Mark Scheme 4723 January 2006

physicsandmathstutor.com

4723	Mark Scheme			January 2006
1	Obtain integral of form $k \ln x$	M1		[any non-zero constant k; or equiv such as $k \ln 3x$]
	Obtain $3 \ln 8 - 3 \ln 2$	AI M1		[or exact equiv] [would be correct by initial $\ln r^3$]
	Attempt use of at least one relevant log property Obtain $3 \ln 4$ or $\ln 8^3$ $\ln 2^3$ and hence $\ln 64$		1	[would be earlied by initial $\ln x$]
	Obtain $5 \ln 4$ or $\ln 8^\circ - \ln 2^\circ$ and hence $\ln 64$	A1 	4	[AG; with no errors]
2	Attempt use of identity linking $\sec^2 \theta$,			
	$\tan^2 \theta$ and 1	M1		[to write eqn in terms of tan θ]
	Obtain $\tan^2 \theta - 4 \tan \theta + 3 = 0$	A1		[or correct unsimplified equiv]
	Attempt solution of quadratic eqn to find two va	lues		[any 2 term quadratic agn in ten (]
	Obtain at least two correct answers	A1		[after correct solution of eqn]
	Obtain all four of 45, 225, 71.6, 251.6	A1	5	[allow greater accuracy or angles
				to nearest degree $-$ and no other
				answers between 0 and 360]
3 (a)	Attempt use of product rule	M1		[involving +]
	Obtain $2x(x+1)^6$	A1		
	Obtain + $6x^2(x+1)^5$	A1	3	[or equivs; ignore subsequent attempt at simplification]
(b)	Attempt use of quotient rule	M1		[or, with adjustment, product rule; allow <i>u</i> / <i>v</i> confusion]
	Obtain $\frac{(x^2 - 3)2x - (x^2 + 3)2x}{(x^2 - 3)^2}$	A1		[or equiv]
	Obtain –3	A1	3	[from correct derivative only]
4 (i)	State $y \le 2$	B1	1	[or equiv; allow <; allow any letter or none]
(ii)	Show correct process for composition of functio Obtain 0 and hence 2	ns A1	2	M1 [numerical or algebraic] [and no other value]
(iii)	State a range of values with 2 as one end-point State $0 < k \le 2$	M1 A1	2	[continuous set, not just integers] [with correct $<$ and \le now]
5	Obtain integral of form $k(1-2x)^6$	M1		[any non-zero constant k]
5	Obtain correct $= \frac{1}{2} (1 - 2x)^6$	<u></u>		[or unsimplified equiv: allow + a]
	Use limits to obtain $\frac{1}{12}(1-2x)$	A1		[or exact (unsimplified) equiv]
	Obtain integral of form L_{2}^{2x-1}	м		[or equiv: any non-zero constant k]
	Obtain correct $1 e^{2x-1}$	A 1		[or equiv. any non-zero constant κ_{j}
	Use limits to obtain $1 - 1$	A1		[or equiv, anow $+ c_j$
	Use limits to obtain $-\frac{1}{2}e^{-\frac{1}{2}}$	AI		[or exact (unsimplified) equiv]
	Snow correct process for finding required area	MI		[at any stage of solution; if process involves two definite integrals, second must be negative]
	Obtain $\frac{1}{12} + \frac{1}{2}e^{-1}$	A1	8	[or exact equiv; $no + c$]

