Centre Number			Candidate Number		
Surname					
Other Names					
Candidate Signature					

A		A	1
1 1	Y-		

General Certificate of Education Advanced Level Examination January 2013

Mathematics

MPC3

Unit Pure Core 3

Wednesday 23 January 2013 9.00 am to 10.30 am

For this paper you must have:

• the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed

1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do **not** use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

Do not write outside the box

Answer all questions.

Answer each question in the space provided for that question.

- **1 (a)** Show that the equation $x^3 6x + 1 = 0$ has a root α , where $2 < \alpha < 3$. (2 marks)
 - (b) Show that the equation $x^3 6x + 1 = 0$ can be rearranged into the form

$$x^2 = 6 - \frac{1}{x} \tag{1 mark}$$

Use the recurrence relation $x_{n+1} = \sqrt{6 - \frac{1}{x_n}}$, with $x_1 = 2.5$, to find the value of x_3 , giving your answer to four significant figures. (2 marks)

OUESTION	
QUESTION PART REFERENCE	Answer space for question 1
••••••	

2 (a) Use Simpson's rule, with five ordinates (four strips), to calculate an estimate for

$$\int_0^4 \frac{x}{x^2 + 2} \, \mathrm{d}x$$

Give your answer to four significant figures.

(4 marks)

(b) Show that the exact value of $\int_0^4 \frac{x}{x^2 + 2} dx$ is $\ln k$, where k is an integer. (5 marks)

QUESTION PART REFERENCE	Answer sp	ace for questic	on 2		
	•••••			 	
	•••••			 	
.,					
•••••				 	

3 (a) Find
$$\frac{dy}{dx}$$
 when

$$y = e^{3x} + \ln x (2 marks)$$

(b) (i) Given that
$$u = \frac{\sin x}{1 + \cos x}$$
, show that $\frac{du}{dx} = \frac{1}{1 + \cos x}$. (3 marks)

(ii) Hence show that if
$$y = \ln\left(\frac{\sin x}{1 + \cos x}\right)$$
, then $\frac{dy}{dx} = \csc x$. (2 marks)

QUESTION PART REFERENCE	Answer space for question 3
••••••	

4 The diagram shows a sketch of the curve with equation y = f(x).

- (a) On the axes below, sketch the curve with equation y = |f(x)|. (2 marks)
- (b) Describe a sequence of two geometrical transformations that maps the graph of y = f(x) onto the graph of y = f(2x 1). (4 marks)

QUESTION PART REFERENCE	Answer space for question 4
(a)	
	\mathcal{Y}
	O X
•••••	
••••••	

5 The function f is defined by

$$f(x) = \frac{x^2 - 4}{3}$$
, for real values of x, where $x \le 0$

(a) State the range of f.

(2 marks)

- **(b)** The inverse of f is f^{-1} .
 - (i) Write down the domain of f^{-1} .

(1 mark)

(ii) Find an expression for $f^{-1}(x)$.

(3 marks)

(c) The function g is defined by

$$g(x) = \ln |3x - 1|$$
, for real values of x, where $x \neq \frac{1}{3}$

The curve with equation y = g(x) is sketched below.

(i) The curve y = g(x) intersects the x-axis at the origin and at the point P.

Find the *x*-coordinate of *P*.

(2 marks)

- (ii) State whether the function g has an inverse. Give a reason for your answer. (1 mark)
- (iii) Show that $gf(x) = \ln |x^2 k|$, stating the value of the constant k.
- (2 marks)

(iv) Solve the equation gf(x) = 0.

(4 marks)

6 (a) Show that

$$\frac{\sec^2 x}{(\sec x + 1)(\sec x - 1)}$$

can be written as $\csc^2 x$.

(3 marks)

(b) Hence solve the equation

$$\frac{\sec^2 x}{(\sec x + 1)(\sec x - 1)} = \csc x + 3$$

giving the values of x to the nearest degree in the interval $-180^{\circ} < x < 180^{\circ}$.

(6 marks)

(c) Hence solve the equation

$$\frac{\sec^2(2\theta - 60^\circ)}{(\sec(2\theta - 60^\circ) + 1)(\sec(2\theta - 60^\circ) - 1)} = \csc(2\theta - 60^\circ) + 3$$

giving the values of θ to the nearest degree in the interval $0^{\circ} < \theta < 90^{\circ}$. (2 marks)

OUESTION	
QUESTION PART REFERENCE	Answer space for question 6

- 7 A curve has equation $y = 4x \cos 2x$.
 - (a) Find an exact equation of the tangent to the curve at the point on the curve where $x = \frac{\pi}{4}$.
 - (b) The region shaded on the diagram below is bounded by the curve $y = 4x \cos 2x$ and the x-axis from x = 0 to $x = \frac{\pi}{4}$.

By using integration by parts, find the exact value of the area of the shaded region.

(5 marks)

QUESTION PART REFERENCE	Answer space for question 7
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
•••••	
• • • • • • • • • • • • • • • • • • • •	

Do not write outside the box

8 (a)	Show	that
-------	------	------

$$\int_0^{\ln 2} e^{1-2x} \, dx = \frac{3}{8}e \tag{4 marks}$$

(b) Use the substitution $u = \tan x$ to find the exact value of

$$\int_0^{\frac{\pi}{4}} \sec^4 x \sqrt{\tan x} \, dx \tag{8 marks}$$

QUESTION PART REFERENCE	Answer space for question 8

