

MEI Structured Mathematics

Module Summary Sheets

C2, Concepts for Advanced Mathematics (Version B—reference to new book)

Topic 1: Algebra

1. Logarithms

2. Sequences and Series

Topic 2: Trigonometry

1. Trigonometrical Ratios

2. Triangles

Topic 3: Calculus

1. Differentiation

2. Integration

Topic 4: Curve Sketching

Purchasers have the licence to make multiple copies for use within a single establishment

© MEI September, 2004

MEI, Oak House, 9 Epsom Centre, White Horse Business Park, Trowbridge, Wiltshire. BA14 0XG. Company No. 3265490 England and Wales Registered with the Charity Commission, number 1058911 Tel: 01225 776776. Fax: 01225 775755. ____

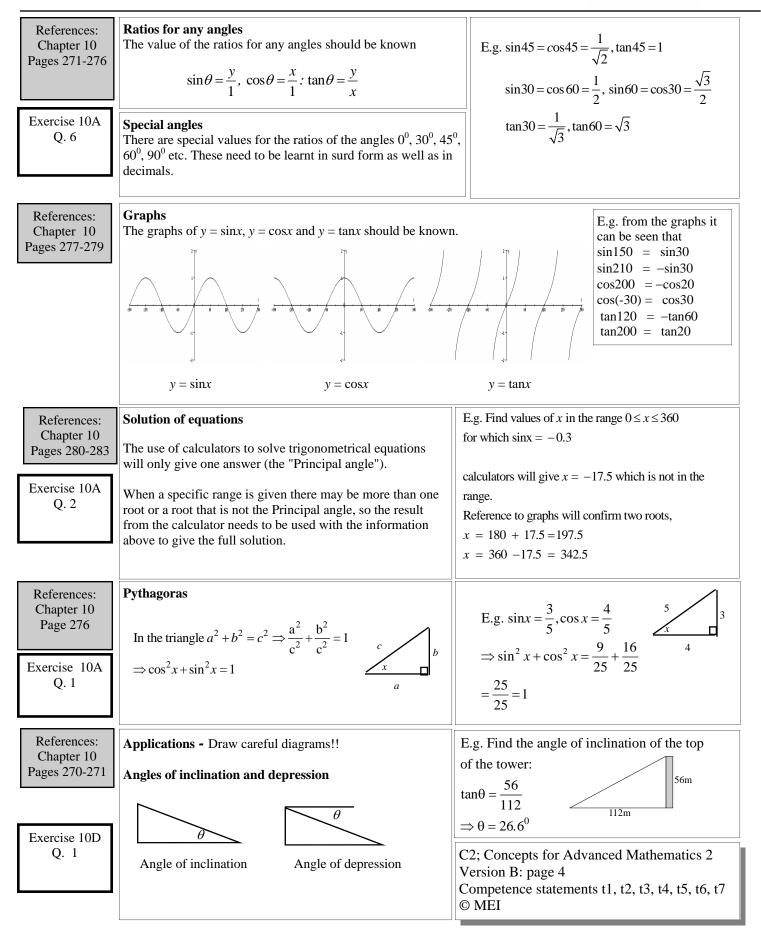
MEL

References: Chapter 11 Pages 319-323 Exercise 11A Q. 1(i), 6, 7(ii)	If $x = a^m$ then $m = \log_a x$ The following laws are derived from the lawsof indices.1. If $y = a^n$ then $n = \log_a y$, so $xy = a^{m+n}$ $\Rightarrow m + n = \log_a xy \Rightarrow \log_a x + \log_a y = \log_a xy$ Similarly:2. $\log x - \log y = \log \frac{x}{y}$ 3. $\log x^n = n \log x$ 4. $\log 1 = 0, \log_a a = 1$ 5. $\log \frac{1}{x} = -\log x$	s to caic ogs ase, ere-	E.g. $\log 3 + \log 4 = \log 12$ $\log 6 - \log 2 = \log 3$ $\log 4 = \log 2^2 = 2\log 2$ $\log \frac{1}{2} = -\log 2$ E.g. Evaluate $\log_2 8$ $\log_2 8 = \log_2 2^3 = 3\log_2 2 = 3$ E.g. Solve $2^x = 3$ Take logs: $\log 2^x = x \log 2 = \log 3$ $\Rightarrow x = \frac{\log 3}{\log 2} = 1.585$
References: Chapter 11 Page 324	Exponential functions If $y = \log_a x$ then $x = a^y$. The exponential function is the inverse of the log function and so their graphs are reflections in the line $y = x$.	$1.12^{n} = 2$ (N.B. this	and the smallest integer value of <i>n</i> for which $1.12^n = 2$ $a \Rightarrow n \log 1.12 = \log 2 \Rightarrow n = \frac{\log 2}{\log 1.12} = 6.12 \Rightarrow n = 7$ Is was done using logs to base 10 - any base would do
