Mark Scheme 4723 January 2006

1 Obtain integral of form $k \ln x$
Obtain $3 \ln 8-3 \ln 2$
M1 [any non-zero constant k; or equiv such as $k \ln 3 x$]

Attempt use of at least one relevant log property M1
[or exact equiv]
[would be earned by initial $\ln x^{3}$]
Obtain $3 \ln 4$ or $\ln 8^{3}-\ln 2^{3}$ and hence $\ln 64$ A1 4 [AG; with no errors]

2 Attempt use of identity linking $\sec ^{2} \theta$, $\tan ^{2} \theta$ and 1

M1 [to write eqn in terms of $\tan \theta$]
Obtain $\tan ^{2} \theta-4 \tan \theta+3=0$
A1 [or correct unsimplified equiv]
Attempt solution of quadratic eqn to find two values of $\tan \theta$
Obtain at least two correct answers
A1
[any 3 term quadratic eqn in $\tan \theta$]
Obtain all four of 45, 225, 71.6, 251.6
A1 5 [allow greater accuracy or angles to nearest degree - and no other answers between 0 and 360]

3 (a) Attempt use of product rule
Obtain $2 x(x+1)^{6} \ldots$
Obtain $\ldots+6 x^{2}(x+1)^{5}$
(b) Attempt use of quotient rule

Obtain $\frac{\left(x^{2}-3\right) 2 x-\left(x^{2}+3\right) 2 x}{\left(x^{2}-3\right)^{2}}$
Obtain -3

M1 [involving ... + ..]
A1
A1 3 [or equivs; ignore subsequent attempt at simplification]

M1 [or, with adjustment, product rule; allow u / v confusion]

A1 [or equiv]
A1 3 [from correct derivative only]

4 (i) State $y \leq 2$
B1 1 [or equiv; allow <; allow any letter or none]
(ii) Show correct process for composition of functions

Obtain 0 and hence 2
A1 2 [and no other value]
(iii) State a range of values with 2 as one end-point

M1 [continuous set, not just integers]
State $0<k \leq 2$
A1 2 [with correct < and \leq now]
$5 \quad$ Obtain integral of form $k(1-2 x)^{6}$
Obtain correct $-\frac{1}{12}(1-2 x)^{6}$
Use limits to obtain $\frac{1}{12}$
Obtain integral of form $k \mathrm{e}^{2 x-1}$
Obtain correct $\frac{1}{2} \mathrm{e}^{2 x-1}-x$
Use limits to obtain $-\frac{1}{2} \mathrm{e}^{-1}$
Show correct process for finding required area

Obtain $\frac{1}{12}+\frac{1}{2} \mathrm{e}^{-1}$

M1 [any non-zero constant k]
A1 [or unsimplified equiv; allow $+c$]
A1 [or exact (unsimplified) equiv]
M1 [or equiv; any non-zero constant k]
A1 [or equiv; allow $+c$]
A1 [or exact (unsimplified) equiv]
M1 [at any stage of solution; if process involves two definite integrals, second must be negative]
A1 8 [or exact equiv; no $+c$]

6 (a) Either: State proportion $\frac{440}{275}$
Attempt calculation involving proportion
Obtain 704
Use formula of form $275 \mathrm{e}^{k t}$ or $275 a^{t}$
Obtain $k=0.047$ or $a=\sqrt[10]{1.6}$
Obtain 704
(b)(i) Attempt correct process involving logarithm

Obtain $\ln \frac{20}{80}=-0.02 t$
Obtain 69
(ii)Differentiate to obtain $k \mathrm{e}^{-0.02 t}$

Obtain $-1.6 \mathrm{e}^{-0.02 t}$ (or $1.6 \mathrm{e}^{-0.02 t}$)
Obtain 0.88

B1

M1 [involving multn and X value]
A1 3
M1 [or equiv]
A1 [or equiv]
A1 (3) [allow ± 0.5]
M1 [or equiv including systematic trial and improvement attempt]
A1 [or equiv]
A1 3 [or greater accuracy; scheme for T\&I: M1A2]

