advancing learning, changing lives

Mark Scheme (Results) J anuary 2011

GCE

GCE Core Mathematics C3 (6665) Paper 1

edexcel

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.
Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.
For further information, please call our GCE line on 0844576 0025, our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:
http:// www.edexcel.com/ Aboutus/ contact-us/

J anuary 2011
Publications Code US026238
All the material in this publication is copyright
© Edexcel Ltd 2011

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol fwill be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

J anuary 2011
Core Mathematics C3 6665
Mark Scheme

edexcel

Question Number	Scheme		Marks
2. (a)	$\begin{aligned} & \frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)} \\ &=\frac{(4 x-1)(2 x-1)-3}{2(x-1)(2 x-1)} \\ &=\frac{8 x^{2}-6 x-2}{\{2(x-1)(2 x-1)\}} \\ &=\frac{2(x-1)(4 x+1)}{\{2(x-1)(2 x-1)\}} \\ &=\frac{4 x+1}{2 x-1} \end{aligned}$	An attempt to form a single fraction Simplifies to give a correct quadratic numerator over a correct quadratic denominator An attempt to factorise a 3 term quadratic numerator	M1 Al aef M1 A1 (4)
(b)	$\begin{aligned} \mathrm{f}(x) & =\frac{4 x-1}{2(x-1)}-\frac{3}{2(x-1)(2 x-1)}-2, \quad x>1 \\ \mathrm{f}(x) & =\frac{(4 x+1)}{(2 x-1)}-2 \\ & =\frac{(4 x+1)-2(2 x-1)}{(2 x-1)} \\ & =\frac{4 x+1-4 x+2}{(2 x-1)} \\ & =\frac{3}{(2 x-1)} \end{aligned}$	An attempt to form a single fraction Correct result	M1 A1 * (2)
(c)	$\begin{aligned} & \mathrm{f}(x)=\frac{3}{(2 x-1)}=3(2 x-1)^{-1} \\ & \mathrm{f}^{\prime}(x)=3(-1)(2 x-1)^{-2}(2) \end{aligned}$ $f^{\prime}(2)=\frac{-6}{9}=-\frac{2}{3}$	$\pm k(2 x-1)^{-2}$ Either $\frac{-6}{9}$ or $-\frac{2}{3}$	M1 Al aef A1 (3) [9]

edexcel

Question Number	Scheme		Marks
3.	$2 \cos 2 \theta=1-2 \sin \theta$		
	$2\left(1-2 \sin ^{2} \theta\right)=1-2 \sin \theta$ $2-4 \sin ^{2} \theta=1-2 \sin \theta$	Substitutes either $1-2 \sin ^{2} \theta$ or $2 \cos ^{2} \theta-1$ or $\cos ^{2} \theta-\sin ^{2} \theta$ for $\cos 2 \theta$.	M1
	$4 \sin ^{2} \theta-2 \sin \theta-1=0$	Forms a "quadratic in sine" $=0$	M1 ${ }^{*}$)
	$\sin \theta=\frac{2 \pm \sqrt{4-4(4)(-1)}}{8}$	Applies the quadratic formula See notes for alternative methods.	M1
	PVs: $\alpha_{1}=54^{\circ}$ or $\alpha_{2}=-18^{\circ}$		
	$\theta=\{54,126,198,342\}$	Any one correct answer 180-their pv	A1 dM1 (*) A1
			[6]