Exercise 11A Q. 2(i), (vi)	$\begin{array}{c} 4 \\ 3 \\ 2 \\ -6 \\ -4 \\ -2 \\ -1 \\ -2 \\ -3 \\ -4 \\ \end{array}$		uld find the value of the logs.) I values of a and b so that the data below fit the ax^{b} . $\frac{x \mid 1 2 3 4 5}{y \mid 3.00 4.24 5.20 6.00 6.71}$
References: Chapter 11 Pages 326-329 Exercise 11B Q. 3	Reduction to linear form The straight line $y = mx + c$ has gradient <i>m</i> and intercept <i>c</i> . A straight line graph can be identi- fied and these two values found. A curve cannot be identified so easily. Some curves can be transformed to straight lines by the use of loges. A set of data thought to fit one of two specific curves can therefore be tested.	$\frac{\log x \mid 0}{\log y \mid 0.48}$ These point i.e. $\log a =$	s so that the formula becomes $\log y = \log a + b \log x$ $\frac{0.30 0.48 0.60 0.70}{8 0.63 0.72 0.78 0.83}$ ints lie on a straight line with intercept 0.48. = 0.48 giving $a = 10^{0.48} \sim 3$ ent = $\frac{0.83 \cdot 0.48}{0.70 - 0} \sim 0.5 = b \Rightarrow y = 3x^{\frac{1}{2}} = 3\sqrt{x}$
	If a set of data is thought to obey the rule $y=ab^x$, then taking logs gives $\log y = \log a + x \log b (Y = Mx + c)$ i.e. plot logy against x, giving line with gradient $\log b$ and intercept $\log a$.	graph y =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	If a set of data is thought to obey the rule $y = ax^n$ then taking logs gives $\log y = \log a + n \log x (Y = MX + C)$ i.e. plot logy against logx, giving gradient <i>n</i> and intercept log <i>a</i> .	$\frac{x}{\log y}$	s so that the formula becomes $\log y = \log a + x \log b$ $\frac{0}{0.70} \frac{1}{0.18} \frac{2}{-0.35} \frac{3}{-0.85} \frac{4}{-1.40}$ ints lie on a straight line with intercept 0.70.
	C2; Concepts for Advanced Mathematics 2 Version B: page 2 Competence statements a1, a2, a3, a4, a5, a6, a7	gradient =	$= 0.7 \text{ giving } a = 10^{0.7} \sim 5$ $= \frac{-1.40 - 0.70}{4} \sim -0.525 = \log b$ $^{-0.525} \sim 0.3 \Rightarrow y = 5(0.3)^{x}$

