AQA

A-LEVEL

MATHEMATICS

Pure Core 3 - MPC3
Mark scheme

6360
June 2014

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
Vor ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
-x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
C	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

* Accept decimals 0.78(5398...), 1.5(7079...), 2.3(5619...), 3.1(4159...)
** $y\left(\frac{\pi}{4}\right)=\left(\frac{\pi}{4}\right)^{\frac{1}{2}} \sin \frac{\pi}{4}$, etc.
The minimum evidence for M1 is the 3 correct non-zero values of y in any form and sight of 2.4490(97...), but condone omission of the two zeros.
If a candidate's calculator setting is in degrees, they may earn the first B1 for $0, \frac{\pi}{4}$, etc, and then B 0 , but M1 is available .
NMS: An answer of 2.449 without anything else gains $0 / 4$.

(a) $\mathrm{f}(x)>-4, \mathrm{f} \geq-4, \geq-4, x \geq-4$, range $\geq-4, y \geq-4$ score M1 only $y>-4$, etc scores M0 (two errors)
(b) Alternative
$y=x^{2}-6 x+5$
$x^{2}-6 x+(5-y)=0$
$x=\frac{6 \pm \sqrt{36-4(5-y)}}{2} \quad$ correctly solving M1
$x=\frac{6 \pm \sqrt{16+4 y}}{2}$ A1
B1 for swapping x and y and A1 for $\frac{6+\sqrt{16+4 x}}{2}$ having rejected minus sign

Q	Solution	Mark	Total	Comment
7	$\frac{\mathrm{d} u}{\mathrm{~d} x}=-3 x^{2} \text { or } \mathrm{d} u=-3 x^{2} \mathrm{~d} x$ and substituting for $\mathrm{d} x$ and x in terms of u	M1		Condone $\frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2}$ or $\mathrm{d} u=3 x^{2} \mathrm{~d} x$ for M1
	$\int \frac{-(3-u)}{3 u} \mathrm{~d} u$	A1		OE correct unsimplified integral in terms of u only with du seen on this line or later
	$=\int\left(\frac{1}{3}-\frac{1}{u}\right)(\mathrm{d} u)$	A1		PI by the next line
	$=\left[\frac{u}{3}-\ln u\right]_{(3)}^{(2)}$	A1F		FT on their $\int\left(a+\frac{b}{u}\right) \mathrm{d} u$
	$=\left[\frac{2}{3}-\ln 2-\left(\frac{3}{3}-\ln 3\right)\right]$	m1		Correct use of correct limits in u for expression of form $a u+b \ln u$ or in terms of x
	$-\ln 2+\ln 3-\frac{1}{3} \quad \text { or } \quad \ln \frac{3}{2}-\frac{1}{3}$	A1	6	OE exact value
	Total		6	

Q	Solution	Mark	Total	Comment
8(a)	$\begin{aligned} & \frac{1-\sin x}{\cos x}+\frac{\cos x}{1-\sin x}=\frac{(1-\sin x)^{2}+\cos ^{2} x}{\cos x(1-\sin x)} \\ & =\frac{1-2 \sin x+\sin ^{2} x+\cos ^{2} x}{\cos x(1-\sin x)} \end{aligned}$	M1		Combining fractions correctly
	$=\frac{1-2 \sin x+1}{\cos x(1-\sin x)}$	m1		Using $\sin ^{2} x+\cos ^{2} x=1$
	$\begin{aligned} & =\frac{2-2 \sin x}{\cos x(1-\sin x)} \text { or } \frac{2(1-\sin x)}{\cos x(1-\sin x)} \\ & =\frac{2}{\cos x} \end{aligned}$	A1		Must have factorised denominator
	$\begin{aligned} & =2 \sec x \\ & \tan ^{2} x-2=2 \sec x \end{aligned}$	A1	4	AG, both expressions seen
(b)	$\sec ^{2} x-1-2=2 \sec x$			Using $\tan ^{2} x=\sec ^{2} x-1, \mathrm{OE}$
	$\sec ^{2} x-2 \sec x-3(=0)$	B1		Or $3 \cos ^{2} x+2 \cos x-1(=0)$
	$(\sec x-3)(\sec x+1) \quad(=0)$	M1		Correctly factorising their expression or substituting into formula
	$\sec x=3 \text { or }-1$	A1		Or $\cos x=\frac{1}{3}$ or -1
	$\sec x=3 \quad \Rightarrow \quad x=71^{\circ}, \quad 289^{\circ}$	B1 B1		
	$\sec x=-1 \quad \Rightarrow \quad x=180^{\circ}$	B1		no extras inside the interval $0 \leq x<360^{\circ},-1 \mathrm{EE}$
			6	$0 \leq x<360^{\circ}$
(c)	$2 \theta-30^{\circ}=70.5^{\circ}, 180^{\circ}, 289.5^{\circ}$	M1		For RHS accept any x-value from part (b) PI
	$\theta=50^{\circ}, 105^{\circ}, 160^{\circ}$	A1	2	Allow $51^{\circ}, 105^{\circ}, 160^{\circ}$
	Total		12	
	TOTAL		75	

(b) $x=70^{\circ}$ and 290° scores B0 B0

AWRT $x=71^{\circ}$ and 289° both not given to the nearest degree earns SC1.
(c) Condone correct answers not given to the nearest degree if already penalised in part (b),

AWRT $\theta=50^{\circ}$ or $51^{\circ}, 105^{\circ}, 160^{\circ}$

