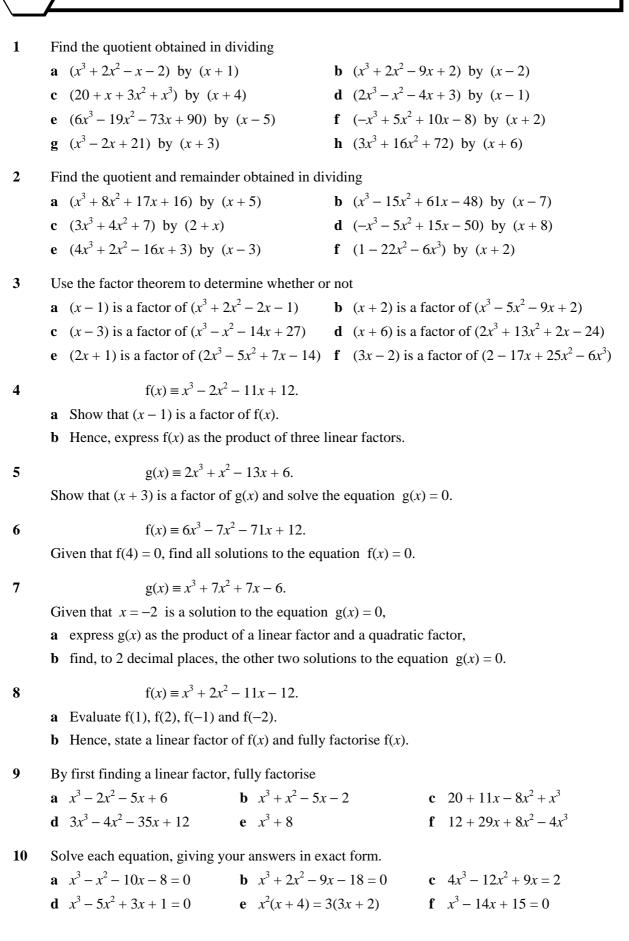
Worksheet A



C2

ALGEBRA

© Solomon Press

11

 $f(x) \equiv 2x^3 - x^2 - 15x + c.$

- Given that (x 2) is a factor of f(x),
- **a** find the value of the constant c,
- **b** fully factorise f(x).

12

$$g(x) \equiv x^3 + px^2 - 13x + q.$$

- Given that (x + 1) and (x 3) are factors of g(x),
- **a** show that p = 3 and find the value of q,
- **b** solve the equation g(x) = 0.
- 13 Use the remainder theorem to find the remainder obtained in dividing
 - **a** $(x^3 + 4x^2 x + 6)$ by (x 2)**b** $(x^3 2x^2 + 7x + 1)$ by (x + 1)**c** $(2x^3 + x^2 9x + 17)$ by (x + 5)**d** $(8x^3 + 4x^2 6x 3)$ by (2x 1)**e** $(2x^3 3x^2 20x 7)$ by (2x + 1)**f** $(3x^3 6x^2 + 2x 7)$ by (3x 2)
- 14 Given that when $(x^3 4x^2 + 5x + c)$ is divided by (x 2) the remainder is 5, find the value of the constant *c*.
- 15 Given that when $(2x^3 9x^2 + kx + 5)$ is divided by (2x 1) the remainder is -2, find the value of the constant k.
- 16 Given that when $(2x^3 + ax^2 + 13)$ is divided by (x + 3) the remainder is 22,
 - **a** find the value of the constant *a*,
 - **b** find the remainder when $(2x^3 + ax^2 + 13)$ is divided by (x 4).

17

$$f(x) \equiv px^3 + qx^2 + qx + 3$$

Given that (x + 1) is a factor of f(x),

a find the value of the constant *p*.

Given also that when f(x) is divided by (x - 2) the remainder is 15,

b find the value of the constant *q*.

18

$$\mathbf{p}(x) \equiv x^3 + ax^2 + 9x + bx$$

Given that (x - 3) is a factor of p(x),

a find a linear relationship between the constants a and b.

Given also that when p(x) is divided by (x + 2) the remainder is -30,

b find the values of the constants *a* and *b*.

19

$$f(x) \equiv 4x^3 - 6x^2 + mx + n.$$

Given that when f(x) is divided by (x + 1) the remainder is 3 and that when f(x) is divided by (2x - 1) the remainder is 15, find the values of the constants *m* and *n*.

20

 $g(x) \equiv x^3 + cx + 3.$

Given that when g(x) is divided by (x - 4) the remainder is 39,

- **a** find the value of the constant c,
- **b** find the quotient and remainder when g(x) is divided by (x + 2).

Worksheet B

1

C2

 $\mathbf{f}(x) \equiv x^3 - 5x^2 + ax + b.$

Given that (x + 2) and (x - 3) are factors of f(x),

a show that a = -2 and find the value of *b*.

ALGEBRA

b Hence, express f(x) as the product of three linear factors.

2

$$\mathbf{f}(x) \equiv 8x^3 - x^2 + 7.$$

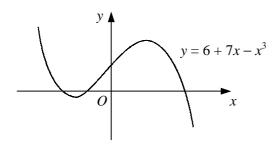
The remainder when f(x) is divided by (x - k) is eight times the remainder when f(x) is divided by (2x - k).

Find the two possible values of the constant *k*.

$$f(x) \equiv 3x^3 - x^2 - 12x + 4$$

- **a** Show that (x 2) is a factor of f(x).
- **b** Solve the equation f(x) = 0.