Summary C2 Topic 1: Algebra—

Sequences and Series

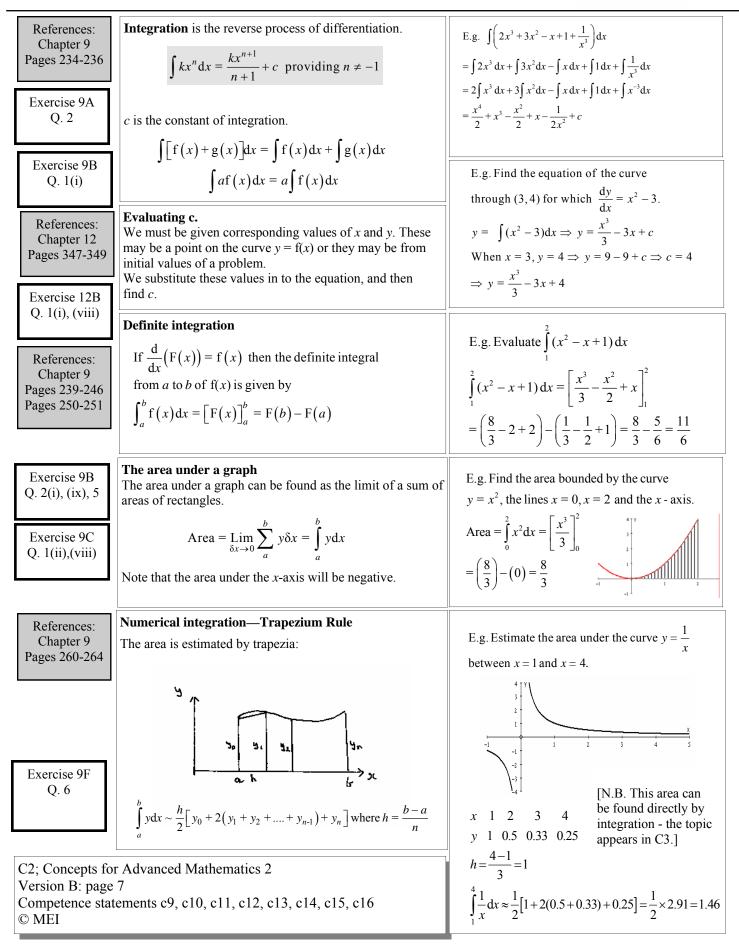
References: Chapter 7 Pages 160-162	Sequences and Series A sequence is a set of numbers in a given order. Each number is called a term. The k^{th} term is denoted a_k . The terms in the sequence may be defined by a law of connection. A series is a sequence of numbers added together. E.g. A sequence of numbers: 1, 3, 5, 7, $a_1 = 1, a_2 = 3$, etc A series of numbers S = 1 + 3 + 5 + 7 If there are a finite number of terms then the series may be	E.g. find the rule for the following sequences: (i) 1, 3, 5, 7, (ii) 1, 2, 4, 8, (iii) 2, 5, 10, 17, (i) $a_k = a_{k-1} + 2$ with $a_1 = 1$ or $a_k = 1 + 2(k - 1) = 2k - 1$ (ii) $a_k = 2a_{k-1}$ with $a_1 = 1$ or $a_k = 2^{(k-1)}$ (iii) $a_k = k^2 + 1$
Exercise 7A Q. 1(i),(iv),2(i), (iv)	summed to give a value This is written: $S_n = \sum_{k=1}^{k=n} a_k = a_1 + a_2 + \dots + a_n$ A series may have an infinite number of terms.	E.g. If $a_k = k(k+2)$ find $\sum_{k=1}^{5} a_k$ $\sum_{k=1}^{5} a_k = 1 \times 3 + 2 \times 4 + 3 \times 5 + 4 \times 6 + 5 \times 7 = 85$
References: Chapter 7 Pages 162-163 Pages 169-171 Exercise 7B	Arithmetic Sequences and Series A sequence of terms where the difference between consecutive terms is constant. i.e. $a_{k+1} - a_k = d$, called the common difference. If $a_1 = a$ and the common difference $= d$ then $a_k = a + (k - 1)d$ The sum to <i>n</i> terms, $S_n = \frac{n}{2}(2a + (n - 1)d)$	E.g. given the A.P. $2 + 5 + 8 +$ find (i) the 17th term and (ii) the sum to 20 terms. $a_{17} = a + 16d = 2 + 16 \times 3 = 50$ The sum to 20 terms is S_{20} where $S_{20} = \frac{20}{2} (2 \times 2 + 19 \times 3) = 610$
Q. 8 References: Chapter 7	If <i>l</i> is the last term then $S_n = \frac{n}{2}(a+l)$ Geometric Sequences and Series A sequence of terms where the ratio of consecutive terms is	E.g. given the G.P. $2 + 6 + 18 + \dots$ Find (i) the 5th term and (ii) the sum to 7 terms.
Pages 163-164 Pages 176-180 Exercise 7C Q. 3, 4	constant. i.e. $a_{k+1} \div a_k = r$, called the common ratio. If $a_1 = a$ and the common ratio $= r$ then $a_k = ar^{n-1}$ The second sec	$a = 3, r = 3 \Longrightarrow a_5 = ar^{n-1} = 2 \times 3^{4-1} = 54$ The sum to 7 terms, $S_7 = \frac{2(3^7 - 1)}{(3 - 1)} = 2186$
References: Chapter 7 Page 181	The sum to <i>n</i> terms, $S_n = \frac{a(r^n - 1)}{(r - 1)} = \frac{a(1 - r^n)}{(1 - r)}$ Infinite G.P. If $ r < 1$ then the terms converge as $r^n \to 0$ as $n \to \infty$	E.g. given the G.P. $16 + 8 + 4 + \dots$ find the sum to infinity. $a = 16, r = \frac{1}{2} \Rightarrow$ The sum to infinity, $S = \frac{a}{1-r}$
Exercise 7C Q. 8, 9	The sum to infinity, $S = \frac{a}{(1-r)}$	$=\frac{16}{(1-\frac{1}{2})}=32$
References: Chapter 7 Page 164	Periodicity and OscillationsA sequence which repeats itself at regular intervals is called <i>Periodic</i>.A sequence in which terms lie above and below a middle term is said to <i>oscillate</i>.	E.g. a sequence in which $a_{k+5} = a_k$ for all integers k has period 5. An oscillating sequence may be periodic, but it does not have to be.
Version B: page 3	Advanced Mathematics 2 3 ements s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12	E.g. a G.P. with $a = 81$ and $r = -\frac{1}{3}$ $\Rightarrow 81,-27, 9,-3, 1,-\frac{1}{3},$