Question Number	Scheme		Marks
4. (a)	$\begin{aligned} & \theta=20+A \mathrm{e}^{-k t} \quad\left(\mathrm{eqn}^{*}\right) \\ & \{t=0, \theta=90 \Rightarrow\} \quad 90=20+A \mathrm{e}^{-k(0)} \\ & 90=20+A \Rightarrow A=70 \end{aligned}$	Substitutes $t=0$ and $\theta=90$ into eqn * $A=70$	M1 A1 (2)
(b)	$\begin{aligned} & \theta=20+70 \mathrm{e}^{-k t} \\ & \{t=5, \theta=55 \Rightarrow\} \quad \begin{array}{c} 55=20+70 \mathrm{e}^{-k(5)} \\ \frac{35}{70}=\mathrm{e}^{-5 k} \\ \ln \left(\frac{35}{70}\right)=-5 k \\ -5 k=\ln \left(\frac{1}{2}\right) \\ -5 k=\ln 1-\ln 2 \Rightarrow-5 k=-\ln 2 \Rightarrow k=\frac{1}{5} \ln 2 \end{array} \end{aligned}$	Substitutes $t=5$ and $\theta=55$ into eqn * and rearranges eqn * to make $\mathrm{e}^{ \pm 5 \mathrm{k}}$ the subject. Takes 'lns’ and proceeds to make ' $\pm 5 k$ ' the subject. Convincing proof that $k=\frac{1}{5} \ln 2$	M1 dM1 A1 * (3)
(c)	$\begin{aligned} \theta & =20+70 \mathrm{e}^{-\frac{1}{5} t \ln 2} \\ \frac{\mathrm{~d} \theta}{\mathrm{~d} t} & =-\frac{1}{5} \ln 2 .(70) \mathrm{e}^{-\frac{1}{5} t \ln 2} \end{aligned}$ When $t=10, \frac{\mathrm{~d} \theta}{\mathrm{~d} t}=-14 \ln 2 \mathrm{e}^{-2 \ln 2}$ $\frac{\mathrm{d} \theta}{\mathrm{~d} t}=-\frac{7}{2} \ln 2=-2.426015132 \ldots$ Rate of decrease of $\theta=2.426{ }^{\circ} \mathrm{C} / \mathrm{min}$ (3dp.)	$\begin{array}{r} \pm \alpha \mathrm{e}^{-k t} \quad \text { where } k=\frac{1}{5} \ln 2 \\ -14 \ln 2 \mathrm{e}^{-\frac{-}{5} \operatorname{tln} 2} \end{array}$ $\text { awrt } \pm 2.426$	M1 Al oe A1 (3) [8]

Question Number	Scheme		Marks
5. (a)	Crosses x-axis $\Rightarrow \mathrm{f}(x)=0 \Rightarrow(8-x) \ln x=0$ Either $(8-x)=0$ or $\ln x=0 \Rightarrow x=8,1$ Coordinates are $A(1,0)$ and $B(8,0)$.	Either one of $\{x\}=1$ OR $x=\{8\}$ Both $A(1,\{0\})$ and $B(8,\{0\})$	B1 B1 (2)
(b)	Apply product rule: $\left\{\begin{array}{ll}u=(8-x) & v=\ln x \\ \frac{\mathrm{~d} u}{\mathrm{~d} x}=-1 & \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x}\end{array}\right\}$ $\mathrm{f}^{\prime}(x)=-\ln x+\frac{8-x}{x}$	$v u^{\prime}+u v^{\prime}$ Any one term correct Both terms correct	M1 A1 A1 (3)
(c)	$\begin{aligned} & \mathrm{f}^{\prime}(3.5)=0.032951317 \ldots \\ & \mathrm{f}^{\prime}(3.6)=-0.058711623 \ldots \end{aligned}$ Sign change (and as $\mathrm{f}^{\prime}(x)$ is continuous) therefore the x-coordinate of Q lies between 3.5 and 3.6.	Attempts to evaluate both $f^{\prime}(3.5)$ and $f^{\prime}(3.6)$ both values correct to at least 1 sf , sign change and conclusion	M1 A1 (2)
(d)	At $Q, \quad \mathrm{f}^{\prime}(x)=0 \Rightarrow-\ln x+\frac{8-x}{x}=0$ $\Rightarrow-\ln x+\frac{8}{x}-1=0$ $\Rightarrow \frac{8}{x}=\ln x+1 \Rightarrow 8=x(\ln x+1)$ $\Rightarrow x=\frac{8}{\ln x+1}$ (as required)	Setting $\mathrm{f}^{\prime}(x)=0$. Splitting up the numerator and proceeding to $\mathrm{x}=$ For correct proof. No errors seen in working.	M1 M1 A1