4



The diagram shows the curve with the equation $y = 6 + 7x - x^3$. Find the coordinates of the points where the curve crosses the *x*-axis.

5

$$f(x) \equiv 3x^3 + px^2 + 8x + q.$$

When f(x) is divided by (x + 1) there is a remainder of -4.

When f(x) is divided by (x - 2) there is a remainder of 80.

- **a** Find the values of the constants *p* and *q*.
- **b** Show that (x + 2) is a factor of f(x).
- **c** Solve the equation f(x) = 0.
- **6 a** Solve the equation

$$x^3 - 4x^2 - 7x + 10 = 0.$$

b Hence, solve the equation

$$y^6 - 4y^4 - 7y^2 + 10 = 0.$$

.

7

$$f(n) \equiv n^3 + 7n^2 + 14n + 3.$$

- **a** Find the remainder when f(n) is divided by (n + 1).
- **b** Express f(n) in the form

$$\mathbf{f}(n) \equiv (n+1)(n+a)(n+b) + c,$$

where a, b and c are integers.

c Hence, show that f(n) is odd for all positive integer values of n.

ALGEBRA

(6)

(2)

(2)

(3)

1	
T	

C2

	$f(x) \equiv x^3 + x^2 - 22x - 40.$	
a	Show that $(x + 2)$ is a factor of $f(x)$.	(2)
b	Express $f(x)$ as the product of three linear factors.	(4)
c	Solve the equation $f(x) = 0$.	(1)

2

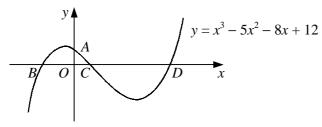
$$f(x) \equiv x^3 - 2x^2 + kx + 1.$$

Given that the remainder when f(x) is divided by (x - 2) and the remainder when f(x) is divided by (x + 3) are equal,

- **a** find the value of the constant k, (4)
- **b** find the remainder when f(x) is divided by (x + 2). (2)
- 3 The polynomial p(x) is defined by

$$p(x) \equiv 2x^3 - 9x^2 - 2x + 11$$

- **a** Find the remainder when p(x) is divided by (x + 2). (2)
- **b** Find the quotient and remainder when p(x) is divided by (x 4). (3)



The diagram shows the curve with the equation $y = x^3 - 5x^2 - 8x + 12$.

a State the coordinates of the point *A* where the curve crosses the *y*-axis. (1)

The curve crosses the x-axis at the points B, C and D. Given that C has coordinates (1, 0),

b find the coordinates of the points *B* and *D*.

5

$$\mathbf{f}(x) \equiv x^3 - 3x^2 + kx + 8$$

Given that (x - 1) is a factor of f(x),

a find the value of k,

b solve the equation f(x) = 0. (5)

6 Solve the equation

$$2x^3 + x^2 - 13x + 6 = 0. (7)$$

7 The polynomial p(x) is defined by

$$\mathbf{p}(x) \equiv bx^3 + ax^2 - 10x + b,$$

where a and b are constants.

Given that when p(x) is divided by (x + 1) the remainder is 3,

a find the value of *a*.

Given also that when p(x) is divided by (3x - 1) the remainder is -1,

b find the value of b.

Worksheet C continued

(2) (6)

(3)

(2) (3) (3)

(2)

(4)

(6)

(3) (2)

(2)

(1) (4)

(3)

(3)

8

9

10

11

12

13

14

15

$f(x) \equiv x^3 - 7x^2 + x + 10.$ a Find the remainder when $f(x)$ is divided by $(x + 1)$. b Hence, or otherwise, solve the equation $f(x) = 1$, giving your answers in exact form.
$f(x) \equiv 3x^3 + kx^2 - 7x + 2k.$ When f(x) is divided by (3x - 2) the remainder is 6. Find the value of the constant k.
$f(x) \equiv 2x^3 - 7x^2 + 4x - 3.$ a Show that $(x - 3)$ is a factor of $f(x)$. b Hence, express $f(x)$ as the product of a linear factor and a quadratic factor. c Show that there is only one real solution to the equation $f(x) = 0$.
The polynomial $f(x)$ is defined by $f(x) \equiv x^3 + px + q$, where p and q are constants. Given that $(x - 2)$ is a factor of $f(x)$, a find an expression for q in terms of p. Given also that when $f(x)$ is divided by $(x + 1)$ the remainder is 15
Given also that when $f(x)$ is divided by $(x + 1)$ the remainder is -15, b find the values of p and q. $f(x) \equiv x^3 + 4x^2 - 9.$
Given that $x = -3$ is a solution to the equation $f(x) = 0$, find the other two solutions correct to 2 decimal places.
$f(x) \equiv (x + k)^3 - 8.$ Given that when f(x) is divided by (x + 2) the remainder is -7, a find the value of the constant k, b show that (x + 1) is a factor of f(x).
$f(x) \equiv x^3 - 4x^2 - 7x + 8.$ a Find the remainder when f(x) is divided by (x + 2). Given that $g(x) \equiv f(x) + c,$ and that (x + 2) is a factor of g(x), b state the value of the constant c, c solve the equation $g(x) = 0.$
$f(x) \equiv x^3 - 4x + 1.$ Given that when $f(x)$ is divided by $(2x - k)$, where k is a constant, the remainder is 4, a show that $k^3 - 16k - 24 = 0.$ Given also that when $f(x)$ is divided by $(x + k)$ the remainder is 1, b find the value of k.