Marks	Total	
	Alternative			
5(b)(i)	$x = \frac{72 - 3y}{y^2}$	M1	Correct expression for <i>x</i> f candidate's implicit equat Quotient rule attempted;	from tion. y^4 and
	$dr = v^2(-3) - (72 - 3v) \times 2v$	A 1	two terms subtracted.	-
	$\frac{dx}{dy} = \frac{y(x)(x^2 - y)(x^2 - y)}{y^4}$ $\left(\frac{dx}{dx} - \frac{3y - 144}{y}\right)$	AI A1	Numerator; first term; second term	
	$\left(\frac{dy}{dy} = \frac{y^3}{y^3}\right)$			
	$t = \frac{1}{4}$ $y = \frac{1}{4} = 12$	B 1		
	$\frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{1}{16} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = -16$	m1	Use $t = \frac{1}{4}$ to calculate y	
	$t = \frac{1}{4}$ $x = \frac{8}{16} - \frac{1}{4} = \frac{1}{4}$	B 1		
	y = -16x + 16	A1	Evaluate and invert.	
	Alternative for $\frac{dx}{dx}$		Use $t = \frac{1}{4}$ to calculate x	
	dy 72 3		ACF CSO	
	$x = \frac{y^2}{y^2} - \frac{y}{y}$ $dx = \frac{144}{3}$	M1		
	$\frac{dy}{dy} = -\frac{1}{y^3} + \frac{1}{y^2}$	A1		
	$\left(\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{3y - 144}{y^3}\right)$	A1	Correct expression for x from candidate's implicit equation attempt derivatives	m n and

Q	Solution	Marks	Total	Comments
6(a)	$16\left(\frac{3}{4}\right)^3 + 11\left(\frac{3}{4}\right) - 15$ $= \frac{27}{4} + \frac{33}{4} - 15 = 0 \Rightarrow \text{factor}$	M1 A1	2	Evaluate $f(\frac{3}{4})$; not long division. Processing and conclusion.
(b)	$27\cos\theta (2\cos^2\theta - 1) +$ $19\sin\theta (2\sin\theta\cos\theta) - 15 = 0$ $54\cos^3\theta - 27\cos\theta + 38(1 - \cos^2\theta)\cos\theta$ $-15 = 0$	B1 B1 M1		Use acf of $\cos 2\theta$ formula Use acf of $\sin 2\theta$ formula All in cosines.
(c)	$16\cos^{3}\theta + 11\cos\theta - 15 = 0$ $x = \cos\theta \Longrightarrow 16x^{3} + 11x - 15 = 0$ $16x^{3} + 11x - 15 = (4x - 3)(4x^{2} + 3x + 5)$ $b^{2} - 4ac = 3^{2} - 4 \times 4 \times 5 (= -71)$ $b^{2} - 4ac < 0 \text{, no solution } (\text{to } 4x^{2} + 3x + 5 = 0)$	A1 M1A1 m1	4	Simplification and substitute $x = \cos\theta$ to obtain AG CSO. Factorise f (x) Find discriminant of quadratic factor; or seen in formula
	\Rightarrow (only) solution is $\cos\theta = \frac{3}{4}$	A1	4	Condone $x = \frac{3}{4}$ is (only) solution
		Total	10	
		•	-	•

(a) For A1; minimum processing seen; $16 \times \frac{27}{64} + 11 \times \frac{3}{4} - 15 = 0$; 15 - 15 = 0 and no other working is A0 minimum conclusion = 0 hence factor

(b) For M1 mark; $\cos 2\theta$ (eventually) in form $a\cos^2\theta + b$; $19\sin\theta\sin 2\theta$ in form $c\cos\theta\sin^2\theta$ and use $\sin^2\theta = 1 - \cos^2\theta$ to obtain $c\cos\theta(1 - \cos^2\theta)$

(c) M1 $(4x-3)(4x^2+kx\pm 5)$ A1 fully correct

- m1 candidate's values of *a*, *b*, *c* used in expression for $b^2 4ac$ or complete square to obtain $\left(x + \frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a}$
- A1 $b^2 4ac$ correct or $\left(x + \frac{3}{8}\right)^2 = \frac{9}{64} \frac{5}{4}$ $\left(= -\frac{71}{64}\right)$ and stated to be negative so no solution or solutions are not real (imaginary)

Accept imaginary solutions from calculator if stated to be imaginary.

Condone $\sqrt{-71}$ is negative, or similar, so no solution.

Conclusion $x = \frac{3}{4}$ is solution, or $\cos \theta = \frac{3}{4}$ is solution

Q	Solution	Marks	Total	Comments
7	$\int \frac{\mathrm{d}y}{y^2} = \int x \sin 3x \mathrm{d}x$	B1		Correct separation and notation;
	$\int \frac{\mathrm{d}y}{\mathrm{y}^2} = -\frac{1}{\mathrm{y}}$	B1		condone missing megrar signs
	$\int x \sin 3x \mathrm{d}x = x \left(-\frac{1}{3} \cos 3x \right)$	M1		Use parts $u = x$ $\frac{dv}{dx} = \sin 3x$ $\frac{du}{dx} = 1$ $v = k \cos 3x$
	$-\int -\frac{1}{3}\cos 3x \mathrm{d}x$	A1		with correct substitution into formula
	$=-\frac{1}{3}x\cos 3x+\frac{1}{9}\sin 3x$	A1		CAO
	$-\frac{1}{y} = -\frac{1}{3}x\cos 3x + \frac{1}{9}\sin 3x + C$			
	$-1 = -\frac{1}{3} \times \frac{\pi}{6} \cos\left(\frac{\pi}{2}\right) + \frac{1}{9} \sin\left(\frac{\pi}{2}\right) + C$	M1		Use $x = \frac{\pi}{6}$ $y = 1$ to find C
	$C = -\frac{10}{9}$	A1		CAO
	$-\frac{1}{y} = -\frac{1}{9} (3x\cos 3x - \sin 3x + 10)$	m1		And invert to $-y = -\frac{9}{(\dots)}$
	$y = \frac{9}{3x\cos 3x - \sin 3x + 10}$	A1	9	CSO, condone first B1 not given
		Total	9	
Second M1 finding C; substitute $x = \frac{\pi}{6}$ $y = 1$ into $f(y) = px \cos 3x + q \sin 3x + C$ and evaluate using radians. Must calculate a value of C.				
m1 for reaching form $\pm \frac{k}{y} = \frac{1}{9} (Px \cos 3x + Q \sin 3x + R)$ where P and Q are ± 3 or $\pm \frac{1}{3}$ or ± 1				

and inverting to $\pm \frac{y}{k} = \frac{9}{(Px\cos 3x + Q\sin 3x + R)}$

Q	Solution	Marks	Total	Comments
8		M1		$\pm (\overrightarrow{OB} - \overrightarrow{OA})$ implied by two
(a)(i)	$\overrightarrow{AB} = \begin{bmatrix} 0 \\ -1 \end{bmatrix} - \begin{bmatrix} -2 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}$	A1	2	correct components Allow as $(-2, 2, -4)$
(ii)	$\begin{bmatrix} 1\\5\\-2 \end{bmatrix} \bullet \overrightarrow{AB} = -2 + 10 + 8 = 16$	M1 A1ft		ft on \overline{AB}
	$\cos\theta = \frac{16}{\sqrt{24}\sqrt{30}}$	M1		Correct formula for $\cos\theta$ with consistent vectors and correct
	$\theta = 53^{\circ}$	A1	4	CSO Accept 53.4°, 53.40°
(b)	$\overrightarrow{AB} \bullet \overrightarrow{BC} = \begin{bmatrix} -2\\2\\-4 \end{bmatrix} \bullet \begin{bmatrix} 4+p\\-2+5p\\3-2p \end{bmatrix} - \begin{bmatrix} 2\\0\\-1 \end{bmatrix}$	M1		SC B1 90° following $sp = 0$ Set up scalar product.
	$\overline{BC} = \begin{bmatrix} 2+p\\ -2+5p\\ 4-2 \end{bmatrix}$			$\mu = p$ at <i>C</i> . Any letter for <i>p</i> . Clear attempt to find \overrightarrow{BC} in terms of <i>p</i> .
	$\begin{bmatrix} 4-2p \end{bmatrix}$	B1		\overrightarrow{BC} or \overrightarrow{CB} correct
	-4 - 2p - 4 + 10p - 16 + 8p = 0	ml		Europed apples and vot and colum
	$16p = 24$ $p = \frac{3}{2}$	A1		for p ; (=0 possibly implied)
	$\overrightarrow{OD} = \overrightarrow{OA} + \overrightarrow{BC} = \begin{bmatrix} 4\\-2\\3 \end{bmatrix} + \begin{bmatrix} \frac{7}{2}\\\frac{11}{2}\\1 \end{bmatrix} \left(= \begin{bmatrix} \frac{15}{2}\\\frac{7}{2}\\4 \end{bmatrix} \right)$	m1		Correct vector expression to find \overrightarrow{OD} written in components
	D is at $\left(\frac{15}{2}, \frac{7}{2}, 4\right)$	A1	6	CAO; condone column vector
		Total	12	
	Alternative for last 2 marks			
	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{BA} = \begin{bmatrix} 4\\-2\\3 \end{bmatrix} + \frac{3}{2} \begin{bmatrix} 1\\5\\-2 \end{bmatrix} + \begin{bmatrix} 2\\-2\\4 \end{bmatrix}$	m1		
	D is at $\left(\frac{15}{2}, \frac{7}{2}, 4\right)$	A1		
Part (b)	NB $p = \frac{3}{2}$ can come from wrong working where	e candida	te uses \overline{OC}	in place of \overline{BC} .

This is M0 and scores **no further marks**, (unless they happen to find and go on to use it correctly).

Version 1.0

General Certificate of Education (A-level) June 2012

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2012 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4

0	Solution	Marks	Total	Comments
1(a)(i)	5x - 6 = A(x - 3) + Bx	M1		Multiply by denominator and use two
	r = 0 $r = 3$			values of <i>x</i> .
	x = 0 $x = 3$			
	A = 2 $B = 3$	A1	2	
	Alternative: equate coefficients			
	-6 = -3A $5 = A + B$	(M1)		Set up and solve simultaneous equations
	A = 2 $B = 3$	$(\Lambda 1)$		for values of A and B.
		(A1)		
(ii)	$\begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$			
	$\left(\int \frac{1}{x} + \frac{1}{x-3} dx \right)^{2 \ln x}$	B1ft		their $A \ln x$
	$+3\ln(x-3)$ (+C)	DIG	2	(1, 2) and $(2, 2)$ and $(3, 2)$
	$\sin(x - 5)$ (10)	віп	2	their B in $(x - 3)$ and no other terms;
				condone D in $x = 3$
(b)(i)	$\underbrace{2x^2 - x + 3}_{2x^2 - x + 3}$	M1		Division as far as $2x^2 + px + q$
	$(2x+1)4x^3+5x-2$			with $p \neq 0, q \neq 0$, PI
	$4x^3 + 2x^2$			
	$-2x^{2} + 5x$			
	$-2x^2 - \frac{x}{6x}$			
	6x-2 6x+3			
	-5	A 1		
	p = -1	AI		PI by $2x^2 - x + q$ seen
	<i>q</i> = 3	A1		PI by $2x^2 - x + 3$ seen
	r = -5	A1	4	and must state $p = -1$, $q = 3$,
				r = -5 explicitly or write out full correct
				RHS expression
	Alternative 1:			
	$4x^3 + 5x - 2 =$			
	$4x^{3} + (2+2p)x^{2} + (p+2q)x + q + p$	F.		
	2 + 2n = 0	(M1)		Clear attempt to aquata coefficients. DI by
	2+2p=0 p+2a=5			p = -1
	p + 2q - 3			
	q+r=-2			
	p = -1	(A1)		
	q=3 $r=-5$	(AIAI)		
	Alternative 2.			
	Anternative 2: $4r^3 + 5r - 2 = (2r + 1)(2r^2 + nr + a) + r$			
	+x + 3x - 2 = (2x + 1)(2x + px + q) + r			
	$r = -\frac{1}{4} + 4x(-\frac{1}{4})^3 + 5(-\frac{1}{4}) + 2 = r$	(M1)		$x = -\frac{1}{2}$ used to find a value for r
	$\begin{bmatrix} x - 2 & -x & -\frac{1}{2} \end{bmatrix} + 5 \begin{bmatrix} -\frac{1}{2} \end{bmatrix} + 2 - 7$			
	r = -5	(A1)		
	p=-1 , $q=3$	(AIAI)		

MPC4				
Q	Solution	Marks	Total	Comments
(b)(ii)	$\left(\frac{4x^3 + 5x - 2}{2x + 1}\right) 2x^2 + px + q + \frac{r}{2x + 1}$	M1		
	$\frac{2}{3}x^3 - \frac{1}{2}x^2 + 3x + k\ln(2x+1) (+C)$	A1ft		ft on p and q
	$\frac{2}{3}x^3 - \frac{1}{2}x^2 + 3x - \frac{5}{2}\ln(2x+1) (+C)$	A1	3	CSO
	Total		11	
2(a)	$R = \sqrt{10}$	B1		Accept 3.2 or better. Can be earned in (b)
	$\tan \alpha = 3$	M1		OE; M0 if $\tan \alpha = -3$ seen
	$\alpha = 71.6$ or better	A1	3	$\alpha = 71.56505$
(b)	$\sin(x\pm\alpha)=\frac{-2}{R}$	M1		or their <i>R</i> and/or their α ; PI
	x(=-39.2+71.6) = 32(.333)	A1		32 or better Condone 32.4
	or			
	x - 71.6 = 219.2	m1		must see 219 and 72 or better PI by 291 or better as answer Condone extra solutions
	<i>x</i> = 291	A1	4	Condone 290.8 or better CSO Withhold final A1 if more than two answers given within interval
	Total		7	

MPC4				
Q	Solution	Marks	Total	Comments
3 (a)	$(1+4x)^{\frac{1}{2}} = 1 + 4 \times \frac{1}{2}x + kx^{2}$	M1		
	$=1+2x-2x^2$	A1	2	
(b)(i)	$(4-x)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} \left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$	B1		OE $\frac{1}{2}\left(1-\frac{x}{4}\right)^{-\frac{1}{2}}$
	$\left(1-\frac{x}{4}\right)^{-\frac{1}{2}} =$			
	$1 + \left(-\frac{1}{2}\right)\left(-\frac{x}{4}\right) + \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{x}{4}\right)^2$	M1		Condone missing brackets and use of $\left(+\frac{x}{4}\right)$ instead of $\left(-\frac{x}{4}\right)$
	$=1 + \frac{1}{8}x + \frac{3}{128}x^{2}$	A 1	2	CSO
	$(4-x)^{\frac{1}{2}} = \frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^2$	AI	3	$0.5 + 0.0625x + 0.0117(1875)x^2$
	Alternative using formula from FB			
	$\left(4-x\right)^{-\frac{1}{2}} = 4^{-\frac{1}{2}} + \left(-\frac{1}{2}\right) \times 4^{-\frac{3}{2}}\left(-x\right)$	(M1)		Condone one error and missing brackets
	$+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \times 4^{-\frac{2}{2}}\left(-x\right)^{2}$			
	$=\frac{1}{2} + \frac{1}{16}x + \frac{5}{256}x^2$	(A2)		CSO Must be fully correct
(b)(ii)	-4 < x < 4			Condone $ \mathbf{r} < 4$
	or $x < 4$ and $x > -4$	B1	1	Must be and ; not or not , (comma)
(c)	$\sqrt{\frac{1+4x}{4-x}} = (1+4x)^{\frac{1}{2}} (4-x)^{-\frac{1}{2}}$			
	$= \left(1 + 2x - 2x^{2}\right) \left(\frac{1}{2} + \frac{1}{16}x + \frac{3}{256}x^{2}\right)$	M1		product of their expansions
	$=\frac{1}{2}+\frac{17}{16}x-\frac{221}{256}x^2$	A1	2	CSO $0.5 + 1.0625x - 0.8632(8)x^2$
	Total		8	
				•