edexcel

Question Number	Scheme		Marks
(a)	$\begin{aligned} & y=\frac{3-2 x}{x-5} \Rightarrow y(x-5)=3-2 x \\ & x y-5 y=3-2 x \\ & \Rightarrow x y+2 x=3+5 y \Rightarrow x(y+2)=3+5 y \\ & \Rightarrow x=\frac{3+5 y}{y+2} \quad \therefore \mathrm{f}^{-1}(x)=\frac{3+5 x}{x+2} \end{aligned}$	Attempt to make x (or swapped y) the subject Collect x terms together and factorise. $\frac{3+5 x}{x+2}$	M1 M1 A1 oe
(b)	Range of g is $-9 \leq \mathrm{g}(\mathrm{x}) \leq 4$ or $-9 \leq \mathrm{y} \leq 4$	Correct Range	$\begin{aligned} & \text { B1 } \\ & (1) \end{aligned}$
(c)	$g \mathrm{~g}(2)=\mathrm{g}(0)=-6$, from sketch.	Deduces that $g(2)$ is 0 . Seen or implied.	M1 A1 (2)
(d)	$\mathrm{fg}(8)=\mathrm{f}(4)$ $=\frac{3-4(2)}{4-5}=\frac{-5}{-1}=\underline{5}$	Correct order g followed by f	M1 A1 (2)

Question Number	Scheme	Marks	
(e)(ii)			Graph goes through $(\{0\}, 2)$ and $(-6,\{0\})$ which are marked.
(f)			B1

Question Number	Scheme		Marks
7 (a)	$y=\frac{3+\sin 2 x}{2+\cos 2 x}$ Apply quotient rule: $\left.\begin{array}{rl} \left\{\begin{array}{rr} u & =3+\sin 2 x \\ \frac{\mathrm{~d} u}{\mathrm{~d} x} & =2 \cos 2 x \end{array} \quad \frac{\mathrm{~d} v}{\mathrm{~d} x}=-2 \sin 2 x\right. \end{array}\right\}, ~ \begin{aligned} \frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{2 \cos 2 x(2+\cos 2 x)--2 \sin 2 x(3+\sin 2 x)}{(2+\cos 2 x)^{2}} \\ & =\frac{4 \cos 2 x+2 \cos ^{2} 2 x+6 \sin 2 x+2 \sin ^{2} 2 x}{(2+\cos 2 x)^{2}} \\ & =\frac{4 \cos 2 x+6 \sin 2 x+2\left(\cos ^{2} 2 x+\sin ^{2} 2 x\right)}{(2+\cos 2 x)^{2}} \\ & =\frac{4 \cos 2 x+6 \sin 2 x+2}{(2+\cos 2 x)^{2}}(\text { as required }) \end{aligned}$	Applying $\frac{v u^{F}-w v^{\prime}}{v^{z}}$ Any one term correct on the numerator Fully correct (unsimplified). For correct proof with an understanding that $\cos ^{2} 2 x+\sin ^{2} 2 x=1$. No errors seen in working.	M1 A1 A1 A1* (4)
(b)	When $x=\frac{\pi}{2}, y=\frac{3+\sin \pi}{2+\cos \pi}=\frac{3}{1}=3$ At $\left(\frac{\pi}{2}, 3\right), \mathrm{m}(\mathbf{T})=\frac{6 \sin \pi+4 \cos \pi+2}{(2+\cos \pi)^{2}}=\frac{-4+2}{1^{2}}=-2$ Either T: $y-3=-2\left(x-\frac{\pi}{2}\right)$ or $y=-2 x+c$ and $3=-2\left(\frac{\pi}{2}\right)+c \Rightarrow c=3+\pi$ T: $y=-2 x+(\pi+3)$	$\begin{array}{r} y=3 \\ \mathrm{~m}(\mathbf{T})=-2 \end{array}$ $y-y_{1}=m\left(x-\frac{\pi}{2}\right)$ with 'their TANGENT gradient' and their y_{1}; or uses $y=m x+c$ with 'their TANGENT gradient'; $y=-2 x+\pi+3$	B1 B1 M1 A1 (4) [8]

edexcel

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN
Telephone 01623467467
Fax 01623450481
Email publications@linneydirect.com
Order Code US026238 J anuary 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/ quals

Edexcel Limited. Registered in England and Wales no. 4496750
Registered Office: One90 High Holborn, London, WCIV 7BH

