

C2 Formulae Given in Mathematical Formulae and Statistical Tables Booklet

• Cosine Rule

$$\circ \quad a^2 = b^2 + c^2 - 2bc \ cosine \ (A)$$

• Binomial Series

$$\circ (a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{b2} + \dots + \binom{n}{r} a^{n-r} b^r + \dots + b^n$$

- where $(n \in \mathbb{N})$
- and $\binom{n}{r} = {}^n c_r = \frac{n!}{r!(n-r)!}$
- $(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{1 \times 2} + \dots + \frac{n(n-1)\dots(n-r+1)x^r}{1 \times 2 \times \dots \times r} + \dots$
 - $(|x| < 1, n \in \mathbb{R})$
- Logarithms and Exponentials

$$\circ log_a x = \frac{\log_b x}{\log_b a}$$

• Geometric Series

$$\circ u_n = ar^{n-1}$$

$$\circ S_n = \frac{a(1-r^n)}{1-r}$$

$$\circ \quad S_{\infty} = \frac{1}{1-r} \text{ for } |r| < 1$$

• Numerical Integration

$$\circ \int_a^b y \ dx \approx \frac{1}{2} h \left\{ (y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n_1}) \right\}, where \ h = \frac{b-a}{n}$$

Algebra and Functions

- If f(x) is a polynomial and $f(\alpha) = 0$, then $(x \alpha)$ is a factor of f(x)
- If f(x) is a polynomial and $f\left(\frac{b}{a}\right) = 0$, then (ax b) is a factor of f(x)
- If a polynomial f(x) is divided by (ax b) then the remainder is $f(\frac{b}{a})$

The Sine and Cosine Rule

• The sine rule is:

$$\begin{array}{ll}
\circ & \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \\
\circ & \frac{\sin A}{a} = \frac{\sin B}{b} = \frac{\sin C}{c}
\end{array}$$

- You can use the sine rule to find an unknown side in a triangle if you know two
 angles and the length of one of their opposite sides
- You can use the sine rule to find an unknown angle in a triangle if you know the lengths of two sides and one of their opposite angles
- The cosine rule is:

o
$$a^2 = b^2 + c^2 - 2bc \cos(A)$$

o $b^2 = a^2 + c^2 - 2ac \cos(B)$
o $c^2 = a^2 + b^2 - 2ab \cos(C)$

- You can use the cosine rule to find an unknown side in a triangle if you know the lengths of two sides and the angle between them
- You can use the cosine rule to find an unknown angle if you know the lengths of all three sides
- The rearranged form of the cosine rule used to find an unknown angle is:

$$cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

$$cos B = \frac{a^2 + c^2 - b^2}{2ac}$$

$$cos C = \frac{a^2 + b - c^2}{2ab}$$

• You can find the area of a triangle using the formula

$$\circ \quad Area = \frac{1}{2}ab\sin C$$

If you know the length of two sides (a and b) and the value of the angle C between them

Exponentials and Logarithms

- A function $y = a^x$, or $f(x) = a^x$, where a is a constant, is called an exponential function
- $log_a n = x$ means that $a^x = n$, where a is called the base of the logarithm
- $log_a 1 = 0$
- $log_a a = 1$
- log₁₀ x is sometimes written as log x
- The laws of logarithms are

o
$$log_a xy = log_a x + log_a y$$
 (the multiplication law)

o
$$log_a xy = log_a x + log_a y$$
 (the multiplication
o $log_a \left(\frac{x}{y}\right) = log_a x - log_a y$ (the division law)
o $log_a (x)^k = k log_a x$ (the power law)

From the power law,

$$\circ \log_a\left(\frac{1}{x}\right) = -\log_a x$$

- You can solve an equation such as a^x = b by first taking logarithms (to base 10) of each side
- The change of base rule for logarithms can be written as:

$$\circ log_a x = \frac{\log_b x}{\log_b a}$$

From the change of base rule:

$$\circ log_a b = \frac{1}{\log_b a}$$

Coordinate Geometry in the (x, y) Plane

• The mid-point of (x_1, y_1) and (x_2, y_2) is $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

• The distance d between (x_1, y_1) and (x_2, y_2) is $d = \sqrt{[(x_2 - x_1)^2 + (y_2 - y_1)^2]}$