MPC4				
Q	Solution	Marks	Total	Comments
4(a)(i)	$1000 \times 1.03^5 \approx (\pounds) 1160$	B1	1	Condone missing £ sign;1160 only.
(ii)	$2000 < 1000 \left(1 + \frac{3}{100}\right)^{n}$ $\ln 2 < n \ln 1.03$	B1 M1		Condone '=' or '<' used throughout Take logs, any base, of their initial expression correctly
	(n > 23.449) $(N =)24$	A1	3	Condone 23
(b)	$1000 \times \left(1 + \frac{3}{100}\right)^n > 1500 \times \left(1 + \frac{1.5}{100}\right)^n$	B1		Condone use of T for n Condone '=' or '<' used throughout
	$\ln 1000 + n \ln 1.03 > \ln 1500 + n \ln 1.015$ $\ln (1.5)$	M1		Take logs, any base, of their initial expression correctly
	$n > \frac{\sqrt{1}}{\ln\left(\frac{1.03}{1.015}\right)}$	A1		Correct expression for n or T
	(n > 27.63) $(T =)28$	A1	4	Condone 27
	Total		8	

MPC4				
Q	Solution	Marks	Total	Comments
5 (a)(i)	$\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{dt}} = \frac{6\cos 2\theta}{-2\sin \theta}$	M1 A1		condone coefficient errors
	$=\frac{6(1-2\sin^2\theta)}{-2\sin\theta}$	m1		Use $\cos 2\theta = 1 - 2\sin^2 \theta$
	$= 6\sin\theta - 3\csc\theta$	A1	4	a=6 $b=-3$
(a)(ii)	$\theta = \frac{\pi}{6} \qquad \frac{\mathrm{d}y}{\mathrm{d}x} = 6 \times \frac{1}{2} - 3 \times 2 = -3$	B1ft		$\theta = \frac{\pi}{6}$ substituted into their $\frac{dy}{dx}$ and evaluated
	gradient normal $=\frac{1}{3}$	B1ft	2	ft $\frac{dy}{dx}$, provided non-zero
(b)	$y = 6\sin\theta\cos\theta$			
	$= (\pm) 6\sqrt{1 - \cos^2 \theta} \times \cos \theta$	M1		Correct expansion of $\sin 2\theta$ and use $x = 2\cos\theta$ to eliminate θ
	$= (\pm)6\sqrt{1 - \left(\frac{x}{2}\right)} \times \left(\frac{x}{2}\right)$	A1		Correct elimination of θ
	$y^{2} = \frac{9}{4}x^{2}(4-x^{2})$	A1	3	$p = \frac{9}{4}$ OE and $(4 - x^2)$ shown
	Alternative using verification			
	$y^2 = 9\sin^2 2\theta = 36\sin^2 \theta \cos^2 \theta$	(M1)		must be squared
	$x^2 (4-x^2) = 4\cos^2\theta \times 4\sin^2\theta$	(A1)		
	$p = \frac{9}{4}$ OE	(A1)		or $y^2 = \frac{9}{4}x^2(4-x^2)$
	Total		9	

MPC4				
Q	Solution	Marks	Total	Comments
6	$9x^2 - 6xy + 4y^2 = 3$			
	18x = 0	B1		=0 PI
	$-6y-6x\frac{dy}{dx}$	B1		or $\frac{d(6xy)}{dx} = 6y + 6x\frac{dy}{dx}$ seen separately
	$+8y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1		$\frac{\mathrm{d}y}{\mathrm{d}x}(-6x+8y) = 6y - 18x$
	Use $\frac{dy}{dx} = 0$	M1		
	$\Rightarrow y = 3x$ or $x = \frac{y}{3}$	A1		CSO
	$y = 3x \Longrightarrow 9x^2 - 6x \times 3x + 4(3x)^2 = 3$	m1		Substitute $y = ax$ into equation and solve for a value of x or y. Condone
	}			missing brackets.
	$27x^2 = 3 \Longrightarrow x = \pm \frac{1}{3} \qquad \text{OE}$	A1ft		Both values of x or y required. ft on their $y = 3x$
	$\left(\frac{1}{3},1\right) \left(-\frac{1}{3},-1\right)$	A1	8	CSO Correct corresponding simplified values of x and y. Withhold if additional answers given
	Total		8	

MPC4				
Q	Solution	Marks	Total	Comments
7(a)	$2\lambda = 8 + 2\mu$ -2 = 3 + 5 μ $\lambda = 3$, $\mu = -1$	M1		Use the first two equations to set up and attempt to solve simultaneous equations for λ or μ . Must not assume $q = 4$.
	$q - \lambda = 5 + 4\mu$ $q = 5 + 3 - 4 = 4$	A1		Use 3^{rd} equation to show $q = 4$ AG.
	<i>P</i> is at $(6, -2, 1)$	B1	3	Condone as a column vector
(b)	$\begin{bmatrix} 2\\0\\-1 \end{bmatrix} \bullet \begin{bmatrix} 2\\5\\4 \end{bmatrix} = 4 - 4 = 0 \Rightarrow \text{perpendicular}$	B1	1	or $2 \times 2 + -1 \times 4 = 0$ seen and conclusion (condone $\theta = 90$)
(c)(i)	A is at (2, -2, 3) $AP^{2} = (6-2)^{2} + (-2-2)^{2} + (1-3)^{2}$ $= 20$	M1 A1	2	Candidate's $\left \overrightarrow{AP} \right ^2$ CAO NMS $AP = \sqrt{20}$ M1A0
(ii)	$\left(\overrightarrow{PB}=\right)\begin{bmatrix}8\\3\\5\end{bmatrix}+\mu\begin{bmatrix}2\\5\\4\end{bmatrix}-\begin{bmatrix}6\\-2\\1\end{bmatrix}\left(=\begin{bmatrix}2+2\mu\\5+5\mu\\4+4\mu\end{bmatrix}\right)$	M1		Clear attempt to find \overrightarrow{BP} or \overrightarrow{PB} in terms of μ
	$(PB^{2} =)(2+2\mu)^{2} + (5+5\mu)^{2} + (4+4\mu)^{2}$	m1		Find distance <i>BP</i> in terms of μ
	$45\mu^{2} + 90\mu + 45 = 20$ (5)(9\mu^{2} + 18\mu + 5) = 0	m1		Attempt to set up three-term quadratic in μ and equate to their AP^2
	$(3\mu+1)(3\mu+5)=0$	m1		Solve quadratic equation to obtain two values of μ
	$\mu = -\frac{1}{3}$ and $\mu = -\frac{5}{3}$	A1		Both values correct.
	<i>B</i> is at $\left(\frac{22}{3}, \frac{4}{3}, \frac{11}{3}\right)$ and $\left(\frac{14}{3}, -\frac{16}{3}, -\frac{5}{3}\right)$	A1	6	Both sets of coordinates required. Condone column vectors. SC one value of μ correct and
				corresponding coordinates of <i>B</i> correct scores A1 A0.
MPC4				
------	---	--------------	-------	--
Q	Solution	Marks	Total	Comments
	Alternative 1			
	$\left(\overrightarrow{AB} = \right) \begin{bmatrix} 8\\3\\5 \end{bmatrix} + \mu \begin{bmatrix} 2\\5\\4 \end{bmatrix} - \begin{bmatrix} 2\\-2\\3 \end{bmatrix} \left(= \begin{bmatrix} 6+2\mu\\5+5\mu\\2+4\mu \end{bmatrix} \right)$	(M1)		Clear attempt to find \overrightarrow{AB} or \overrightarrow{BA} in terms of μ
	$(AB^{2} =)(6+2\mu)^{2}+(5+5\mu)^{2}+(2+4\mu)^{2}$	(m1)		Find distance <i>AB</i> in terms of μ
	$45\mu^{2} + 90\mu + 65 = 40$ (5)(9\mu^{2} + 18\mu + 5) = 0	(m1)		Attempt to set up three-term quadratic in μ and equate to their 2× their AP^2
	As before Alternative 2			
	$\overrightarrow{PB} = k \begin{bmatrix} 2\\5\\4 \end{bmatrix}$	(M1)		
	$k^2 \left(2^2 + 5^2 + 4^2 \right) = 20$	(m1) (m1)		m1 for LHS m1 for equating to 'their 20'
	$k = \pm \frac{2}{3}$	(A1)		May score M1m0m1
	$\overrightarrow{OB} = \overrightarrow{OP} + (\pm)(\text{ their value of } k) \begin{bmatrix} 2\\5\\4 \end{bmatrix}$	(m1)		
	<i>B</i> is at $\left(\frac{22}{3}, \frac{4}{3}, \frac{11}{3}\right)$ and $\left(\frac{14}{3}, -\frac{16}{3}, -\frac{5}{3}\right)$	(A1)		
	Total		12	

Q	Solution	Marks	Total	Comments
8 (a)	$\frac{\mathrm{d}h}{\mathrm{d}h}$	B1		
	dt derivative $- * \times (2 - h)$	M1		Use of $2-h$ or $h-2$:
	$\frac{dh}{dh}$	1011		* is a constant or expression in h and/or t .
	$\frac{\mathrm{d}n}{\mathrm{d}t} = k\left(2-h\right)$	A1	3	All correct; must be $(2-h)$
(b)(i)	1			Compation and notation.
	$\int x\sqrt{2x-1} \mathrm{d}x = \int \frac{1}{15} \mathrm{d}t$	B1		condone missing integral signs.
	$=\frac{1}{t}t$	B1		
	15 Substitute $\mu = 2r - 1$	DI		
	Substitute $u = 2x^{-1}$	M1		Suitable substitution and attempt to write
	$\int x\sqrt{2x-1} dx = \int \frac{1}{2} (u+1)\sqrt{u} \frac{1}{2} du$			integral in terms of u including dx replaced
				by $\frac{1}{2}$ du or 2 du.
	$(1) e^{\frac{3}{2}} = \frac{1}{2}$			
	$= \left(\frac{1}{4}\right) \int u^2 + u^2 \mathrm{d}u$	A1		$\frac{1}{4}$ need not be seen
	$-\frac{1\left(2\frac{5}{u^2}+2\frac{3}{u^2}\right)}{1-u^2}$ (+C)	4.1		Integration correct including 1
	$-\frac{1}{4}\left(\frac{5}{5}u^{4}+\frac{1}{3}u^{4}\right) (+C)$	AI		4
	x = 1, t = 0			
	$u = 1, t = 0$ $\frac{1}{4} \left(\frac{2}{5} + \frac{2}{3} \right) + C = 0$	M1		Use $x = 1$, $t = 0$ to find a value for constant C from equation in x and t.
	C 4			C = 0.2666
	$C = -\frac{1}{15}$	Al		C = -0.2600 C = -0.267 or better
	$t = \frac{1}{2} \left(3(2x-1)^{\frac{5}{2}} + 5(2x-1)^{\frac{3}{2}} \right) - 4$	Δ.1	8	ISW $t = (2x-1)^{\frac{3}{2}}(3x+1) - 4$
	$2\left(1\left(1\right)\right)$	AI	0	
	As before	(B1B1)		
	$u = x$, $\frac{dv}{dx} = (2x-1)^{\frac{1}{2}}$	(M1)		Attempt to use parts
	$dy = 1$ $y = k(2x - 1)^{\frac{3}{2}}$	(111)		Attempt to use parts
	$\frac{4u - 1}{v} = \frac{v - k(2x - 1)^2}{1 + (2x - 1)^2}$			
	$\int x\sqrt{2x-1} dx = x\frac{1}{3}(2x-1)^2 - \int \frac{1}{3}(2x-1)^2 dx$	(A1)		Condone missing dx
	$=x\frac{1}{3}(2x-1)^{\frac{3}{2}}-\frac{1}{15}(2x-1)^{\frac{5}{2}}(+C)$	(A1)		
	$x=1, t=0$ $\frac{1}{2}-\frac{1}{15}+C=0$	(M1)		Use $x = 1$, $t = 0$ to find a value for constant <i>C</i> from equation in <i>x</i> and <i>t</i>
	5 15			C = -0.2666
	$C = -\frac{1}{15}$	(A1)		C = -0.2600 C = -0.267 or better
	$t = 5x(2x-1)^{\frac{3}{2}} - (2x-1)^{\frac{5}{2}} - 4$	(A1)		ISW $t = (2x-1)^{\frac{3}{2}}(3x+1) - 4$
(ii)	x = 2 $t = 32.4$ (minutes)	B1	1	32.4 or better (32.373)
	Total		12	· · · ·
	TOTAL		75	

Version

General Certificate of Education (A-level) January 2013

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aqa.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
– <i>x</i> EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

MPC4				
Q	Solution	Marks	Total	Comments
1(a)	$f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + \left(-\frac{1}{2}\right)^2 - 8\left(-\frac{1}{2}\right) - 7$	M1		Evaluate $f\left(-\frac{1}{2}\right)$, not long
<i>(</i> -)	=-3	A1	2	division.
(b) (i)	$g\left(-\frac{1}{2}\right)=0 \implies -3+d=0$			Or $f\left(-\frac{1}{2}\right) + d = 0$
	$d = 3 \Rightarrow g(x) = 2x^3 + 2x^2 - 8x - 7 + 3$			All steps seen with conclusion
	$g(x) = 2x^3 + 2x^2 - 8x - 4$	B1	1	AU Allow verification with
	- ()			$-\frac{1}{4} + \frac{1}{4} + 4 - 4 = 0$ seen, and
				conclusion ; therefore factor
(ii)	$g(x) = 2x^{3} + x^{2} - 8x - 4 = (2x+1)(x^{2} - 4)$			<i>a</i> = -4
	= (2x+1)(x+2)(x-2)	B1	1	
(iii)	$2x^{3} - 3x^{2} - 2x = x(2x+1)(x-2)$	M1		Clear attempt to factorise
	$\frac{(2x+1)(x+2)(x-2)}{x(2x+1)(x-2)} = \frac{x+2}{x}$	m1		At least one correct factor cancelled
	$\frac{g(x)}{2x^3 - 3x^2 - 2x} = 1 + \frac{2}{x}$	A1	3	CSO part (a)(iii) NMS is 0/3
	Total		7	
(b)(iii)	Alternative $\frac{g(x)}{2x^3 - 3x^2 - 2x} = 1 + \frac{4x^2 - 6x - 4}{2x^3 - 3x^2 - 2x}$	M1		$1+\frac{\text{quadratic}}{2x^3-3x^2-2x}$
	$=1+\frac{2(2x^2-3x-2)}{2x^3-3x^2-2x}$	A1		
	$=1+\frac{2}{x}$	A1	3	

