MATHEMATICS
MPC3
Unit Pure Core 3

Thursday 18 January 20071.30 pm to 3.00 pm

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC3.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 Use the mid-ordinate rule with four strips of equal width to find an estimate for $\int_{1}^{5} \frac{1}{1+\ln x} \mathrm{~d} x$, giving your answer to three significant figures.

2 Describe a sequence of two geometrical transformations that maps the graph of $y=\sec x$ onto the graph of $y=1+\sec 3 x$.

3 The functions f and g are defined with their respective domains by

$$
\begin{aligned}
& \mathrm{f}(x)=3-x^{2}, \quad \text { for all real values of } x \\
& \mathrm{~g}(x)=\frac{2}{x+1}, \quad \text { for real values of } x, x \neq-1
\end{aligned}
$$

(a) Find the range of f .
(b) The inverse of g is g^{-1}.
(i) Find $\mathrm{g}^{-1}(x)$.
(ii) State the range of g^{-1}.
(c) The composite function gf is denoted by h .
(i) Find $\mathrm{h}(x)$, simplifying your answer.
(ii) State the greatest possible domain of h .

4 (a) Use integration by parts to find $\int x \sin x \mathrm{~d} x$.
(b) Using the substitution $u=x^{2}+5$, or otherwise, find $\int x \sqrt{x^{2}+5} \mathrm{~d} x$.
(c) The diagram shows the curve $y=x^{2}-9$ for $x \geqslant 0$.

The shaded region R is bounded by the curve, the lines $y=1$ and $y=2$, and the y-axis.

Find the exact value of the volume of the solid generated when the region R is rotated through 360° about the \boldsymbol{y}-axis.

5 (a) (i) Show that the equation

$$
2 \cot ^{2} x+5 \operatorname{cosec} x=10
$$

can be written in the form $2 \operatorname{cosec}^{2} x+5 \operatorname{cosec} x-12=0$.
(ii) Hence show that $\sin x=-\frac{1}{4}$ or $\sin x=\frac{2}{3}$.
(b) Hence, or otherwise, solve the equation

$$
2 \cot ^{2}(\theta-0.1)+5 \operatorname{cosec}(\theta-0.1)=10
$$

giving all values of θ in radians to two decimal places in the interval $-\pi<\theta<\pi$.

6 (a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when:
(i) $y=\left(4 x^{2}+3 x+2\right)^{10}$;
(ii) $y=x^{2} \tan x$.
(b) (i) Find $\frac{\mathrm{d} x}{\mathrm{~d} y}$ when $x=2 y^{3}+\ln y$.
(1 mark)
(ii) Hence find an equation of the tangent to the curve $x=2 y^{3}+\ln y$ at the point $(2,1)$.

7 (a) Sketch the graph of $y=|2 x|$.
(b) On a separate diagram, sketch the graph of $y=4-|2 x|$, indicating the coordinates of the points where the graph crosses the coordinate axes.
(c) Solve $4-|2 x|=x$.
(d) Hence, or otherwise, solve the inequality $4-|2 x|>x$.

8 The diagram shows the curve $y=\cos ^{-1} x$ for $-1 \leqslant x \leqslant 1$.

(a) Write down the exact coordinates of the points A and B.
(b) The equation $\cos ^{-1} x=3 x+1$ has only one root. Given that the root of this equation is α, show that $0.1 \leqslant \alpha \leqslant 0.2$.
(c) Use the iteration $x_{n+1}=\frac{1}{3}\left(\cos ^{-1} x_{n}-1\right)$ with $x_{1}=0.1$ to find the values of x_{2}, x_{3} and x_{4}, giving your answers to three decimal places.
(3 marks)

9 The sketch shows the graph of $y=4-\mathrm{e}^{2 x}$. The curve crosses the y-axis at the point A and the x-axis at the point B.

(a) (i) Find $\int\left(4-\mathrm{e}^{2 x}\right) \mathrm{d} x$.
(2 marks)
(ii) Hence show that $\int_{0}^{\ln 2}\left(4-\mathrm{e}^{2 x}\right) \mathrm{d} x=4 \ln 2-\frac{3}{2}$.
(b) (i) Write down the y-coordinate of A.
(ii) Show that $x=\ln 2$ at B.
(c) Find the equation of the normal to the curve $y=4-\mathrm{e}^{2 x}$ at the point B. (4 marks)
(d) Find the area of the region enclosed by the curve $y=4-\mathrm{e}^{2 x}$, the normal to the curve at B and the y-axis.

There are no questions printed on this page

There are no questions printed on this page

There are no questions printed on this page