Summary C2 Topic 2: Trigonometry - 2

References: Chapter 10 Page 271 Exercise 10D Q. 3	Bearings The bearing of one place from another is the compass direction measured as an angle clockwise from North to the line A B between the two places.	E.g. A boat B leaves a harbour A. It travels for 4km on a bearing 200 ⁰ . How far north must it travel before it is due west of A? $\sin 70^{\circ} = \frac{x}{4}$ $x = 4 \sin 70^{\circ} \Rightarrow x = 3.76 \text{ km}$
References: Chapter 10 Pages 285-297 Exercise 10B Q. 1(i), 2(i) Exercise 10C Q. 1(i), 2(i) Exercise 10E Q. 1(iv)	General Triangle Cosine rule : $a^2 = b^2 + c^2 - 2bc\cos A$ A CSine rule : $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ a(care should be taken in the 'ambiguous' case: eg.sin $x=0.5 \Rightarrow x = 30^{\circ} \text{ or } 150^{\circ}$)Area = $\frac{1}{2}ab\sin C$ Problem solving • Draw a good clear diagram, especially in 3-D problems • Pick out and redraw any relevant triangles • Use appropriate trigonometrical formulae	E.g. Solve the triangle $a^{2} = 5^{2} + 6^{2} - 2.5.6 \cos 60$ $a^{2} = 31 \Rightarrow a = 5.57$ $\frac{5.57}{\sin 60^{\circ}} = \frac{6}{\sin C}$ $\sin C = \frac{6 \sin 60^{\circ}}{5.57} \Rightarrow C = 69^{0}$ $B = 180 - 60 - 69 = 51^{0}$ $\operatorname{Area} = \frac{1}{2} \times 5 \times 6 \times \sin 60^{\circ} = 13 \operatorname{units}^{2}$
References: Chapter 10 Pages 299-302 Exercise 10F Q. 1(i),(iv),(ix) 2(i),(iv), (ix)	Circular Measure Angles are measured in degrees and also in radians. Radians are particularly useful for circular measurement. 1 radian = the angle subtended by an arc length of 1 unit in a circle of radius 1 unit. 1 revolution = $360^\circ = 2\pi$ radians 1 rad	E.g. $30^{\circ} = 30 \times \frac{2\pi}{360} = \frac{\pi}{6}$ rad $3 \text{ rad} = 3 \times \frac{360}{2\pi} \approx 171.9^{\circ}$ E.g. $\sin \pi = 0$, $\cos \frac{\pi}{3} = 0.5$
References: Chapter 10 Pages 303-304 Exercise 10G Q. 5	Length of arc and area of sector Arc length, $s = r\theta$ Area of sector, $A = \frac{1}{2}r^2\theta$	E.g. Find the arc length and area of the sector of a circle, radius 3 cm and angle 60° . $60^{\circ} = \frac{\pi}{3} \Rightarrow \operatorname{Arc} = 3 \times \frac{\pi}{3} = \pi \text{ cm}$ $\Rightarrow \operatorname{Area} = \frac{1}{2} \times 3^{2} \times \frac{\pi}{3} = \frac{3\pi}{2} \text{ cm}^{2}$
References: Chapter 10 Pages 311-314 Exercise 10H Q. 1(ii),(iv),(v)5	Transformations $y = \sin x + a$ represents a translation <i>a</i> units parallel to the <i>y</i> -axis. $y = a \sin x$ represents a one way stretch of scale factor <i>a</i> parallel to the <i>y</i> -axis. $y = \sin ax$ represents a one way stretch of scale factor $\frac{1}{a}$ parallel to the <i>x</i> -axis.	C2; Concepts for Advanced Mathematics 2 Version B: page 5 Competence statements t8, t9, t10, t11 © MEI