Q	Solution	Marks	Total	Comments
2	7x-1 = A(1+3x) + B(3-x)	M1		
(a)	$x = 3 \qquad x = -\frac{1}{3}$	m1		Use two values of x to find A and B. Or solve A+3B=-1 $3A-B=7$
	$A = 2 \qquad B = -1$	A1	3	Or cover up rule
(b) (i)	$\frac{1}{1+3x} = (1+3x)^{-1}$			
	$= 1 + (-1)3x + \frac{1}{2}(-1)(-2)(3x)^{2}$	M1		Condone missing brackets
	$=1-3x+9x^2$	A1		
	$\frac{1}{3-x} = (3-x)^{-1} = \frac{1}{3} \left(1 - \frac{x}{3}\right)^{-1}$	B1		
	$\left(1-\frac{x}{3}\right)^{-1} = 1+(-1)\left(-\frac{x}{3}\right)+kx^{2}$	M1		Condone missing brackets
	$=1+\frac{x}{3}+\frac{x^2}{9}$	A1		
	$\frac{7x-1}{3+8x-3x^2} =$			
	$2 \times \frac{1}{3} \times \left(1 + \frac{x}{3} + \frac{x^2}{9}\right) - 1 \times \left(1 - 3x + 9x^2\right)$	M1		Attempt to use PFs to combine expansions,
	$=-\frac{1}{2}+\frac{29}{2}r-\frac{241}{2}r^{2}$			$(7x-1)(3-x)^{-1}(1+3x)^{-1}$
	3 9 27	A1	7	and simplify to $a + bx + cx^2$
(ii)	0.4 is outside the range of validity, because $0.4 > \frac{1}{3}$.	B1	1	OE Accept $0.4 > \frac{1}{3}$
	Total		11	
	_ 0 111-			

Q	Solution	Marks	Total	Comments
3				
(a)(i)	$R = \sqrt{13}$	B1		Accept 3.6 or better
	$\tan \alpha = \frac{2}{2}$	M1		OE
	3			
	$\alpha = 33.7^{\circ}$	A1	3	
(ii)		D16		$A_{ccent} = 3.6 \text{ or hetter: ft } P$
	minimum value = $-\sqrt{13}$	BIII		Accept = 5.001 better, it K
	when $x - \alpha = \cos^{-1}(-1)$	M1		NMS 0/2
	$x = 213.7^{\circ}$	A1	3	Calculus used 0/2
(b)(i)	COST			
	$LHS = \frac{\cos x}{\sin x} - 2\sin x \cos x$	M1		Express $\cot x - \sin 2x$ in terms
	$\cos x$			of $\sin x$ and $\cos x$; ACF
	$=\frac{\cos x}{\sin x}(1-2\sin^2 x)$	m1		Factor out $\frac{\cos x}{\cos x}$ and $1-2\sin^2 x$
	$= \cot x \cos 2x$	A 1	_	All compact
(;;)		AI	3	All collect
(II)	$\cot x - \sin 2x = 0$			
	$\cot x \cos 2x = 0$			
	$\cot x = 0$ or $\cos 2x = 0$	M1		Both equations correct
	$2x = 90^{\circ}$ (270°)	m1		Condone missing 270°
	$x = 90^{\circ}$, 45° , 135°		2	
		AI	3	All correct
	Total		12	
3	Alternatives			
(b)				
(1)	$RHS = \cot x \cos 2x$	M1		Express cot x cos 2 x in terms of
	$=\frac{\cos x}{\sin^2 x}$	IVI I		$\cos x$ and $\sin x$. $\cos 2x$ ACF
	sin x (
	$=\frac{\cos x}{x}-2\sin x\cos x$	m1		$\cos 2x = 1 - 2\sin^2 x$ and multiply out and simplify
	$\sin x$	A 1		multiply out and simplify.
	$= \cot x - \sin 2x$	AI	3	All correct.
	$\cot x (1 - \cos 2x) - \sin 2x = 0$			Rearrange to expression $= 0$
				and factor out cot <i>x</i> ;
	$\frac{\cos x}{\cos x} (1 - (1 - 2\sin^2 x)) - 2\sin x \cos x = 0$	M1		Express $\cot x$, $\cos 2x$ and $\sin 2x$
	$\sin x$			in terms of $\sin x$ and $\cos x$,
				ACF
	$\cos x \left(- \frac{1}{2} \right)$			222 + 1 + 22 + 2 + 2 + 2 + 2 + 2 + 2 + 2
	$\frac{1}{\sin x}(2\sin^2 x) - 2\sin x \cos x = 0$	m1		$\cos 2x = 1 - 2\sin^{-} x \text{ used}$
		A 1	2	Simplified, with all correct
	$2\sin x \cos x - 2\sin x \cos x = 0$	AI	3	p

mative			
$x - \sin 2x = \frac{\cos x}{\sin x} - 2\sin x \cos x = 0$			
$\left(\frac{1}{\sin x} - 2\sin x\right) = 0$			
$x = 0$ or $1 - 2\sin^2 x = 0$	M1		Both equations
$\sin x = (\pm)\frac{1}{\sqrt{2}}$	m1		
=90°, 45°, 135°	A1	3	
	rnative $x - \sin 2x = \frac{\cos x}{\sin x} - 2\sin x \cos x = 0$ $x \left(\frac{1}{\sin x} - 2\sin x\right) = 0$ $x = 0 \text{or} 1 - 2\sin^2 x = 0$ $\sin x = (\pm) \frac{1}{\sqrt{2}}$ $= 90^\circ , 45^\circ , 135^\circ$	rnative $x - \sin 2x = \frac{\cos x}{\sin x} - 2\sin x \cos x = 0$ $x \left(\frac{1}{\sin x} - 2\sin x\right) = 0$ $x = 0 \text{or} 1 - 2\sin^2 x = 0$ $\sin x = (\pm) \frac{1}{\sqrt{2}}$ $= 90^\circ, 45^\circ, 135^\circ$ M1	rnative $x - \sin 2x = \frac{\cos x}{\sin x} - 2\sin x \cos x = 0$ $x \left(\frac{1}{\sin x} - 2\sin x\right) = 0$ $x = 0 \text{or} 1 - 2\sin^2 x = 0$ $\sin x = (\pm) \frac{1}{\sqrt{2}}$ $= 90^\circ, 45^\circ, 135^\circ$ $M1$ $m1$ $A1$ 3

Q	Solution	Marks	Total	Comments
4 (a)(i)	$2x - 2y \frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1		Correct differentiation
	$\frac{dy}{dx} = \frac{x}{y}$ at (p,q) $\frac{dy}{dx} = \frac{p}{q}$	A1	2	(p,q) substituted into correct derivative or $x = p$ $y = q$ stated AG
(ii)	tangent at (p,q) $y-q = \frac{p}{r}(x-p)$	B1		ACF
	tangent at $(p, -q)$ $y - (-q) = \frac{-p}{q}(x - p)$	B1		ACF
	add $2y = 0$	M1		Solve tangent equations for y .
	conclusion $y = 0 \Rightarrow$ intersect on Ox	A1	4	Conclusion required
(b)	$x^{2} = t^{2} + 4 + \frac{4}{t^{2}}$ $y^{2} = t^{2} - 4 + \frac{4}{t^{2}}$	M 1		Attempt to square <i>x</i> and <i>y</i> and subtract.
	$x^2 - y^2 = 8$	A1	2	All correct AG Allow $8 = 8$
	Total		8	

4(a)(i)	Alternative			
	$y = \sqrt{x^2 - 8}$ $\frac{dy}{dx} = \frac{1}{2} \times 2x(x^2 - 8)^{-\frac{1}{2}} = \frac{x}{y}$	M1		
	$=\frac{p}{q}$	A1	2	
(a)(i)	Alternative			
	$\frac{\mathrm{d}y}{\mathrm{d}t} = 1 + \frac{2}{t^2} \qquad \frac{\mathrm{d}x}{\mathrm{d}t} = 1 - \frac{2}{t^2}$	M1		Attempt parametric derivatives and use chain rule.
	$\frac{dy}{dx} = \frac{1 + \frac{2}{t^2}}{1 - \frac{2}{t^2}} = \frac{t + \frac{2}{t}}{t - \frac{2}{t}} = \frac{x}{y}$			
	at (p,q) $\frac{dy}{dx} = \frac{p}{q}$	A1	2	(p,q) substituted into correct derivative.
(ii)	tangent at (p,q) $y-q = \frac{p(x-p)}{q}$	B1		ACF
	tangent at $(p,-q)$ $y-(-q) = \frac{-p(x-p)}{q}$	B1		ACF
	When $y = 0$ $\frac{-q^2}{p} = x - p$ and $\frac{q^2}{-p} = x - p$	M1		Substitute $y = 0$ into both candidate's tangents and solve for x
	$x = p - \frac{q^2}{p}$ is on both lines, so intersect on	A1	4	Conclusion
	x axis			
	$x + y = 2t \qquad x - y = \frac{4}{t}$ $(x - y)(x + y) = 2t \times \frac{4}{t}$	M1		Attempt to eliminate t
(b)	(1, 2) $(1, 2)$ $($	A1	2	ratempt to eminate r
	$x^2 - y^2 = 8$		<u> </u>	

Q	Solution	Marks	Total	Comments
5(a)	$\int x (x^2 + 3)^{\frac{1}{2}} dx = p (x^2 + 3)^{\frac{3}{2}}$	M1		By inspection or substitution
	$=\frac{1}{3}(x^{2}+3)^{\frac{3}{2}} (+C)$	A1	2	
(b)	$\int e^{2y} dy = \int x \sqrt{x^2 + 3} dx$	B1		Correct separation and notation
	$\frac{1}{2}e^{2y}$	B1		Condone missing megrar signs
	$=\frac{1}{3}\left(x^{2}+3\right)^{\frac{3}{2}}+C$	M1		Equate to result from (a) with constant.
	$\frac{1}{2} = \frac{1}{3} \times 4^{\frac{3}{2}} + C$	m1		Use $(1,0)$ to find constant.
	$C = -\frac{13}{6}$	A1		CAO
	$2y = \ln\left(\frac{2}{3}\left(x^2 + 3\right)^{\frac{3}{2}} - \frac{13}{3}\right)$	m1		Solve for y, taking logs correctly.
	$y = \frac{1}{2} \ln \left(\frac{2}{3} \left(x^2 + 3 \right)^{\frac{3}{2}} - \frac{13}{3} \right)$	A1	7	CSO
	Total		9	

Q Solution Marks Total Comments 6 (a)(i) $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = \begin{bmatrix} 8 \\ -4 \\ -6 \end{bmatrix} - \begin{bmatrix} 3 \\ 1 \\ -6 \end{bmatrix} = \begin{bmatrix} 5 \\ -5 \\ 0 \end{bmatrix} = 5 \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ Must see $\overline{OC} - \overline{OA}$ in correct components. **B**1 1 n = 5**(ii)** $\overrightarrow{BC} = \begin{bmatrix} 3\\ -2\\ -6 \end{bmatrix}$ \overrightarrow{BC} or \overrightarrow{CB} correct **B**1 Correct form of formula using $5\begin{bmatrix}1\\-1\\0\end{bmatrix} \cdot \begin{bmatrix}3\\-2\\-6\end{bmatrix} = 5\sqrt{2}\sqrt{49}\cos ACB$ M1 consistent vectors; condone use of θ or a wrong angle and a missing multiple of 5 $5(3+2) = 5\sqrt{2}\sqrt{49}\cos ACB$ Correct scalar product and A1 moduli. $\cos ACB = \frac{5}{\sqrt{2} \times 7} = \frac{5\sqrt{2}}{2 \times 7} = \frac{5\sqrt{2}}{14}$ AG Must see, or rearrangement A1 4 $\cos ACB = \frac{5}{\sqrt{2} \times 7} \quad \text{or} \quad \frac{25}{35\sqrt{2}}$ **(b)** vector equation $\mathbf{r} = \begin{vmatrix} 3 \\ 1 \\ -6 \end{vmatrix} + \lambda \begin{vmatrix} 5 \\ -5 \\ 0 \end{vmatrix}$ **M**1 $\mathbf{a} + \lambda \mathbf{d}$ 2 A1 OE (c)(i) $\begin{bmatrix} 3\\1\\-6 \end{bmatrix} + \lambda \begin{bmatrix} 5\\-5\\0 \end{bmatrix} = \begin{bmatrix} 5\\-2\\0 \end{bmatrix} + \mu \begin{bmatrix} 1\\1\\p \end{bmatrix}$ **M**1 Equate vector equations for AC and BD. OE $3+5\lambda = 5+\mu$ $1-5\lambda = -2+\mu$ **M**1 Set up equations and solve for μ ; must find a value for μ $\mu = \frac{1}{2}$ A1 $-6 = \mu p \Longrightarrow p = -12$ A1 4 $\overrightarrow{AB} = \begin{vmatrix} 2 \\ -3 \\ 6 \end{vmatrix} \qquad \overrightarrow{CD} = \begin{vmatrix} -2 \\ 3 \\ -6 \end{vmatrix}$ (ii) Clear attempt to find the vectors **M**1 of the sides. $\overrightarrow{AD} = \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix} \qquad \overrightarrow{BC} = \begin{bmatrix} 3 \\ -2 \\ -2 \end{bmatrix}$ A1 All vectors correct Find the lengths of the sides, or state they all = $\sqrt{49}$ if all m1 correct. All sides are of same length, 7; Each side = 7 and conclusion. A1 4 hence rhombus. Or adjacdnt sides = 7 and opposite sides are parallel. Total 15

(c)(ii)	Alternative	M1	Calculate scalar product of
	$\overrightarrow{AC} \cdot \overrightarrow{BD} = 5 - 5$		\overrightarrow{AC} and \overrightarrow{BD}
	$= 0 \Rightarrow \overrightarrow{AC}$ and \overrightarrow{BD} are perpendicular	A1	= 0 from correct \overrightarrow{AC} and \overrightarrow{BD} and conclusion
	$\mu = \frac{1}{2} \Rightarrow \lambda = \frac{1}{2} \Rightarrow \text{ intersection is at midpoint}$ of <i>AC</i> and <i>BD</i>	M1	Find value of λ and attempt to use in argument about point of intersection
	Diagonals bisect each other at right angles; hence rhombus, with all sides equal to 7	A1	Fully correct conclusion. Must show diagonals bisect