physicsandmathstutor.com

Mark Scheme

4723

January 2006

						2
6	(a)	Either:	State proportion $\frac{440}{275}$	B1		
			Attempt calculation involving proportion Obtain 704	M1 A1	3	[involving multn and X value]
		<u>Or</u> :	Use formula of form $275e^{kt}$ or $275a^t$	M1		[or equiv]
			Obtain $k = 0.047$ or $a = \sqrt[10]{1.6}$	A1		[or equiv]
			Obtain 704	A1	(3)	[allow ±0.5]
	(b)(i)	Attemp	t correct process involving logarithm	M1		[or equiv including systematic trial and improvement attempt]
		Obtain	$\ln \frac{20}{80} = -0.02t$	A1		[or equiv]
		Obtain	69	A1	3	[or greater accuracy; scheme for T&I: M1A2]
	(ii)Differentiate to obtain $k e^{-0.02t}$		M1		[any constant k different from 80]	
Obtain $-1.6 e^{-0.02t}$ (or $1.6 e^{-0.02t}$)		A1		[or unsimplified equiv]		
		Obtain	0.88	A1	3	[or greater accuracy; allow -0.88]
7	(i)	Sketch x direct Show c 2 and 3 and	curve showing (at least) translation in tion orrect sketch with one of π indicated with other one of 2 and 3π indicated	M1 A1 A1	3	[either positive or negative]
	(ii)	Draw st positive	raight line through <i>O</i> with gradient	B 1	1	[label and explanation not required]
	(iii)	Attemp	t calculations using 1.8 and 1.9	M1		[allow here if degrees used]
		Obtain change	n correct values and indicate e of sign Al	A1	2	[or equiv; <i>x</i> = 1.8: LHS = 1.93, diff <i>x</i> = 1.9: LHS = 1.35, diff = -0.55; radians needed now]

Obtain correct first iterate 1.79 or 1.78 (iv) Attempt correct process to produce at least 3 iterates Obtain 1.82

> Attempt rearrangement of $3\cos^{-1}(x-1) = x$ or of $x = 1 + \cos(\frac{1}{3}x)$ Obtain required formula or equation respectively

- ff = 0.13;
- **B1** [or greater accuracy]

M1

- A1 [answer required to exactly 2 d.p.; $2 \rightarrow 1.7859 \rightarrow 1.8280 \rightarrow 1.8200;$ SR: answer 1.82 only - B2]
- **M1** [involving at least two steps]
- A1 5

physicsandmathstutor.com

Mark Scheme

January 2006

8	(i)	Differentiate to obtain $kx(5-x^2)^{-1}$	M1		[any non-zero constant]
		Obtain correct $-2x(5-x^2)^{-1}$	A1		[or equiv]
		Obtain -4 for value of derivative	A1		
		Attempt equation of straight line through (2, 0) v numerical value of gradient obtained from attempt at derivative Obtain $y = -4x + 8$	with M1 A1	5	[not for attempt at eqn of normal] [or equiv]
	(ii)	State or imply $h = \frac{1}{2}$	B1		
		Attempt calculation involving attempts at <i>y</i> values	M1		[addition with each of coefficients
		Obtain $k(\ln 5 + 4\ln 4.75 + 2\ln 4 + 4\ln 2.75 + \ln 1)$	A1		[or equiv perhaps with decimals; any constant k]
		Obtain 2.44	A1	4	[allow ±0.01]
((iii)	Attempt difference of two areas	M1		[allow if area of their triangle < area A]
		Obtain $8 - 2.44$ and hence 5.56	A1	2	[following their tangent and area of <i>A</i> providing answer positive]

9	(i)	State $\sin 2\theta \cos \theta + \cos 2\theta \sin \theta$
		Use at least one of $\sin 2\theta = 2 \sin \theta \cos \theta$ and
		$\cos 2\theta = 1 - 2\sin^2 \theta$
		Attempt complete process to express
		in terms of $\sin\theta$
		Obtain $3\sin\theta - 4\sin^3\theta$

(ii)	State 3	
	Obtain expression involving	$\sin 10\alpha$
	Obtain 9	

(iii)	Recognise cosec 2β as $\frac{1}{\sin 2\beta}$
	Attempt to express equation in terms
	of sin 2β only
	Attempt to find non-zero value of sin 2β
	Obtain at least $\sin 2\beta = \sqrt{\frac{5}{12}}$
	Attempt correct process to find two values of β
	Obtain 20.1, 69.9

.

B1

B1

M1 [using correct identities]

A1 4 [AG; all correctly obtained]

B1

M1 [allow θ/α confusion]

A1 3 [and no other value]

B1 [allow θ/β confusion]

- M1 [or equiv involving $\cos 2\beta$]
- M1 [or of $\cos 2\beta$]
- A1 [or equiv, exact or approx]
- M1 [provided equation is $\sin 2\beta = k$; or equiv with $\cos 2\beta$]
- A1 6 [and no others between 0 and 90]