References: Chapter 8 Pages 191-19		E.g. Find the gradient function of the following: (i) $y = x^{3}$ (ii) $y = 3x^{2} + 4x - 2 + \frac{2}{3}$
References: Chapter 8	The gradient function $\frac{dy}{dx}$ is defined by $\lim_{\delta x \to 0} \frac{\delta y}{\delta x} = \frac{dy}{dx}$	(i) $y = x^3 \Rightarrow \frac{dy}{dx} = 3x^2$
Pages 197-20	Given a function $y = f(x)$ we can differentiate to find the <i>gradient function</i> or the <i>derivative</i> .	(ii) $y = 3x^2 + 4x - 2 + \frac{2}{x} \Rightarrow \frac{dy}{dx} = 6x + 4 - \frac{2}{x^2}$ (Note that the gradient function of kx is k
Exercise 8E Q. 1(i),(ix)	If $y = f(x) = ax^n$ then $\frac{dy}{dx} = f'(x) = nax^{n-1}$	and of a constant is 0.) E.g. Find the gradient of the tangent to the curve $y = x^2 + 1$ at the point (2, 5).
References: Chapter 12 Pages 339-34	The function must be a summation (or difference) of terms before it can be differentiated. If $y = f(x) + g(x)$ then $\frac{dy}{dx} = f'(x) + g'(x)$	$y = x^{2} + 1 \Rightarrow \frac{dy}{dx} = 2x$ When $x = 2$, $\frac{dy}{dx} = 2 \times 2 = 4$
Exercise 12A		
Q. 1(i), (viii)	The gradient of the tangent at a point on the curve is the gradient of the curve.	E.g. Find the stationary points on the curve $y = x^3 - 6x^2 + 9x - 4$ and determine which is a maximum and which is a minimum.
References: Chapter 8 Pages 206-20	The normal to the curve at a point is perpendicular to the tangent. Hence the equation of the tangent at the point (x_1,y_1)	$y = x^{3} - 6x^{2} + 9x - 4 \Longrightarrow \frac{dy}{dx} = 3x^{2} - 12x + 9$
Exercise 8D	Is $y - y_1 = m(x - x_1)$ where <i>m</i> is the gradient of the curve at the point found above. The equation of the normal is $y - y_1 = m'(x - x_1)$ where	$= 0 \text{ when } 3(x^2 - 4x + 3) = 0 \Longrightarrow 3(x - 3)(x - 1) = 0$ $\Rightarrow x = 1, 3. \text{ When } x = 1, y = 0; \text{ When } x = 3, y = -4$
Q. 5	mm' = -1.	$\frac{dy}{dx} = 3(x-3)(x-1);$
References: Chapter 8 Pages 210-21 Pages 217-22		For the point (1,0); When $x < 1$, $\frac{dy}{dx} = -ve$ $ve = +ve$ and when $x > 1$, $\frac{dy}{dx} = -ve$. + $ve = -ve$, giving maximum. For the point (3,-4); When $x < 3$, $\frac{dy}{dx} = -ve$. + $ve = -ve$
Exercise 8E Q. 2, 11		and when $x > 3$, $\frac{dy}{dx} = +ve. + ve = +ve$, giving minimum.
	-ve 0 +ve 0 -ve	E.g. Find the equation of the tangent and normal to the curve $y = x^2 - 5x + 3$ at the point (1,-1).
	Minimum / Maximum ($\frac{dy}{dx} = 2x - 5$. When $x = 1$, $\frac{dy}{dx} = -3$
Exercise 8F	$1 \qquad e \qquad -ve \qquad 0$	$\Rightarrow \text{Gradient of tangent} = -3, \text{Gradient of normal} = \frac{1}{3}$ $\Rightarrow \text{Tangent} : y+1 = -3(x-1) \Rightarrow y+3x = 2$
Q. 2	+ve Stationary point of inflection	Normal: $y + 1 = \frac{1}{3}(x - 1) \implies 3y - x = -4$
References: Chapter 8 Pages 221-22	2nd derivatives The gradient of a curve is itself a function and so has a	For the use of 2nd derivatives to identify the nature of stationary points, see Page 8.
Exercise 8G		C2; Concepts for Advanced Mathematics 2 Version B: page 6 Competence statements c1, c2, c3, c4, c5, c6,
Q. 1	This is denoted f''(x) = $\frac{d^2 y}{dx^2}$	c7, c8 © MEI



Q. 10

Q. 6