Solution	Marks	Total	Comments
$t = 0 \qquad N = 50$	B1	1	March 1 - 245 (1 - 4 245 2524)
t = 24 $N = 345$	B1	1	Must be 345 (not 345.2534)
$1 - 0 - \frac{t}{2} = 500 - 0 - \frac{t}{2} = 1$			
$1+9e^{\circ} = \frac{1}{400} \Rightarrow 9e^{\circ} = \frac{1}{4}$	M1		Correct algebra seen
$e^{\frac{t}{8}} = 36$	m1		Or $e^{-\frac{7}{8}} = \frac{1}{36}$
$t = 8\ln 36$	A1	3	or $t = 16 \ln 6$
$dN \qquad \left(\qquad -\frac{t}{t} \right)^{-2} \left(\begin{array}{c} 9 & -\frac{t}{t} \end{array} \right)$	N/1		Clear attempt at chain rule or
$\frac{\mathrm{d}t}{\mathrm{d}t} = -500 \left(1 + 9\mathrm{e}^{-8} \right) \left(-\frac{3}{8} \mathrm{e}^{-8} \right)$	MI A1		quotient rule.
$(1(500))(500)^{-2}$			$\frac{-t}{2} = 1(500)$
$= -500 \left(-\frac{1}{8} \left(\frac{300}{N} - 1 \right) \right) \left(\frac{300}{N} \right)$	m1		Use $e^{-8} = \frac{1}{9} \left(\frac{1}{N} - 1 \right)$ to
$=\frac{N^2}{(1(500-1))}$			eliminate $e^{-\frac{t}{8}}$.
500(8(N))			
$\frac{\mathrm{d}N}{\mathrm{d}t} = \frac{N}{4000} (500 - N)$	A1	4	Correct algebra to AG
dr 4000			
$\frac{d}{d}(500N-N^2) = 500-2N$	M1		Differentiate and attempt to find
dN			N at max value
$500-2N = 0 \Longrightarrow N = 250$	AI		Condone $\frac{d^2}{d^2}$ for $\frac{d}{d^2}$
$9e^{-8} = 1$	m1		$dt^2 = dN$
$\frac{T}{8}$ 0			
$e^{\circ} = 9$	A 1	4	
$I = 8 \ln 9 = 1 / (.5 / /)$	AI	4	T = 17 or better
			Accept 17, 18, 17.5, 17.6
Total		13	• • • • •
TOTAL		75	
Alternative, by inspection			
Max of $N(500 - N)$ occurs at $N = 250$	B2		
	t = 0 N = 50 t = 24 N = 345 $1 + 9e^{-\frac{t}{8}} = \frac{500}{400} \Rightarrow 9e^{-\frac{t}{8}} = \frac{1}{4}$ $e^{\frac{t}{8}} = 36$ $t = 8 \ln 36$ $\frac{dN}{dt} = -500 \left(1 + 9e^{-\frac{t}{8}}\right)^{-2} \left(-\frac{9}{8}e^{-\frac{t}{8}}\right)$ $= -500 \left(-\frac{1}{8}\left(\frac{500}{N} - 1\right)\right) \left(\frac{500}{N}\right)^{-2}$ $= \frac{N^2}{500} \left(\frac{1}{8}\left(\frac{500}{N} - 1\right)\right)$ $\frac{dN}{dt} = \frac{N}{4000} (500 - N)$ $\frac{d}{dN} (500N - N^2) = 500 - 2N$ $500 - 2N = 0 \Rightarrow N = 250$ $9e^{-\frac{T}{8}} = 1$ $e^{\frac{T}{8}} = 9$ $T = 8 \ln 9 = 17 (.577)$ Total Alternative, by inspection Max of $N (500 - N)$ occurs at $N = 250$	Solution Marks $t = 0$ $N = 50$ B1 $t = 24$ $N = 345$ B1 $1 + 9e^{-\frac{t}{8}} = \frac{500}{400} \Rightarrow 9e^{-\frac{t}{8}} = \frac{1}{4}$ M1 $e^{\frac{t}{8}} = 36$ m1 $t = 8 \ln 36$ A1 $\frac{dN}{dt} = -500 \left(1 + 9e^{-\frac{t}{8}}\right)^{-2} \left(-\frac{9}{8}e^{-\frac{t}{8}}\right)$ M1 $= -500 \left(-\frac{1}{8} \left(\frac{500}{N} - 1\right)\right) \left(\frac{500}{N}\right)^{-2}$ m1 $= \frac{N^2}{500} \left(\frac{1}{8} \left(\frac{500}{N} - 1\right)\right)$ A1 $\frac{dN}{dt} = \frac{N}{4000} (500 - N)$ A1 $\frac{dN}{dt} (500N - N^2) = 500 - 2N$ M1 $ge^{-\frac{T}{8}} = 1$ m1 $e^{\frac{T}{8}} = 9$ $T = 8 \ln 9 = 17 (.577)$ A1 Total Total Max of $N (500 - N)$ occurs at $N = 250$	Solution Marks Total $t = 0$ $N = 50$ B1 1 $t = 24$ $N = 345$ B1 1 $1 + 9e^{-\frac{t}{8}} = \frac{500}{400} \Rightarrow 9e^{-\frac{t}{8}} = \frac{1}{4}$ M1 M1 $e^{\frac{t}{8}} = 36$ m1 M1 M1 $e^{\frac{t}{8}} = 36$ M1 M1 M1 dM $t = 8 \ln 36$ M1 M1 dM $t = -500 \left(1 + 9e^{-\frac{t}{8}} \right)^{-2} \left(-\frac{9}{8} e^{-\frac{t}{8}} \right)$ M1 M1 $= -500 \left(-\frac{1}{8} \left(\frac{500}{N} - 1 \right) \right) \left(\frac{500}{N} \right)^{-2}$ m1 M1 M1 $= \frac{N^2}{500} \left(\frac{1}{8} \left(\frac{500}{N} - 1 \right) \right) \left(\frac{500}{N} \right)^{-2}$ m1 M1 M1 $= \frac{N^2}{500} \left(\frac{1}{8} \left(\frac{500}{N} - 1 \right) \right)$ A1 4 4 $\frac{dN}{dt} = \frac{N}{4000} (500 - N)$ A1 4 4 $\frac{d}{0} \left(500 - 2N = 0 \Rightarrow N = 250$ A1 M1 4 $\frac{e^{\frac{T}{8}} = 9}{T = 8 \ln 9 = 17 (.577)}$ A1 4 4 $\frac{13}{TOTAL}$ TOTAL 75 Alternative, by inspection B2

(b)(i)	Alternatives			
	Alternative 1 implicit differentiation $e^{-\frac{t}{8}} = \frac{500 - N}{0N}$			Correct expressions for $e^{-\frac{t}{8}}$ and
	$\frac{\mathrm{d}t}{\mathrm{d}t}\left(-\frac{1}{2}e^{-\frac{t}{8}}\right) = -\frac{500}{2}$	M1		attempt to use implicit differentiation
	$\frac{1}{\mathrm{d}N}\left(-\frac{1}{8}\mathrm{e}^{-1}\right) = -\frac{1}{9N^2}$	A1		Fully correct
	use $e^{\frac{t}{8}} = \frac{1}{9} \left(\frac{500}{N} - 1 \right)$	m1		Attempt to eliminate $e^{\frac{1}{8}}$ using correct expression
	to get $\frac{dt}{dN} = \frac{4000}{9N^2} \times \frac{510}{500 - N}$ $\frac{dN}{dt} = \frac{N}{4000} (500 - N)$	A1	4	
	Alternative 2 explicit differentiation			
	$t = -8\ln\left(\frac{500 - N}{9N}\right)$			
	$\frac{\mathrm{d}t}{\mathrm{d}N} = -8 \left(\frac{\left(500 - N\right) \left(\frac{-1}{9N^2}\right) - \frac{1}{9N}}{\left(\frac{500 - N}{9N}\right)} \right)$	M1 A1		Correct expression for <i>t</i> and attempt at differentiation with use of chain rule and product for ln derivative.
	$=\frac{8}{9N}\left(9+\frac{9N}{500-N}\right)$	m1		Clear fractions within fractions
	$= \frac{8}{9N} \left(\frac{4500}{500 - N} \right)$ $\frac{dN}{dt} = \frac{N}{4000} (500 - N)$	A1	4	All correct
	Or $t = -8\left(\ln\left(500 - N\right) - \ln\left(9N\right)\right)$ $\frac{dt}{dN} = -8\left(\frac{-1}{500 - N} - \frac{9}{9N}\right)$	M1 A1		Correct expression for <i>t</i> and ln derivatives, condone sign errors
	$= 8 \left(\frac{1}{500 - N} + \frac{1}{N} \right)$			
	$=8\left(\frac{N+500-N}{N(500-N)}\right)$	m1		Common denominator to combine fractions
	$=\frac{4000}{N(500-N)} \Longrightarrow \frac{\mathrm{d}N}{\mathrm{d}t} = \frac{4000}{N(500-N)}$	A1	4	All correct
	Alternative 3 solve differential equation			

$\int \frac{dN}{N(500 - N)} = \int \frac{dt}{4000}$ $\int \frac{1}{500} \left(\frac{1}{N} + \frac{1}{500 - N}\right) dN = \int \frac{dt}{4000}$	M1 A1	Separate variables, and attempt to form partial fractions and integrate to ln terms $= kt + C$
$\ln N - \ln (500 - N) = \frac{500}{4000}t + C$ (t = 0 N = 50) C = ln $\left(\frac{1}{9}\right)$ (9N) 1 9N $\frac{1}{9}t$	m1	Use $(50,0)$ to find <i>C</i> and obtain $e^{\frac{1}{8}t} = f(N)$
$\ln\left(\frac{1}{500-N}\right) = \frac{1}{8}t \Longrightarrow \frac{1}{500-N} = e^{8}$ $N\left(9+e^{\frac{1}{8}t}\right) = 500e^{\frac{1}{8}t}$ $N = \frac{500e^{\frac{1}{8}t}}{9+e^{\frac{1}{8}t}} = \frac{500}{1+9e^{-\frac{1}{8}t}}$	A1	Manipulate correctly to original given equation.

Version 1.0

General Certificate of Education (A-level) June 2013

Mathematics

MPC4

(Specification 6360)

Pure Core 4

Final

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all examiners participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for standardisation each examiner analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, examiners encounter unusual answers which have not been raised they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from: aga.org.uk

Copyright © 2013 AQA and its licensors. All rights reserved.

Copyright

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

The Assessment and Qualifications Alliance (AQA) is a company limited by guarantee registered in England and Wales (company number 3644723) and a registered charity (registered charity number 1073334). Registered address: AQA, Devas Street, Manchester M15 6EX.

Key to mark scheme abbreviations

М	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct <i>x</i> marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Marks	Total	Comments
1(a)(i)	5 - 8x = A(1 - 3x) + B(2 + x)	M1		Two values of rused to find values
	$x = -2 \qquad x = \frac{1}{3}$	m1		for A and B
	A=3 $B=1$	A1	3	
(ii)	$\int_{-1}^{0} \frac{3}{2+x} + \frac{1}{1-3x} dx$ = $3\ln(2+x) - \frac{1}{3}\ln(1-3x)$ = $(3\ln 2 - \frac{1}{3}\ln 1) - (3\ln 1 - \frac{1}{3}\ln 4)$ = $3\ln 2 + \frac{1}{3}\ln 4$	M1 m1		$a\ln(2+x) + b\ln(1-3x)$ where a and b are constants f(0) - f(-1) used
	$-5 \ln 2 + \frac{3}{3} \ln 4$	Alft		It A and B
	$=\frac{11}{3}\ln 2$	A1ft	4	$ft\left(A+\frac{2}{3}B\right)\ln 2$
(b)(i)	(<i>C</i> =)2	B1	1	
(ii)	$\int \frac{9 - 18x - 6x^2}{2 - 5x - 3x^2} \mathrm{d}x = \int C \mathrm{d}x + \int \frac{5 - 8x}{2 - 5x - 3x^2} \mathrm{d}x$	M1		Seen or implied. Allow $\pm C + \int \frac{5-8x}{2-5x-3x^2} dx$
	$\int_{-1}^{0} \frac{9 - 18x - 6x^2}{2 - 5x - 3x^2} \mathrm{d}x = 2 + \frac{11}{3} \ln 2$	A1ft	2	Accept $2 + 3\ln 2 + \frac{1}{3}\ln 4$ ft $2 + \text{candidate's answer to part}$ (a)(ii) if exact.
(a)(i)	Alternative			
	5 - 8x = A(1 - 3x) + B(2 + x)	(M1)		
	5 = A + 2B $-8 = -3A + B$	(m1)		Set up simultaneous equations and solve.
	$A = 3 \qquad B = 1$	(A1)	(3)	
	Total		10	

Q	Solution	Marks	Total	Comments
	$h^2 = 2^2 + \sqrt{5}^2 = 9 \implies h = 3 \implies \sin \alpha = \frac{2}{2}$	B1		Pythagoras used or all of
2(a)(i)	$n = 2 + \sqrt{3} = 3 \Rightarrow \sin \alpha = 3$			2, $\sqrt{5}$, 3 seen correctly on triangle
	$\cos \alpha = \frac{\sqrt{5}}{\sqrt{5}}$		_	AG
	3	BI	2	$\frac{\sqrt{5}}{3}$ or $\sqrt{\frac{5}{9}}$ or $\frac{5}{3\sqrt{5}}$ seen
(ii)	$\sin 2\alpha = 2\sin \alpha \cos \alpha$	M1		Correct formula seen or implied
	$=\left(2\times\frac{2}{2}\times\frac{\sqrt{5}}{2}\right)=\frac{4}{\sqrt{5}}$	A1	2	Must see $\frac{\sqrt{5}}{3}$ here or in part (a)(i)
				Accept $\frac{4}{3}\sqrt{\frac{5}{9}}$
(b)	$\cos\beta = \frac{2}{\sqrt{5}}$ or $\sin\beta = \frac{1}{\sqrt{5}}$	B1		Either correct. Accept $\sqrt{\frac{4}{5}}$, $\frac{\sqrt{5}}{5}$
	$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$	M1		Connect formula coop or implied
	$\overline{5}$ 2 2 1	1111		Correct formula seen of implied.
	$=\frac{\sqrt{3}}{3}\times\frac{2}{\sqrt{5}}+\frac{2}{3}\times\frac{1}{\sqrt{5}}$	A1		All correct
	$=\frac{2}{5}(5+\sqrt{5})$	A1	4	k = 5 with previous A mark
	15			awarded
(a)(i)	Alternative			
	$\csc^2 \alpha = 1 + \cot^2 \alpha = 1 + \frac{5}{4} = \frac{9}{4}$			
	3.2			
	$\csc \alpha = -\frac{1}{2}$ $\sin \alpha = -\frac{1}{3}$	(B1)		Must be positive
	$\sin^2 \alpha - 1 + \tan^2 \alpha - 1 + \frac{4}{2} = 9$			
	$\sec \alpha = 1 + \tan \alpha = 1 + \frac{-}{5} = \frac{-}{5}$			
	$\sec \alpha = \frac{3}{\sqrt{5}}$ $\cos \alpha = \frac{\sqrt{5}}{3}$	(B1)		Must be posiitve
	Tota		8	