M1 [any constant k different from 80]
A1 [or unsimplified equiv]
A1 3 [or greater accuracy; allow -0.88]

7 (i) Sketch curve showing (at least) translation in x direction
Show correct sketch with one of 2 and 3π indicated
\ldots and with other one of 2 and 3π indicated
(ii) Draw straight line through O with positive gradient
(iii) Attempt calculations using 1.8 and 1.9 Obtain correct values and indicate change of sign
(iv) Obtain correct first iterate 1.79 or 1.78 Attempt correct process to produce at least 3 iterates
Obtain 1.82

Attempt rearrangement of $3 \cos ^{-1}(x-1)=x$ or of $x=1+\cos \left(\frac{1}{3} x\right)$
Obtain required formula or equation respectively

M1 [either positive or negative]

A1
A1 3

B1 1 [label and explanation not required]
M1 [allow here if degrees used]
A1 2 [or equiv; $x=1.8:$ LHS $=1.93$, $\operatorname{diff}=0.13$; $x=1.9:$ LHS $=1.35$, diff $=-0.55$; radians needed now]

B1 [or greater accuracy]
M1
A1 [answer required to exactly 2 d.p.;
$2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200 ;$
SR: answer 1.82 only - B2]

M1 [involving at least two steps]

A1 5

8 (i) Differentiate to obtain $k x\left(5-x^{2}\right)^{-1}$
Obtain correct $-2 x\left(5-x^{2}\right)^{-1}$
Obtain -4 for value of derivative
Attempt equation of straight line through $(2,0)$ with numerical value of gradient obtained from attempt at derivative
Obtain $y=-4 x+8$
(ii) State or imply $h=\frac{1}{2}$

Attempt calculation involving attempts
at y values
Obtain $k(\ln 5+4 \ln 4.75+2 \ln 4+4 \ln 2.75+\ln 1) \quad A$

Obtain 2.44
(iii) Attempt difference of two areas

Obtain 8-2.44 and hence 5.56

M1 [any non-zero constant]
A1 [or equiv]
A1

M1
A1 5 [or equiv]

B1

M1 [addition with each of coefficients $1,2,4$ occurring at least once]
[or equiv perhaps with decimals; any constant k]
A1 4 [allow ± 0.01]
M1 [allow if area of their triangle < area A]
A1 $\sqrt{ } 2$ [following their tangent and area of A providing answer positive]

9 (i) State $\sin 2 \theta \cos \theta+\cos 2 \theta \sin \theta$

B1

Use at least one of $\sin 2 \theta=2 \sin \theta \cos \theta$ and

$$
\cos 2 \theta=1-2 \sin ^{2} \theta
$$

Attempt complete process to express in terms of $\sin \theta$

M1 [using correct identities]
Obtain $3 \sin \theta-4 \sin ^{3} \theta$
(ii) State 3

Obtain expression involving $\sin 10 \alpha$
Obtain 9
(iii) Recognise cosec 2β as $\frac{1}{\sin 2 \beta}$

Attempt to express equation in terms of $\sin 2 \beta$ only
Attempt to find non-zero value of $\sin 2 \beta$
Obtain at least $\sin 2 \beta=\sqrt{\frac{5}{12}}$
Attempt correct process to find two values of β
Obtain 20.1, 69.9

A1 4 [AG; all correctly obtained]

B1

M1 [allow θ / α confusion]
A1 3 [and no other value]

B1 [allow θ / β confusion]

M1 [or equiv involving $\cos 2 \beta$]
M1 [or of $\cos 2 \beta$]
A1 [or equiv, exact or approx]
M1 [provided equation is $\sin 2 \beta=k$; or equiv with $\cos 2 \beta$]
A1 6 [and no others between 0 and 90]