• The equation of the circle centre (a, b) radius r is $(x-a)^2 + (y-b)^2 = r^2$

 A chord is a line that joins two points on the circumference of a circle

• The perpendicular from the centre of a circle to a chord bisects the chord

• The angle in a semi-circle is a right angle

• A tangent is a line that meets the circle at one point only

The angle between a tangent and a radius is 90°

The Binomial Expansion

- You can use Pascal's Triangle to multiply out a bracket
- You can use combinations and factorial notation to help you expand binomial expressions. For larger indices it is quicker than using Pascal's Triangle
- $n! = n \times (n-1) \times (n-2) \times (n-3) \times ... \times 3 \times 2 \times 1$
- The number of ways of choosing r items from a group of n items is written $\binom{n}{r}$ or $\binom{n}{r}$ or $\binom{n}{r}$
- The binomial expansion is:

$$(a+b)^n = a^n + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{b2} + \dots + \binom{n}{r} a^{n-r} b^r + \dots + b^n$$

• $(1+x)^n = 1 + nx + \frac{n(n-1)x^2}{1 \times 2} + \dots + \frac{n(n-1)\dots(n-r+1)x^r}{1 \times 2 \times \dots \times r} + \dots$

Radian Measure and its Applications

If the arc AB has length r, then ∠AOB is 1 radian (1^c or 1 rad)

- A radian is the angle subtended at the centre of a circle by an arc whose length is equal to that of the radius of the circle
- $1 radian = \frac{180^{\circ}}{\pi}$
- The length of an arc of a circle is $l = r \theta$

• The area of a sector is $A = \frac{1}{2}r^2\theta$

• The area of a segment in a circle is $A = \frac{1}{2}r^2(\theta - \sin \theta)$

Geometric Sequences and Series

- In a geometric series you get from one term to the next by multiplying by a constant called the common ratio
- The formula for the n^{th} term = ar^{n-1} where a = the first term and r = the common ratio
- The formula for the sum to *n* terms is

$$S_n = \frac{a(1-r^n)}{1-r} \text{ or,}$$

$$S_n = \frac{a(r^n-1)}{r-1}$$

• The sum to infinity exists if |r| < 1 and is $S_{\infty} = \frac{a}{1-r}$

Graphs of Trigonometric Functions

• The x-y plane is divided into quadrants

• For all values of Θ , the definitions of Sin (Θ) , Cos (Θ) and Tan (Θ) are taken to be ... where x and y are the coordinates of P and r is the radius of the circle

$$\circ \quad \sin \theta = \frac{y}{r}$$

$$\circ \quad \cos \theta = \frac{x}{r}$$

$$\circ \tan \theta = \frac{y}{x}$$

• A cast diagram tell you which angles are positive or negative for Sine, Cosine and Tangent trigonometric functions:

 In the first quadrant, where Θ is acute, All trigonometric functions are positive

 In the second quadrant, where Θ is obtuse, only sine is positive

ο In the third quadrant, where Θ is reflex, 180° < Θ < 270° , only tangent is positive

O In the fourth quadrant where Θ is reflex, $270^{\circ} < \Theta < 360^{\circ}$, only cosine is positive

• The trigonometric ratios of angles equally inclined to the horizontal are related :

○ Sin
$$(180 - \Theta)^{\circ} = \sin \Theta^{\circ}$$

$$\circ$$
 Sin (180 + Θ)° = - Sin Θ°

$$\circ$$
 Sin (360 - Θ)° = - Sin Θ°

$$\circ$$
 Cos (180 - Θ)° = - Cos Θ °

$$\circ$$
 Cos (180 + Θ)° = - Cos Θ °

$$\circ \quad \cos (360 - \Theta)^{\circ} = \cos \Theta^{\circ}$$

O Tan
$$(180 - Θ)^{\circ} = - Tan Θ^{\circ}$$

O Tan
$$(180 + Θ)^{\circ}$$
 = Tan $Θ^{\circ}$

O Tan
$$(360 - Θ)^{\circ} = - Tan Θ^{\circ}$$

• The trigonometric ratios of 30°, 45° and 60° have exact forms, given below:

	Sine (O)	Cosine (O)	Tangent (Θ)
30°	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$
45°	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1
60°	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	√3

- The sine and cosine functions have a period of 360° , (or 2π radians). Periodic properties are :
 - \circ Sin (Θ ± 360°) = Sin Θ
 - \circ Cos (Θ ± 360°) = Cos Θ
- The tangent function has a period of 180° , (or π radians). Periodic property is:
 - \circ Tan (Θ ± 180°) = Tan Θ
- Other useful properties are
 - \circ Sin $(-\Theta) = -\sin\Theta$
 - $\circ \quad \textit{Cos (-\Theta)} = \textit{Cos }\Theta$
 - \circ Tan $(-\Theta) = -$ Tan Θ
 - $\circ \quad Sin (90^{\circ} \Theta) = Cos \Theta$
 - \circ Cos (90° Θ) = Sin Θ

Differentiation

- For an increasing function f(x) in the interval (a, b), f'(x) > 0 in the interval $a \le x \le b$
- For a decreasing function f(x) in the interval (a, b), f'(x) < 0 in the interval $a \le x \le b$
- The points where f(x) stops increasing and begins to decrease are called maximum points
- The points where f(x) stops decreasing and begins to increase are called minimum points
- A point of inflection is a point where the gradient is at a maximum or minimum value in the neighbourhood of the point
- A stationary point is a point of zero gradient. It may be a maximum, a minimum or a point of inflection
- To find the coordinates of a stationary point:
 - o find $\frac{dy}{dx}$ (The gradient function)
 - Solve the equation f'(x) = 0 to find the value, or values, of x
 - Substitute into y = f(x) to find the corresponding values of y
- The stationary value of a function is the value of y at the stationary point. You can sometimes use this to find the range of a function
- You may determine the nature of a stationary point by using the second derivative
 - O If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} > 0$, the point is a minimum point
 - \circ If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} < 0$, the point is a maximum point
 - o If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} = 0$, the point is either a maximum, minimum, or point of inflection
 - \circ If $\frac{dy}{dx} = 0$ and $\frac{d^2y}{dx^2} = 0$, but $\frac{d^3y}{dx^3} \neq 0$, then the point is a point of inflection
- In problems where you need to find the maximum or minimum value of a variable y, first establish a formula for y in terms of x, then differentiate and put the derived function equal to zero to then find x and then y

Trigonometrical Identities and Simple Equations

- $Tan \theta = \frac{Sin \theta}{Cos \theta}$ (providing Cos $\Theta \neq 0$, when Tan Θ is not defined)
- $Sin^2\theta + Cos^2\theta = 1$
- A first solution of the equation $\sin x = k$ is your calculator value, $\alpha = \sin^{-1} k$. A second solution is $(180^{\circ} \alpha)$, or $(\pi \alpha)$ if you are working in radians. Other solutions are found by adding or subtracting multiples of 360° or 2π radians.
- A first solution of the equation $\cos x = k$ is your calculator value, $\alpha = \cos^{-1} k$. A second solution is $(360^{\circ} \alpha)$, or $(2\pi \alpha)$ if you are working in radians. Other solutions are found by adding or subtracting multiples of 360° or 2π radians.
- A first solution of the equation $\operatorname{Tan} x = k$ is your calculator value, $\alpha = \operatorname{Tan}^{-1} k$. A second solution is $(180^{\circ} + \alpha)$, or $(\pi + \alpha)$ if you are working in radians. Other solutions are found by adding or subtracting multiples of 180° or π radians.

Integration

- The definite integral $\int_a^b f'(x) dx = f(b) f(a)$
- The area beneath a curve with equation y = f(x) and between the lines x = a and x = b is:

$$\circ \quad Area = \int_a^b f(x) dx$$

 The area between a line (equation y₁) and a curve (equation y₂) is given by:

$$\circ Area = \int_a^b (y1, y2) dx$$

• The Trapezium rule is:

$$\circ \int_a^b y \ dx \approx \frac{1}{2} h \{ (y_0 + y_n) + 2(y_1 + y_2 + \dots + y_{n_1}) \}$$

• where $h = \frac{b-a}{n}$ and $y_i = f(a + ih)$