Q	Solution	Marks	Total	Comments
3 (a)	$(1+6x)^{-\frac{1}{3}} = 1 + (-\frac{1}{3})6x + kx^{2}$ $= 1 - 2x + 8x^{2}$	M1 A1	2	
(b)(i)	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} (1+\frac{6}{27}x)^{-\frac{1}{3}}$	B1		Condono missing havelets and one
	$\left(1 + \frac{6}{27}x\right)^{-\frac{1}{3}} = 1 + \left(-\frac{1}{3} \times \frac{6}{27}x\right) + \left(-\frac{1}{3} \times -\frac{4}{3}\right)\frac{1}{2}\left(\frac{6}{27}x\right)^2$	M1		error
	$\left(27+6x\right)^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^2$	A1	3	
(ii)	$\left(\sqrt[3]{\frac{2}{7}} = \frac{2}{\sqrt[3]{28}} \Longrightarrow 27 + 6x = 28 \Longrightarrow x = \frac{1}{6}\right)$			
	$\sqrt[3]{\frac{1}{28}} = \frac{1}{3} - \frac{2}{81} \times \frac{1}{6} + \frac{8}{2187} \times \left(\frac{1}{6}\right)^2 (\approx 0.3293)$	M1		Substitute $x = \frac{1}{6}$ into expansion from (b)(i)
	$\left(\sqrt[3]{\frac{2}{7}} \approx 2 \times 0.3293197 = 0.6586394\right)$			
	= 0.658639 (6dp)	A1	2	CSO
(b)(i)	Alternatives			
	$(27+6x)^{\overline{3}} = 27^{\overline{3}} (1+\frac{6}{27}x)^{\overline{3}}$	(B1)		Perlace rwith $\frac{1}{2}$ r not $\frac{6}{2}$ r in
	$\left(1 + \frac{6}{27}x\right)^{-\frac{1}{3}} = 1 - 2 \times \frac{1}{27}x + 8 \times \left(\frac{1}{27}\right)^2 x^2$	(M1)		expansion from (a); condone missing brackets and one error
	$\left(27+6x\right)^{-\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^2$	(A1)	(3)	missing brackets and one enor
(b)(i)	$(27+6x)^{-\frac{1}{3}} = 27^{-\frac{1}{3}} + (-\frac{1}{3})27^{-\frac{4}{3}} \times 6x$	(M1)		Use result from formula book; Condone missing brackets and one
	$+\left(-\frac{1}{3}\right)\times\left(-\frac{4}{3}\right)\frac{1}{2}27^{\frac{7}{3}}\times\left(6x\right)^{2}$			error
	$\left(27+6x\right)^{\frac{1}{3}} = \frac{1}{3} - \frac{2}{81}x + \frac{8}{2187}x^2$	(A2)	(3)	A1 not available
	Total		7	

MPC4- AQA GCE Mark Scheme 2013 June series

0	Solution	Monke	Total	Commonto
		тиагкя	Total	Comments
4(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) - 16\mathrm{e}^{-2t} \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = 4\mathrm{e}^{2t}$	B1		Both derivatives correct
	dy candidate's $\frac{dy}{dt}$	M1		chain rule used correctly
	$\frac{dx}{dx} = \frac{dx}{candidate's \frac{dx}{dt}}$			
	u			
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{4\mathrm{e}^{2t}}{-16\mathrm{e}^{-2t}} \qquad \left(=-\frac{1}{4}\mathrm{e}^{4t}\right)$	A1	3	Simplification not required $4e^{2t}$ and $-16e^{-2t}$ must be seen.
(b)	(1, 2) and instat $D = 4$	D16	1	ISW.
(i)	$t = \ln 2$ gradient at $P = -4$	BIII	1	BU If ISW result is used.
(ii)	x = -2	B1		
	coordinates of P $y = 12$	B1	2	
<i>(</i>)	y -12			
(111)	1	B1ft		ft gradient at P
	gradient of normal $=\frac{1}{4}$	DIII		
	v - 12 = 1			
	equation of normal $\frac{y}{x-2} = \frac{1}{4}$	M1		Set up equation of normal
	at $y = 0$ $x = -50$	A1	3	(-50,0) CSO
(C)	$xy + 4y - 4x = (8e^{-2t} - 4)(2e^{2t} + 4)$			
	$(1)^{(1)}$	MI		Write $xy + 4y - 4x$ in terms of t.
	$+4(2e^{-4}+4)-4(8e^{-4}-4)$	IVI I		
	$=16+32e^{-2t}-8e^{2t}-16$			Multiply out and simplify using
	$+8e^{2t}+16-32e^{-2t}+16$	m1		Multiply out and simplify using $a^{-2t}a^{2t} = 1$ PI
	(rv + 4v - 4r) - 32	A 1	2	$e^{-}e^{-}=1$ FI
	(xy + 4y - 4x) = 52	AI	3	k = 32 NMS: SC1
				<i>x</i> = 52 mms, set
(c)	Alternative			
	$x^{-2t} - x + 4$ or $x^{2t} - y - 4$			Write e^{-2t} in terms of x or e^{2t} in
	$e = \frac{-1}{8}$ of $e = \frac{-1}{2}$	(M1)		terms of y. Condone sign errors
	$e^{-2t}e^{2t} = \left(\frac{x+4}{8}\right)\left(\frac{y-4}{2}\right)$			
	xy + 4y - 4x - 16	(m1)		Multiply out and use $e^{-2t}e^{2t} = 1$
	= <u>16</u> = 1	(1111)		
	xy + 4y - 4x = 32	(Δ 1)	(3)	All correct with $k = 32$
			(3)	
ļ	Other alternatives are possible			
	Total		12	

		1		
Q	Solution	Marks	Total	Comments
5(a)	$f\left(-\frac{3}{2}\right) = 4\left(-\frac{3}{2}\right)^3 - 11\left(-\frac{3}{2}\right) - 3$	M1		$x = -\frac{3}{2}$ substituted
	$=-4 \times \frac{-4}{8} + \frac{-3}{2} = 0 \implies 1actor$	A1	2	Processing, $= 0$ and conclusion
(b)	$2x^2 - 3x - 1$	M1A1	2	M1 for any two of <i>a</i> , <i>b</i> , <i>c</i> correct
(c)(i)	$2\cos 2\theta \sin \theta + 9\sin \theta + 3$ $= 2(1 - 2\sin^2 \theta)\sin \theta + 9\sin \theta + 3$	M1		$\cos 2\theta$ expanded ; ACF and substituted
	$= 2\sin\theta - 4\sin^3\theta + 9\sin\theta + 3$	m1		All in terms of $\sin \theta$ or x and simplified to a cubic expression.
	$\sin\theta = x \Longrightarrow 4x^3 - 11x - 3 = 0$	A1	3	Reverse signs and express in x correctly AG
(c)(ii)	$2x^2 - 3x - 1 = 0 \Longrightarrow x = \frac{3 \pm \sqrt{17}}{4}$	M1		Use formula correctly to solve $ax^2 + bx + c = 0$ from part (b)
	$x = \frac{3 - \sqrt{17}}{4}$ or -0.28	A1		
	$\theta = 196^{\circ}$ and 344°	A1		Both required and no others in range; condone greater accuracy
	$x = \frac{3 + \sqrt{17}}{4}$ no solutions for $\sin \theta$			Ignore solutions out of range.
	3			Must have three correct roots and
	$x = -\frac{2}{2}$ no solutions for $\sin \theta$	E1	4	reject both other roots from cubic
	T		11	Quation.
	l otal		11	

0	Solution	Marks	Total	Comments
6 (a)				
	$\lambda = -1$ $\lambda = -1$ verified in all three components	B1 B1	2	$\lambda = -1$ seen or implied Shown
(b)	$\pm \begin{bmatrix} -2 \\ -3 \\ 2 \end{bmatrix}$	B1		\overrightarrow{AB} or \overrightarrow{BA} correct
	$\begin{bmatrix} 3\\-2 \end{bmatrix} \begin{bmatrix} -2\\-2 \end{bmatrix}$	M1		$\mathbf{a} + \mu \mathbf{d}$
	$\mathbf{F} = OA + \mu AB = \begin{bmatrix} -2 \\ 4 \end{bmatrix} + \mu \begin{bmatrix} -3 \\ 2 \end{bmatrix}$	A1ft	3	OE; ft on \overrightarrow{AB} or \overrightarrow{BA}
(c)	$\overrightarrow{CD} = \overrightarrow{OD} - \overrightarrow{OC}$ $= \begin{bmatrix} 3 - 2\mu \\ -2 - 3\mu \\ 4 + 2\mu \end{bmatrix} - \begin{bmatrix} -4 \\ 5 \\ -1 \end{bmatrix} \left(= \begin{bmatrix} 7 - 2\mu \\ -7 - 3\mu \\ 5 + 2\mu \end{bmatrix} \right)$	B1		$\pm \overrightarrow{CD}$ in terms of μ OE
	$\overrightarrow{CD} \cdot \overrightarrow{AB} = 0 \text{or} \overrightarrow{CD} \cdot \overrightarrow{AD} = 0$ $= \left(\begin{bmatrix} 3 - 2\mu \\ -2 - 3\mu \\ 4 + 2\mu \end{bmatrix} - \begin{bmatrix} -4 \\ 5 \\ -1 \end{bmatrix} \right) \cdot \begin{bmatrix} -2 \\ -3 \\ 2 \end{bmatrix} = 0$ $-14 + 4\mu + 21 + 9\mu + 10 + 4\mu = 0$	M1		Candidate's \overrightarrow{CD} sp with candidate's \overrightarrow{AB} or \overrightarrow{AD} = 0 PI by a solution for μ
	$17 + 17 \mu = 0$ $\mu = -1$	m1A1		Expand sp to an equation in μ and solve for μ
	D is at (5,1,2)	A1	5	Accept as a column vector
(d)	$\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + \overrightarrow{AD}$	M1		Accept $AE = 3AD$
	$\overrightarrow{OE} = \begin{bmatrix} 3 \\ -2 \\ 4 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 3 \\ -2 \end{bmatrix} \qquad E \text{ is at } (9,7,-2)$	A1		Accept as a column vector
	Or $\overrightarrow{OE} = \overrightarrow{OA} + \overrightarrow{AE} = \overrightarrow{OA} + 3\overrightarrow{DA}$	M1		Accept $AE = 3DA$
	$\overline{OE} = \begin{bmatrix} 3\\-2\\4 \end{bmatrix} + 3\begin{bmatrix} -2\\-3\\2 \end{bmatrix} \qquad E \text{ is at } (-3, -11, 10)$	A1	4	Accept as a column vector.

Q	Solution	Marks	Total	Comments
	Alternative using Pythagoras			
6(c)	$\overrightarrow{CD} = \overrightarrow{OD} - \mu \overrightarrow{OC}$			
	$= \begin{bmatrix} 3-2\mu\\-2-3\mu\\4+2\mu \end{bmatrix} - \begin{bmatrix} -4\\5\\-1 \end{bmatrix} \left(= \begin{bmatrix} 7-2\mu\\-7-3\mu\\5+2\mu \end{bmatrix} \right)$ $AC^{2} = AD^{2} + CD^{2}$	(B1)		$\pm \overrightarrow{CD} \text{ in terms of } \mu$ $\overrightarrow{AC} = \begin{bmatrix} -7\\7\\\end{bmatrix} \qquad \overrightarrow{AD} = \begin{bmatrix} -2\mu\\-3\mu\\\end{bmatrix}$
	$\left(7^2 + 7^2 + 5^2\right) = \mu^2 \left(2^2 + 3^2 + 2^2\right)$	(M1)		$\lfloor -5 \rfloor$ $\lfloor 2\mu \rfloor$
	+ $((7-2\mu)^{2}+(7+3\mu)^{2}+(5+2\mu)^{2})$			Correct Pythagoras expression in terms of μ ;
	$123 = 17\mu^2 + 123 + 34\mu + 17\mu^2$	(m1)		Multiply out and solve to find a
	$0=34\mu^2+34\mu$			value for μ
	$\mu = -1$ ($\mu = 0$ is point A)	(A1)		$\mu = -1$
	D is at (5,1,2)	(A1)	(5)	
6(d)	Alternative $\left \overrightarrow{DE}\right = 2\left \overrightarrow{AD}\right \Rightarrow \overrightarrow{OE} = \overrightarrow{OD} + 2\overrightarrow{AD}$ $\begin{bmatrix} 5 \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix}$	(M1)		
	$\overrightarrow{OE} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 3 \\ -2 \end{bmatrix} \qquad E \text{ is at } (9,7,-2)$	(A1)		
	$ DE = 4 DA \Longrightarrow \overrightarrow{OE} = \overrightarrow{OD} + 4\overrightarrow{DA}$	(M1)		
	$\overrightarrow{OE} = \begin{bmatrix} 5\\1\\2 \end{bmatrix} + 4 \begin{bmatrix} -2\\-3\\2 \end{bmatrix} \qquad E \text{ is at } (-3, -11, 10)$	(A1)	(4)	
	Total		14	

Q	Solution	Marks	Total	Comments
7	$\frac{\mathrm{d}h}{\mathrm{d}t}$	B1	1	$\frac{dh}{dt}$ seen
	dt = 1.3 or a = -1.3	D1	1	dt
	π 2π	DI	1	
	$k = \frac{1}{6}$ or $k = \frac{1}{12}$	B1	1	
	Total		3	
8	$\int t \cos\left(\frac{\pi}{t}\right) dt$			Clear attempt to use parts
(a)	$\int I \cos\left(\frac{-i}{4}\right) di$	M1		$u = t$ $\frac{\mathrm{d}v}{\mathrm{d}t} = \cos\left(\frac{\pi}{4}t\right)$
		1011		$\frac{\mathrm{d}u}{\mathrm{d}t} = 1 \qquad v = k\sin\left(\frac{\pi}{4}t\right)$
	$= t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) - \frac{4}{\pi} \int \sin\left(\frac{\pi}{4}t\right) \left(dt\right)$	A1		Must be in terms of π
	$= pt\sin\left(\frac{\pi}{4}t\right) + q\cos\left(\frac{\pi}{4}t\right)$	m1		Correct form, any non-zero values for p , q
	$= t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) + \frac{4}{\pi} \times \frac{4}{\pi} \cos\left(\frac{\pi}{4}t\right)$	A1	4	Any correct unsimplified form. Constant not required
(b)	$\int 32x \mathrm{d}x = \int t \cos\left(\frac{\pi}{4}t\right) \mathrm{d}t$	B1		Correct separation and notation.
	$16x^2 =$	B1		$\frac{x^2}{2}$ if 32 not brought over; allow $32 \times \frac{x^2}{2}$
	$t \times \frac{4}{\pi} \sin\left(\frac{\pi}{4}t\right) + \frac{16}{\pi^2} \cos\left(\frac{\pi}{4}t\right) + C$	M1		Equate to result from part (a) with constant and use $(0,4)$ to find a
	$C = 256 - \frac{16}{\pi^2}$	A1		value for the constant Accept $C = 254$ or better (254.37886)
	t = 45			Substitute $t = 45$ into
	$16x^2 = -40.514 1.146 + 254.378$			$\int \frac{d}{dt} dt = \int \frac{d}{dt} \frac$
	= 212./18			$\kappa x = pr \sin\left(\frac{-r}{4}\right) + q \cos\left(\frac{-r}{4}\right) + C$
	x = 15.294			$p \neq 0$, $q \neq 0$
	x = 5.040 = 5.05 III	m1A1	6	and calculate x .
	or (neight =) 505 cm			
	Total		10	
	TOTAL		75	

A-LEVEL MATHEMATICS

Pure Core 4 – MPC4 Mark scheme

6360 June 2014

Version/Stage: Final V1.0

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright © 2014 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
√or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q	Solution	Mark	Total	Comment
1 (a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = t \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = -\frac{4}{t^2}$	B1		ACF - Both correct.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-\frac{4}{t^2}}{t}$	M 1		Attempt at their $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
	At $t = 2$ $\frac{dy}{dx} = -\frac{1}{2}$	A1	3	CSO
(b)	$t = \frac{4}{y+1}$ and $x = f(y)$	M1		Attempt to isolate t and attempt to substitute
	$x = \frac{1}{2} \left(\frac{4}{y+1}\right)^2 + 1$	A1	2	ACF
	Total		5	
	Alternatives			
(b)	$x-1 = \frac{t^2}{2}$ $(y+1)^2 = \left(\frac{4}{t}\right)^2$	M1		Solve for $\frac{t^2}{2}$ and $\left(\frac{4}{t}\right)^2$ and multiply
	$(x-1)(y+1)^2 = 8$	A1	2	ACF
(b)	$t^2 = 2x - 2$ & $y = f(x)$	M1		Attempt to find t^2 in terms of x and attempt to substitute.
	$y = \frac{4}{\pm\sqrt{2x-2}} - 1$	A1	2	or $(y+1)^2 = \frac{16}{2x-2}$ ACF
				·

Q	Solution	Mark	Total	Comment	
2(a)	$4x^{3} - 2x^{2} + 16x - 3 =$ $Ax(2x^{2} - x + 2) + B(4x - 1)$	M1		Attempt to multiply by $2x^2 - x + 2$ or long division with $2x$ seen or substitute two values of x	
	A = 2	A1		A stated or written in expression	
	<i>B</i> = 3	A1	3	<i>B</i> stated or written in expression	
(b)	$\int 2x + \frac{3(4x-1)}{2x^2 - x + 2} \mathrm{d}x =$				
	x^2 +	B1ft		ACF ft on their A	
	$3\ln\left(2x^2 - x + 2\right) (+C)$	B1ft		ft on their B	
	$2 = (-1)^{2} + 3\ln(2(-1)^{2} - (-1) + 2) + C$	M1		Substitute $(-1, 2)$ into an expression of form $y = ax^2 + b \ln (2x^2 - x + 2) + C$ and attempt to find the constant	
	$y = x^{2} + 3\ln(2x^{2} - x + 2) + 1 - 3\ln 5$	A1	4	CAO	
	Total 7				
(a) If M1 is not awarded then award SC1 for either $A = 2$ (or $2x$) or $B = 3$.					
NMS $A = 2$ and $B = 3$ scores SC3; as the values of A and B can be found by inspection.					

Q	Solution	Mark	Total	Comment
3 (a)	$(1-4x)^{\frac{1}{4}} = 1 + \frac{1}{4}(-4x) + kx^{2}$	M1		k is any non-zero numerical expression
	$=1-x-\frac{3}{2}x^{2}$	A1	2	Simplified to this form , but allow -1.5
(b)	$(2+3x)^{-3} = 2^{-3} \left(1+\frac{3}{2}x\right)^{-3}$	B1		OE e.g. $\frac{1}{8} \left(1 + \frac{3}{2}x \right)^{-3}$
	$\left(1 + \frac{3}{2}x\right)^{-3} = 1 - 3 \times \frac{3}{2}x + \frac{-3 \times -4}{2} \left(\frac{3}{2}x\right)^{2}$	M1		Condone missing brackets and one sign error
	$(2+3x)^{-3} = \frac{1}{8} - \frac{9}{16}x + \frac{27}{16}x^2$	A1	3	or $\frac{1}{8} \left(1 - \frac{9}{2}x + \frac{27}{2}x^2 \right)$
	Alternative $(2+3x)^{-3} =$ $2^{-3} + (-3)2^{-4}(3x) + \frac{1}{2}(-3)(-4)2^{-5}(3x)^{2}$	(M1)		Condone missing brackets and one sign error.
	$=\frac{1}{8} - \frac{9}{16}x + \frac{27}{16}x^2$	(A2)	(3)	A1 not available
(c)	$\left(1 - x - \frac{3}{2}x^2\right)\left(\frac{1}{8} - \frac{9}{16}x + \frac{27}{16}x^2\right)$	M1		Product of their expansions
	$= \frac{1}{8} - \frac{11}{16}x + \frac{33}{16}x^2$	A1	2	
	Total		7	

Q	Solution	Mark	Total	Comment		
4 (a)	A = 5000	B1	1			
(b)(i)	$25000 = 5000 p^{10} \Longrightarrow p^{10} = 5$	B1	1	First equation seen and correct. AG		
(ii)	$\ln p^{t} = t \ln p$	B1		PI Correctly taking logs of both sides.		
	$\ln\left(\frac{1}{A}\right) = \ln p^{2}$	M1		OE eg $\ln 75000 = \ln A + \ln p^t$		
	$t = \frac{10 \ln 15}{\ln 5}$ or $t = 16.8$	A1		OE e.g. $t = \frac{\ln 15}{\ln 1.175}$ or 16.79 $t = \frac{\ln 15}{\ln 5^{\frac{1}{10}}}$ etc.		
	2018	B 1	4			
(c)(i)	$5000 p^{T-10} = 2500 q^{T}$	B1		Correct opening expression		
	$\ln 2 + (T - 10)\ln p = T\ln q$	M1		Use laws of logs correctly to obtain a linear equation in T . Powers must involve T and $T\pm 10$.		
	$T = \frac{10\ln p - \ln 2}{\ln p - \ln q}$	m1		Make <i>T</i> the subject of their expression correctly.		
	$p^{10} = 5 \implies 10 \ln p = \ln 5 \implies T = \frac{\ln\left(\frac{5}{2}\right)}{\ln\left(\frac{p}{q}\right)}$	A1	4	$p^{10} = 5 \Longrightarrow 10 \ln p = \ln 5$ used to get AG		
(ii)	2023	B1	1			
	Total		11			

Q	Solution	Mark	Total	Comment	
5 (a)(i)	<i>R</i> = 5	B1			
	$\tan \alpha = \frac{4}{2}$			$R\sin\alpha = 4$ or $R\cos\alpha = 3$	
	3	M1		using their R	
				$\sin \alpha = 4$ $\cos \alpha = 3$ is M0	
	α = 53.1 °	A1	3	53.1° only	
(ii)	$5\sin(2\theta+53.1)^\circ=5$	M1		Candidate's <i>R</i> and α but must use 2θ - PI.	
	$\left[\left(2\theta + 53.1 \right)^\circ = 90^\circ \text{and} 450^\circ \right]$				
	$\theta = 18.4^{\circ}$	A1		Accept $\theta = 18.5^{\circ}$	
	$\theta = 198.4^{\circ}$	A1ft	3	180°+' <i>their</i> '18.4°	
(b)(i)	$\frac{2\tan\theta}{1-\tan^2\theta} \times \tan\theta = 2$ $2\tan^2\theta - 2(1-\tan^2\theta)$	M1		Use of correct form of $\tan 2\theta$	
	$2\tan\theta = 2(1-\tan\theta)$				
	$4\tan^2\theta=2$				
	$2\tan^2\theta=1$	A1	2	Correct derivation of AG.	
(ii)	$\theta = 35.3^{\circ}$	B1			
	$\theta = 144.7^{\circ}$	B1	2		
(c)(i)	$8 \times \frac{1}{8} - 4 \times \frac{1}{2} + 1 = 0 \Longrightarrow 2x - 1 \text{ is a factor}$	B1	1	Accept $1-2+1=0$ but need the conclusion	
(ii)	$4(2\cos^2\theta - 1)\cos\theta + 1 = 8x^3 - 4x + 1$	B1	1	$\cos 2\theta = 2\cos^2 \theta - 1$ used correctly in deriving AG	
(iii)	$8x^{3} - 4x + 1 = (2x - 1)(4x^{2} + 2x - 1)$	B1		Award for quadratic factor	
	$x = \frac{-2 \pm \sqrt{20}}{8}$ or $\frac{-2 \pm 2\sqrt{5}}{8}$	M1		Correct solution of their quadratic – ACF.	
	$(\cos 72^\circ > 0) \Longrightarrow \cos 72^\circ = \frac{\sqrt{5}-1}{4}$	A1	3	CSO	
	Total		15		
(a)(ii) I	(a)(ii) Either $\theta = 18.4^{\circ}$ or $\theta = 198.4^{\circ}$ earns A1 and any extras in the interval together with the two correct values earns				
A1 A0ft Award SC1 for both answers to greater degree of accuracy 18.43494 and 198.43494561					
(b)(ii) l	(b)(ii) Either $\theta = 35.3^{\circ}$ or $\theta = 144.7^{\circ}$ earns B 1 and any extras in the interval together with the two correct values				
A A	Award SC1 for both answers to greater degree of accuracy 35.26413 and 144.735561				
Q	Solution	Mark	Total	Comment	
---------------	---	------------	-------	--	
6(a)	$\left(\overrightarrow{OP}\right) = \begin{bmatrix} 5\\-8\\2 \end{bmatrix} \qquad \left(\overrightarrow{OQ}\right) = \begin{bmatrix} 11\\-14\\8 \end{bmatrix}$	B1		PI by correct \overrightarrow{OP} and \overrightarrow{OQ} below	
	$\left(\overrightarrow{PQ}\right) = \begin{bmatrix} 11\\-14\\8 \end{bmatrix} - \begin{bmatrix} 5\\-8\\2 \end{bmatrix} \text{or} \begin{bmatrix} 6\\-6\\6 \end{bmatrix}$	M1		$\overrightarrow{PQ} = \pm \operatorname{their}\left(\overrightarrow{OQ} - \overrightarrow{OP}\right)$	
	$\overrightarrow{PQ} = 6 \begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$	A1	3	or $\begin{bmatrix} 6\\ -6\\ 6 \end{bmatrix}$ stated to be parallel to $\begin{bmatrix} 1\\ -1\\ 1 \end{bmatrix}$	
(b)(i)	$\lambda = 1$ or $\mu = -2$	B 1			
	$b = -5 + 3 \text{ or } b = -8 + 6$, (their λ or μ) or $c = 3 + 1 \text{ or } c = 6 - 2$, (their λ or μ)	M1		Attempt to find the value of <i>b</i> or <i>c</i>	
	b = -2 and $c = 4$	A1	3	b = -2 shown and $c = 4$	
(ii)	$\overrightarrow{RS} = \begin{bmatrix} 5+2t\\-8-3t\\2+t \end{bmatrix} - \begin{bmatrix} 3\\-2\\4 \end{bmatrix}$	M1		Clear attempt to find $\pm \overrightarrow{RS}$	
	2 + 2t + 6 + 3t - 2 + t = 0	m1		$\overrightarrow{RS} \bullet \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} = 0 \text{or } \overrightarrow{RS} \bullet \begin{bmatrix} 6 \\ -6 \\ 6 \end{bmatrix} = 0$ $= 0 \text{ PI: correct direction vector}$	
	t = -1	A1		,	
	S is at $(3, -5, 1)$	A1	4	Accept as a column vector.	
	Total		10		

Q	Solution	Mark	Total	Comment
7(a)(i)	$-2\sin^2 y \frac{dy}{dx}$	B1		
	$+3y e^{3x} + e^{3x} \frac{dy}{dx}$	M1		$py e^{3x} + q e^{3x} \frac{dy}{dx}$
		A1		Product rule correct
	= 0	B1		PI
	$\frac{\mathrm{d}y}{\mathrm{d}x}(\mathrm{e}^{3x}-2\mathrm{sin}2y)+3\mathrm{y}\mathrm{e}^{3x}=0$	m1		Attempt to factorise.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-3y\mathrm{e}^{3x}}{\mathrm{e}^{3x} - 2\sin 2y}$	A1	6	OE
(ii)	At A $\frac{\mathrm{d}y}{\mathrm{d}x} = -\pi$	B1	1	Must have scored all 6 marks in (a)(i)
(b)	$\left(y - \frac{\pi}{4}\right) = \frac{1}{\pi} \left(x - \ln 2\right)$	M1		Finding the equation of normal with gradient $\frac{-1}{\text{their}(a)(\text{ii})}$.
	At $B \qquad y = \frac{\pi}{4} - \frac{\ln 2}{\pi}$	A1	2	
	Тс	otal	9	
(b)	Alternative using $y = mx + c$ $\frac{\pi}{4} = \frac{1}{\pi} \ln 2 + c \qquad \left(y = \frac{1}{\pi} x + c \right)$	M1		Use $y = mx + c$ and find c using their gradient.
	At $B = \frac{\pi}{4} - \frac{\ln 2}{\pi}$	A1	2	Must see $y = \frac{\pi}{4} - \frac{\ln 2}{\pi}$ or a statement that <i>c</i> is the required <i>y</i> -coordinate
	1	I		1

Q	Solution	Mark	Total	Comment
8 (a)	$16x = A(1+x)^{2} + B(1-3x)(1+x) + C(1-3x)$	B1		OE
	$x = -1 \qquad -16 = 4C$			
	1 16 $(4)^2$	M1		Use $x = \frac{1}{3}$ or $x = -1$ to find a
	$x = \frac{1}{3}$ $\frac{10}{3} = A\left(\frac{1}{3}\right)$			value for A or C.
	A = 3 B = 1 C = -4	A1		Any two correct
		A1	4	All three correct
(b)	$\int \frac{1}{e^{2y}} \mathrm{d}y = \int \frac{16x}{(1-3x)(1+x)^2} \mathrm{d}x$	B1		
	or $\int \frac{dy}{e^{2y}} = \int \frac{3}{1-3x} + \frac{1}{1+x} - \frac{4}{(1+x)^2} dx$			or correct ft separation on non- zero <i>A B C</i>
	$\frac{-e^{-2y}}{2}$	B1		OE
	$= -\ln\left(1 - 3x\right)$	B1ft		OE ft on $\frac{A}{-3}\ln(1-3x)$
	$+\ln(1+x)$	B1ft		OE ft on $B \ln(1+x)$
	$+\frac{4}{1+x}$	B1ft		OE ft on $\frac{C}{-1}(1+x)^{-1}$
	$-\frac{1}{2} = (-\ln 1 + \ln 1) + 4 + \text{constant}$	M1		Use $(0,0)$ and attempt to find a value for the constant.
	$-\frac{1}{2}e^{-2y} = -\ln(1-3x) + \ln(1+x) + \frac{4}{1+x} - \frac{9}{2}$	A1	7	ACF
	Total		11	
	TOTAL		75	
(b)]	For M1 candidates must have a term of the form $ke^{\pm 2y}$ on on	e side and	d at least	one ln term on the other,

substitute (0,0) and find a value for the constant.

A-LEVEL Mathematics

Pure Core 4 – MPC4 Mark scheme

6360 June 2015

Version 1.1: Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Copyright $\ensuremath{\textcircled{O}}$ 2015 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
Α	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

Key to mark scheme abbreviations

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Mark	Total	Comment
(a)	19x - 2 = A(1 + 6x) + B(5 - x)	M1		Correct equation and attempt to find a value for <i>A</i> or <i>B</i> .
	A = 3	A1		
	B = -1	A1	3	NMS or cover up rule; <i>A</i> or <i>B</i> correct SC2 <i>A</i> and <i>B</i> correct SC3 .
(b)	$\int \frac{3}{5-x} - \frac{1}{1+6x} dx$ = $p \ln (5-x) + q \ln (1+6x)$	M1		Condone missing brackets OE Either term in a correct form
	$=-3\ln\left(5-x\right)$	A1ft		ft on their A
	$-\frac{1}{6}\ln(1+6x)$	A1ft		ft on their B
	$\int_{0}^{4} = \left[-3\ln 1 - \frac{1}{6}\ln 25\right] - \left[-3\ln 5 - \frac{1}{6}\ln 1\right]$	m1		Substitute limits correctly in their integral; F(4) - F(0)
	$=-\frac{1}{6}\ln 25 + 3\ln 5$	A1		ACF. $\ln 1 = 0$ PI
	$=\frac{8}{3}\ln 5$	A1	6	CSO Condone equivalent fractions or recurring decimal
	Total		9	

Q2	Solution	Mark	Total	Comment
(a)	$R = \sqrt{29}$	B1		Allow 5.4 or better
	$\sqrt{29}\cos\alpha = 2, \sqrt{29}\sin\alpha = 5 \text{ or } \tan\alpha = \frac{5}{2}$	M1		Their $\sqrt{29}$ Note $\cos \alpha = 2$ or $\sin \alpha = 5$ is M0
	$\alpha = 1.19$	A1	3	Must be exactly this
(b)(i)	$R\cos(x+\alpha) = R$ or $\cos(x+\alpha) = 1$			Condidate's P and <i>a</i>
	or $x + \alpha = 2\pi$ or $x + \alpha = 0$ or $x = -\alpha$	M1		Candidate s K and α
	(x=) 5.09	A1	2	Must be exactly this
(ii)	$\cos(x+\alpha) = -\frac{1}{R}$	M1		Candidate's R and α ; PI
	$(x + \alpha =)$ 1.75757 and 4.52560	A1		Rounded or truncated to at least 2 dp; Ignore 'extra' solutions
	x = 0.567 and $x = 3.34$	A1	3	Condone $x = 0.568$; x = 3.34 must be correct NMS is 0/3 A0 if extra values in interval $0 < x < 2\pi$
	Total		8	

PMT

Q3	Solution	Mark	Total	Comment
(a)	$f\left(-\frac{1}{2}\right) = -1 - 3 + 1 + d = -2$	M1		Attempt to evaluate $f\left(-\frac{1}{2}\right)$ and equated
	d = 1	A1	2	to -2 NMS is $0/2$
(b)(i)	(2x+1) is a factor	B 1		OE $\left(x+\frac{1}{2}\right)$
	$g(x) = (2x+1)(4x^2 + bx + 3)$	M1		Attempt to find quadratic factor or a second linear factor using Factor Theorem
	$g(x) = (2x+1)(4x^2 - 8x + 3)$			OE if $(x+\frac{1}{2})$ is used
	g(x) = (2x+1)(2x-1)(2x-3)			OE ; must be a product
		A1	3	NMS : SC3 if product is correct SC1 if one or two factors are correct
(ii)	$\frac{4x^2 - 1}{g(x)} = \frac{1}{2x - 3}$	B1		
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\frac{1}{2x-3}\right) = \frac{k}{\left(2x-3\right)^2}$	M1		Attempt to differentiate simplified h
	$=-\frac{2}{\left(2x-3\right)^2}$	A1		Correct derivative
	(Derivative is) negative, or < 0 hence decreasing	E 1	4	Explanation and conclusion required Derivative must be correct
	Total		9	
	•			·
(b)(ii)	Special case			
. /. /	$h(x) = \frac{1}{2x-3}$	B 1		
	$2x-3$ is an increasing function, so $\frac{1}{2x-3}$			Among only if $h(x) = \frac{1}{2}$ is correct
	is a decreasing function	E1	2	Award only if $\Pi(x) = \frac{1}{2x-3}$ is correct

Q4	Solution	Mark	Total	Comment
(a)	$1 + \frac{1}{5} \times 5x + kx^2$ $1 + x - 2x^2$	M1 A1	2	<i>k</i> any non-zero numerical expression Simplified to this
(b) (i)	$\left(8+3x\right)^{-\frac{2}{3}} = 8^{-\frac{2}{3}} \left(1+\frac{3}{8}x\right)^{-\frac{2}{3}}$	B1		ACF for $8^{-\frac{2}{3}} = \frac{1}{4}$
	$\left(1+\frac{3}{8}x\right)^{-\frac{2}{3}}$			
	$=1 + \left(-\frac{2}{3}\right)\left(\frac{3}{8}x\right) + \frac{1}{2}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(\frac{3}{8}x\right)^{2}$	M1		Expand correctly using their $\frac{3}{8}x$ Condone poor use of or missing brackets
	$\frac{1}{4} - \frac{1}{16}x + \frac{5}{256}x^2$	A1	3	Accept = $\frac{1}{4} \left(1 - \frac{1}{4}x + \frac{5}{64}x^2 \right)$
(ii)	$x = \frac{1}{3}$	M1		$x = \frac{1}{3}$ used in their expansion from (b)(i)
	0.2313 (4dp)	A1	2	Note 3 in 4 th decimal place
	Total		7	

Q5	Solution	Mark	Total	Comment
(a)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = -2\sin 2t \qquad \left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \cos t$ $\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right) = \frac{\cos t}{-2\sin 2t}$	B1 M1		Both correct Correct use of chain rule with their derivatives of form $a \sin 2t$, $b \cos t$
	At $t = \frac{\pi}{6}$ gradient $m_{\rm T} = -\frac{1}{2}$	A1	3	
(b)	Gradient of normal $m_{\rm N} = 2$	B1ft		ft gradient of tangent; $m_{\rm N} = \frac{-1}{m_{\rm T}}$
	$\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_{\rm N}\left(x - \sin\left(\frac{\pi}{6}\right)\right)$	M1		For $m_{\rm N}$, allow their $m_{\rm T}$ with a change of sign or the reciprocal at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
	$y = 2x - \frac{1}{2}$	A1	3	Must be in this $y = mx + c$ form
	Alternative for M1 $\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$			Use $y = mx + c$ to find c with their gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
(0)				
(C)	$\cos 2q = 1 - 2\sin^2 q$ $\sin q = 2(1 - 2\sin^2 q) - \frac{1}{2}$	B1 M1		Seen or used in this form Use parametric equations and candidate's $\cos 2q$ in the form $\pm 1 + k \sin^2 q$
	$8\sin^2 q + 2\sin q - 3 = 0 \qquad \mathbf{OE}$	A1		Collect like terms; must be a quadratic equation
	$\left(\sin q = \frac{1}{2}\right) \qquad \sin q = -\frac{3}{4}$	A1		Must come from a correct quadratic equation with the previous 3 marks awarded
	$(x=) -\frac{1}{8}$	A1	5	Previous 4 marks must have been awarded
	Total		11	

Q5SolutionMarkTotalComment(a) $x = 1 - 2y^2$ $1 = -4y \frac{dy}{dx}$ or $\frac{dx}{dy} = -4y$ B1Find a correct Cartesian equation and differentiate implicitly correctly $\frac{dy}{dx} = -\frac{1}{4\sin\frac{\pi}{6}}$ M1Use $y = \sin\frac{\pi}{6}$ or $y = \frac{1}{2}$ in their $\frac{dx}{dx}$; PIAt $t = \frac{\pi}{6}$ gradient $m_{\tau} = -\frac{1}{2}$ A13CSO(b)Gradient of normal = 2B1ftft gradient of tangent, $m_N = \frac{-1}{m_{\tau}}$ $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_N\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M1For m_N , allow their m_T with a change of sign or the reciprocal at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ $y = 2x - \frac{1}{2}$ A13CSOAlternative for M1Sin $\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$ Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(\sin\frac{\pi}{c}, \cos\frac{2\pi}{c}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ M1Solution and normal to eliminate x $\left(\sin q = \frac{1}{2}\right)$ $\sin q = -\frac{3}{4}$ A15 $\left(x = \right) - \frac{1}{8}$ A15Previous 4 marks must have been awarded	IVIa	ark scheme Alternative			-
(a) $x = 1-2y^{2} 1 = -4y \frac{dy}{dx} \text{ or } \frac{dx}{dy} = -4y$ B_{1} $\frac{dy}{dx} = -\frac{1}{4\sin\frac{\pi}{6}}$ M_{1} $Vs y = \sin\frac{\pi}{6} \text{ or } y = \frac{1}{2} \text{ in their } \frac{dx}{dx}; PI$ $Vs y = \sin\frac{\pi}{6} \text{ or } y = \frac{1}{2} \text{ in their } \frac{dx}{dx}; PI$ SO (b) Gradient of normal = 2 $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_{N}\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M_{1} $y = 2x - \frac{1}{2}$ M_{1} SO $Vs y = \sin\frac{\pi}{6} \text{ or } y = \frac{1}{2} \text{ in their } \frac{dx}{dx}; PI$ SO (b) Gradient of normal = 2 $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_{N}\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M_{1} SO $Vs y = mx + c \text{ or find } c \text{ with candidate's gradient } m_{N} \text{ at } (\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}) \text{ or } (\frac{1}{2}, \frac{1}{2})$ $Vs y = mx + c \text{ to find } c \text{ with candidate's gradient } m_{N} \text{ at } (\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}) \text{ or } (\frac{1}{2}, \frac{1}{2})$ (c) $x = 1-2y^{2}$ $H_{1} - 2y^{2} = \frac{y + \frac{1}{2}}{2}$ $4y^{2} + y - \frac{3}{2} = 0 \Rightarrow$ $8\sin^{2} q + 2\sin q - 3 = 0$ $\left(\sin q = \frac{1}{2}\right) \sin q = -\frac{3}{4}$ $\left(x = \right) -\frac{1}{8}$ A_{1} So So So So So So So So	Q5	Solution	Mark	Total	Comment
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(a)	$x = 1 - 2y^2$ $1 = -4y \frac{dy}{dx}$ or $\frac{dx}{dy} = -4y$	B1		Find a correct Cartesian equation and differentiate implicitly correctly
At $t = \frac{\pi}{6}$ gradient $m_r = -\frac{1}{2}$ A13CSO(b)Gradient of normal = 2B1ftft gradient of tangent, $m_N = \frac{-1}{m_r}$ $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_N\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M1ft gradient of tangent, $m_N = \frac{-1}{m_r}$ $y = 2x - \frac{1}{2}$ A13CSOAtternative for M1A13CSO $\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$ A13CSO(c) $x = 1 - 2y^2$ A13CSO $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1A1Collect like terms; must be a quadratic equation and normal to eliminate x $(x =) -\frac{1}{8}$ A15Previous 4 marks must have been awarded		$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{4\sin\frac{\pi}{6}}$	M1		Use $y = \sin \frac{\pi}{6}$ or $y = \frac{1}{2}$ in their $\frac{dy}{dx}$; PI
(b)Gradient of normal = 2B1ftft gradient of tangent, $m_N = \frac{-1}{m_r}$ $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_N\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M1ft gradient of tangent, $m_N = \frac{-1}{m_r}$ $y = 2x - \frac{1}{2}$ M1M1For m_N , allow their m_T with a change of sign or the reciprocal at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ $y = 2x - \frac{1}{2}$ A13CSOAlternative for M1Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2\left(2x - \frac{1}{2}\right)^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ M1Use their Cartesian equation and normal to eliminate x $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1A1 $8\sin^2 q + 2\sin q - 3 = 0$ A1A1 $\left(\sin q = \frac{1}{2}\right)$ $\sin q = -\frac{3}{4}$ A1 $(x =) -\frac{1}{8}$ A15Previous 4 marks must have been awarded		At $t = \frac{\pi}{6}$ gradient $m_{\rm T} = -\frac{1}{2}$	A1	3	CSO
(b)Gradient of normal = 2B1ftft gradient of tangent, $m_N = \frac{-1}{m_T}$ $\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_N\left(x - \sin\left(\frac{\pi}{6}\right)\right)$ M1ft gradient of tangent, $m_N = \frac{-1}{m_T}$ $y = 2x - \frac{1}{2}$ M1M1 $\sin\left(\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ $y = 2x - \frac{1}{2}$ A13CSOAlternative for M1Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ M1Use their Cartesian equation and normal to eliminate x $8\sin^2 q + 2\sin q - 3 = 0$ A1A1 $\left(\sin q = \frac{1}{2}\right)$ $\sin q = -\frac{3}{4}$ A1 $(x =) -\frac{1}{8}$ A15Total					
$\begin{pmatrix} y - \cos\left(\frac{2\pi}{6}\right) = m_{N}\left(x - \sin\left(\frac{\pi}{6}\right)\right) & M1 \\ y = 2x - \frac{1}{2} & A1 \\ \sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c & Use \ y = mx + c \ to \ find \ c \ with \ candidate's \ gradient \ m_{N} \ at \ (\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}) \ or \ (\frac{1}{2}, \frac{1}{2}) \\ Use \ y = mx + c \ to \ find \ c \ with \ candidate's \ gradient \ m_{N} \ at \ (\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}) \ or \ (\frac{1}{2}, \frac{1}{2}) \\ \hline \\ (c) \ x = 1 - 2y^{2} \\ 1 - 2y^{2} = \frac{y + \frac{1}{2}}{2} & M1 \\ 4y^{2} + y - \frac{3}{2} = 0 \Rightarrow \\ 8\sin^{2} q + 2\sin q - 3 = 0 \\ \left(\sin q = \frac{1}{2}\right) \ \sin q = -\frac{3}{4} & A1 \\ (x =) -\frac{1}{8} & A1 \\ \hline \\ Total & Total & 11 \\ \hline \\ \end{bmatrix} $	(b)	Gradient of normal $= 2$	B1ft		ft gradient of tangent, $m_{\rm N} = \frac{-1}{m_{\rm T}}$
$y = 2x - \frac{1}{2}$ A13CSOAlternative for M1 $sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$ Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2\left(2x - \frac{1}{2}\right)^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ M1Use their Cartesian equation and normal to eliminate x $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1Collect like terms; must be a quadratic equation $8\sin^2 q + 2\sin q - 3 = 0$ A1Solution with the previous 3 marks awarded $\left(\sin q = \frac{1}{2}\right)$ $\sin q = -\frac{3}{4}$ A1 $(x =) -\frac{1}{8}$ A15Total11		$\left(y - \cos\left(\frac{2\pi}{6}\right)\right) = m_{\rm N}\left(x - \sin\left(\frac{\pi}{6}\right)\right)$	M1		For $m_{\rm N}$, allow their $m_{\rm T}$ with a change of sign or the reciprocal at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
Alternative for M1 $sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$ Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(sin\frac{\pi}{6}, cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2\left(2x - \frac{1}{2}\right)^2$ (c) $x = 1 - 2y^2$ B1Collect like terms; must be a quadratic equation and normal to eliminate x $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1Collect like terms; must be a quadratic equation $\left(sin q = \frac{1}{2}\right)$ $sin q = -\frac{3}{4}$ A1Fervious 4 marks must have been awardedTotalTotal11		$y = 2x - \frac{1}{2}$	A1	3	CSO
$\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$ Use $y = mx + c$ to find c with candidate's gradient m_N at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$ (c) $x = 1 - 2y^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ $8\sin^2 q + 2\sin q - 3 = 0$ $\left(\sin q = \frac{1}{2}\right)$ $\sin q = -\frac{3}{4}$ $\left(x = \right) -\frac{1}{8}$ A1 Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution Solution		Alternative for M1			
$\frac{\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{\pi}{6}\right) + c}{\operatorname{gradient}} \qquad $		(π) (2π)			Use $y = mx + c$ to find c with candidate's
(c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ M1Use their Cartesian equation and normal to eliminate x $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded $(\sin q = \frac{1}{2})$ $\sin q = -\frac{3}{4}$ A1 $(x =) -\frac{1}{8}$ A15Total11		$\sin\left(\frac{\pi}{6}\right) = 2\cos\left(\frac{2\pi}{6}\right) + c$			gradient $m_{\rm N}$ at $\left(\sin\frac{\pi}{6}, \cos\frac{2\pi}{6}\right)$ or $\left(\frac{1}{2}, \frac{1}{2}\right)$
(c) $x = 1 - 2y^2$ B1PI by $x = 1 - 2(2x - \frac{1}{2})^2$ $1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$ M1Use their Cartesian equation and normal to eliminate x $4y^2 + y - \frac{3}{2} = 0 \Rightarrow$ A1Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded $(\sin q = \frac{1}{2})$ $\sin q = -\frac{3}{4}$ A1 $(x =) -\frac{1}{8}$ A1Total11					
$1-2y^{2} = \frac{y+\frac{1}{2}}{2}$ $4y^{2} + y - \frac{3}{2} = 0 \Rightarrow$ $8\sin^{2} q + 2\sin q - 3 = 0$ $\left(\sin q = \frac{1}{2}\right) \sin q = -\frac{3}{4}$ $\left(x = \right) -\frac{1}{8}$ x $M1$ $Use their Cartesian equation and normal to eliminate x$ $Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded Previous 4 marks must have been awarded Previous 4 marks must have bee$	(c)	$x = 1 - 2y^2$	B1		PI by $x = 1 - 2(2x - \frac{1}{2})^2$
$4y^{2} + y - \frac{3}{2} = 0 \Rightarrow$ $8\sin^{2} q + 2\sin q - 3 = 0$ $\left(\sin q = \frac{1}{2}\right) \sin q = -\frac{3}{4}$ $\left(x = \right) -\frac{1}{8}$ A1 A1 Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded Free to the previous 4 marks must have been awarded Total Description Total Description Descr		$1 - 2y^2 = \frac{y + \frac{1}{2}}{2}$	M1		Use their Cartesian equation and normal to eliminate x
$\begin{vmatrix} x - y - y \\ 8\sin^2 q + 2\sin q - 3 = 0 \\ \left(\sin q = \frac{1}{2}\right) \sin q = -\frac{3}{4} \\ \left(x = \right) -\frac{1}{8} \end{vmatrix}$ A1 A1 A1 Collect like terms; must be a quadratic equation Must come from a correct quadratic equation with the previous 3 marks awarded $x = -\frac{1}{8}$ Total A1		$4y^2 + y - \frac{3}{2} = 0 \Longrightarrow$			
$\begin{pmatrix} \sin q = \frac{1}{2} \end{pmatrix} \sin q = -\frac{3}{4} \\ (x =) -\frac{1}{8} \\ \hline \text{Total} \\ \hline \text{Total} \\ \hline \text{Must come from a correct quadratic equation with the previous 3 marks awarded} \\ \hline \text{Must come from a correct quadratic equation with the previous 3 marks awarded} \\ \hline \text{Previous 4 marks must have been awarded} \\ \hline \text{Total} \\ \hline \ \ \text{Total} \\ \hline \ \ \text{Total} \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		$8\sin^2 q + 2\sin q - 3 = 0$	A1		Collect like terms; must be a quadratic equation
$\begin{vmatrix} \sin q = \frac{1}{2} \\ (x =) -\frac{1}{8} \end{vmatrix}$ $\begin{vmatrix} A1 \\ A1 \\ Free Yourge 4 marks must have been awarded \end{vmatrix}$ $\begin{vmatrix} \sin q = -\frac{1}{4} \\ (x =) -\frac{1}{8} \end{vmatrix}$ $\begin{vmatrix} A1 \\ A1 \\ Free Yourge 4 marks must have been awarded \end{vmatrix}$		(. 1) . 3			Must come from a correct quadratic
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\left(\frac{\sin q}{2}\right) \qquad \sin q = -\frac{1}{4}$	A1		equation with the previous 3 marks awarded
Total 11		$(x=) -\frac{1}{8}$	A1	5	Previous 4 marks must have been awarded
		Total		11	

Mark scheme Alternative

Q6	Solution	Mark	Total	Comment
(a)	$ \left(\overrightarrow{AB} = \right) \begin{bmatrix} 2 \\ -4 \\ -6 \end{bmatrix} $	B1		Or $(\overrightarrow{BA} =)$ $\begin{bmatrix} -2\\4\\6 \end{bmatrix}$
	$\overrightarrow{AB} \bullet \begin{bmatrix} 5\\1\\-2 \end{bmatrix} = (2 \times 3) + (-4 \times 1) + (6 \times -2)$	M1		Correctly ft on "their" \overline{AB}
	$\sqrt{56}\sqrt{14}\cos BAC = 14$	m1		Correct use of formula with consistent
	angle $BAC = 60^{\circ}$	A1	4	or $\pi/3$; NMS 60° scores 0/4
(b)	$\left(\overrightarrow{BC} = \right) \begin{bmatrix} 3\\2\\10 \end{bmatrix} + \lambda \begin{bmatrix} 3\\1\\-2 \end{bmatrix} - \begin{bmatrix} 5\\-2\\4 \end{bmatrix}$	B1		$\pm \overrightarrow{BC}$ ACF
	$\overline{AB} \bullet \overline{BC} =$ 2(3\lambda - 2) - 4(\lambda + 4) - 6(-2\lambda + 6) = 0	M1		Correct scalar product with their \overrightarrow{AB} , their \overrightarrow{BC} , equate to 0 and solve for λ
	$14\lambda - 56 = 0 \implies \lambda = 4$	A1		
	C is at (15, 6, 2)	A1	4	Accept as a column vector NMS (15,6,2) scores 0/4
(c)				
(0)	E_1 is at (11,0,0)	B 1		Accept as a column vector
	$\overrightarrow{OD} = \overrightarrow{OC} + \overrightarrow{AB} = \begin{bmatrix} 15\\6\\2 \end{bmatrix} + \begin{bmatrix} 2\\-4\\-6 \end{bmatrix} = \begin{bmatrix} 17\\2\\-4 \end{bmatrix}$	B1		
	$\overline{OE}_2 = \begin{bmatrix} 17\\2\\-4 \end{bmatrix} + \frac{1}{2} \times 4 \begin{bmatrix} 3\\1\\-2 \end{bmatrix}$	M1		Correct vector expression with their λ and their \overrightarrow{OD}
	E_2 is at (23,4,-8)	A1	4	Accept as a column vector
	Total		12	
(b)	Alternative by Pythagoras			
	$\left(\overrightarrow{BC} = \right) \begin{bmatrix} 3\\2\\10 \end{bmatrix} + \lambda \begin{bmatrix} 3\\1\\-2 \end{bmatrix} - \begin{bmatrix} 5\\-2\\4 \end{bmatrix}$	B1		$\pm \overrightarrow{BC} \mathbf{ACF}$
	$(3\lambda)^{2} + (\lambda)^{2} + (-2\lambda)^{2}$ = 56 + (-2 + 3\lambda)^{2} + (4 + \lambda)^{2} + (6 - 2\lambda)^{2}	M1		$AC^2 = AB^2 + BC^2$ Correct Pythagoras expression, attempt to expand and solve for λ
	$112 - 28\lambda = 0 \qquad \lambda = 4$	A1		
	<i>C</i> is at $(15, 6, 2)$	A1	4	Accept as a column vector

PMT

(b)	Alternative by $\cos 60 = \frac{1}{2}$			
	$\frac{1}{2} = \frac{\left \overline{AB}\right }{\left \overline{AC}\right } = \frac{\sqrt{56}}{\sqrt{\left(3\lambda\right)^2 + \left(\lambda\right)^2 + \left(-2\lambda\right)^2}}$	B1		
	$\frac{1}{4} = \frac{56}{14\lambda^2}$	M1		Square and simplify
	$\lambda^2 = 16 \Longrightarrow \lambda = 4$ (or $\lambda = -4$)	A1		
	C is at (15, 6, 2)	A1	4	Accept as a column vector

(c)	Alternatives			
Alt (i)				
	$\overrightarrow{OE_{1}} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{AC} = \begin{bmatrix} 5\\-2\\4 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 12\\4\\-8 \end{bmatrix}$			
	E_1 is at (11,0,0)	B1		
	$\boxed{\overrightarrow{OE_2} = \overrightarrow{OB} + 3\overrightarrow{BE_1} = \begin{bmatrix} 5\\-2\\+3 \end{bmatrix} = \begin{bmatrix} 6\\2\\ \end{bmatrix}}$	M1		Correct vector expression with their \overrightarrow{BE}_1
		B1`		All correct
	E_2 is at (23, 4, -8)	A1	4	
Alt (ii)				
	$\overrightarrow{OD} = \overrightarrow{OB} + \overrightarrow{AC} = \begin{bmatrix} 5\\-2\\4 \end{bmatrix} + \begin{bmatrix} 12\\4\\-8 \end{bmatrix}$			
	D is at (17, 2, -4)	B 1		
	$\overrightarrow{OE_2} = \overrightarrow{OD} + \frac{1}{2}\overrightarrow{AC} = \begin{bmatrix} 17\\2\\-4 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 12\\4\\-8 \end{bmatrix}$	M1		Correct vector expression with their \overrightarrow{OD} and their \overrightarrow{AC}
	E_2 is at (23, 4, -8)	A1		
	$\overrightarrow{OE_{1}} = \overrightarrow{OB} + \frac{1}{2}\overrightarrow{AC} = \begin{bmatrix} 5\\-2\\4 \end{bmatrix} + \frac{1}{2}\begin{bmatrix} 12\\4\\-8 \end{bmatrix}$			
	E_1 is at (11,0,0)	B1	4	

Q7	Solution	Mark	Total	Comment
(a)	$k = \left(\frac{1}{2}\right)^3 + 2e^{-3\ln 2} \times \frac{1}{2} - \ln 2$ $= \frac{1}{8} + \frac{1}{8} - \ln 2 = \frac{1}{4} - \ln 2$	B1	1	Clear use of $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$ and $e^{-3\ln 2} = \frac{1}{8}$ Accept $\frac{2}{8} - \ln 2$
(b)	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1		
	$pye^{-3x} + qe^{-3x}\frac{dy}{dx}$	M1		
	$-6ye^{-3x} + 2e^{-3x}\frac{\mathrm{d}y}{\mathrm{d}x}$	A1		
	-1 = 0	B1		Both required -1 and no other terms
	$\frac{3}{4}\frac{dy}{dx} - 6 \times \frac{1}{8} \times \frac{1}{2} + 2 \times \frac{1}{8}\frac{dy}{dx} - 1 (=0)$	m1		Substitute $x = \ln 2$ or $e^{-3x} = \frac{1}{8}$ and $y = \frac{1}{2}$ into their expression
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{11}{8} \text{or } 1.375$	A1	6	
	Total		7	

Q8	Solution	Mark	Total	Comment
(a)(i)	$\int \frac{1}{\sqrt{4+5x}} \mathrm{d}x = \int \frac{1}{5(1+t)^2} \mathrm{d}t$	B1		Correct separation and notation seen on a single line somewhere in their solution (1)
	$a(4+5x)^{\frac{1}{2}}$ or $b(1+t)^{-1}$	M1		OE $a\sqrt{4+5x}$ or $b\left(\frac{1}{1+t}\right)$
	$\frac{2}{5}(4+5x)^{\frac{1}{2}}$	A1		OE $\frac{2}{5}\sqrt{4+5x}$
	$-\frac{1}{5}(1+t)^{-1}$ (+C)	A1		$OE -\frac{1}{5(1+t)}$
	$x = 0$, $t = 0 \implies C = 1$	m1		Use $(0,0)$ to find a constant
	$\frac{2}{5}(4+5x)^{\frac{1}{2}} = 1 - \frac{1}{5}(1+t)^{-1}$	A1		OE
	$x = \frac{5}{4} \left(1 - \frac{\left(1+t\right)^{-1}}{5} \right)^2 - \frac{4}{5}$	A1	7	ACF eg $x = \frac{1}{20} \left(\frac{4+5t}{1+t}\right)^2 - \frac{4}{5}$
(b)(i)	$\frac{\mathrm{d}r}{\mathrm{d}t}$	B1		Seen; allow <i>R</i> for <i>r</i>
	$\frac{1}{r^2}$	M1		$\frac{1}{r^2}$ seen ; allow <i>R</i> for <i>r</i>
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{k}{r^2}$	A1	3	Any constant k including $\frac{c}{\pi}$ but not including variable t Must use R or r consistently
(ii)	$\left(\frac{dr}{dr}\right) = 4.5 = \frac{k}{r^2}$ or $4.5 = \frac{c}{r^2}$	M1		Use $\frac{dr}{dt} = 4.5$ with $r = 1$ to find a value
	(dt) l^2 $\pi \times l^2$	1411		dt for the constant
	$0.5 = \frac{4.5}{r^2} \Longrightarrow r = 3 \text{ (metres)}$	A1	2	
	Total		12	