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1 Algebra

Polynomials

A polynomial is an expression of the form

Lo ax + aiX + ag

anX" + a1 X
where all the powers of x are positive integers or 0.
Addition, subtraction and multiplication of polynomials are easy, division must be done by
long division.
Factorising
General examples of factorising:

2ab + 6ac? = 2a(b + 3c¢?)

X2-5x+6=(x-2)(x-23)

x> - 6x = X(x—6)

6x> — 11x — 10 = (3x + 2)(2x — 5)

2ax — 3by — 6ay + bx = 2ax — 6ay + bx — 3by
2a(x — 3y) +b(x—3y)
(2a + b)(x - 3y)

Standard results
X —y? = (x—-y)(x+y), difference of two squares

(x+y)* = X* +2xy +Y,

(X=y)* = X*=2xy +y’

Long division

Example:
3 - 5x + 9
2%+ 3 -1 )6t - %3 + x -3
6x! + 9x® — 3%°
-10x° +3%* + x -3

-10x® —15x* + 5x
18x% - 4x - 3
18X +27x - 9
~-31x + 6

— when 6x* - x> +x—3 is divided by 2x*+3x -1,
the quotient is 3x?—5x + 9, and the remainder is —31x + 6.
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Remainder theorem

If 627 is divided by 6 the quotient is 104 and the remainder is 3.
This can be written as 627 =6 x 104 + 3.

In the same way, if a polynomial

P(X) = ag + aiX + axx* + ... ax" is divided by (cx + d) to give a quotient, Q(x) with a
remainder r, then r will be a constant (since the divisor is of degree one) and we can write

PX)=(cx+d)xQ(X) + r
If we now choose the value of x which makes (cx +d) =0 = x =%,
then we have P(-%) =0x Q(x) + r

=  P(%)=r.

Theorem: Ifweput x =" inthe polynomial we obtain r, the remainder that we would
have after dividing the polynomial by (cx + d).

Example: The remainder when P(x) = 2x3+ax? + bx + 9 is divided by (2x — 3) is -6, and
when P(x) is divided by (x + 2) the remainder is 1.

Find the values of a and b.

Solution:  (2x—3) =0 when x = /5,
= dividing P(x) by (2x - 3) gives a remainder
PO =2x (3)° +ax (4 +bx (%) +9=-6
= 3a+2b = -29 |

and (x+2)=0 when x=-2,
= dividing P(x) by (x + 2) gives a remainder
P(-2) =2x (-2)%+ax(-2)’+bx(-2)+9=1
= 4a-2b=8 I

I +11 = 7a=-21

= a=-3

using | weget b=-10
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Factor theorem

Theorem: If, in the remainder theorem, r =0 then (cx + d) is a factor of P(x)
= P(%)=0 <«  (cx+d)isafactor of P(x).

Example: A quadratic equation has solutions (roots) x = */, and x = 3. Find the quadratic
equation in the form ax®* + bx+c¢ =0

Solution: The equation has roots x="% and x=3
= it must have factors (2x +1) and (x—3) by the factor theorem
= an equationis (2x+1)(x-3)= 0

= 2x% —5x -3 =0. or any multiple

Example: Show that (x - 2) is a factor of P(x) = 6x® — 19x* + 11x + 6 and hence factorise
the expression completely.

Solution: Choose the value of x which makes (x-2)=0,i.e.x=2
= remainder =P(2) =6x8-19x4+11x2+6=48-76+22+6=0
= (x = 2) is a factor by the factor theorem.

We have started with a cubic and so we the other factor must be a quadratic, which can
be found by long division or by ‘common sense’.

=  B6C—19%+11x+6 = (x—2)(6x°—-T7x-23)
= (x-2)2x-3)(3x + 1)
which is now factorised completely.
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Choosing a suitable factor

To choose a suitable factor we look at the coefficient of the highest power of x and the
constant (the term without an x).

Example: Factorise 2x° + x*— 13x + 6.

Solution: 2 is the coefficient of x* and 2 has factors of 2 and 1.
6 is the constant term and 6 has factors of 1,2, 3and 6
—  the possible linear factors of 2x3+x*—13x+6 are
(x£1), (x £ 2), (x£3), (x £ 6)
(2x £ 1), (2x £ 2), (2x £ 3), (2x £ 6)

But (2x+2)=2(x+1) and (2x*6) = 2(x + 3), so they are not new factors.

We now test the possible factors using the factor theorem until we find one that works.
Test (x—1), put x=1 giving 2x1°+1°-13x1+6 =0
Test (x+1), put x=-1 giving 2 x (<1)*+ (-1)*-13x (1) +6 =0
Test (x—2), put x=2 giving 2x28+22-13x2+6=16+4-26+6=0
and since the result is zero (x—2) is a factor.

We now divide to give

23 +x2-13x+6 = (x—2)(2¢ + 5x —3)
= (x=-2)(2x - 1)(x +3).
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Cubic equations

Factorise using the factor theorem then solve.

N.B. The quadratic factor might not factorise in which case you will need to use the
formula for this part.

Example: Solve the equation 2x*+x*-3x+1 = 0.

Solution: Possible factorsare (x+1) and (2x = 1).

Put x=1 wehave 2x13+1°-3x1+1 =1 # 0
= (x-1) is nota factor

Put x=-1 we have 2 x (-1)*+ (1) =3x(-1)+1 = 3 # 0
= (x +1) isnota factor

Putting x:% we have 2><G)3+(%)2—3><% +1=0

= (2x—=1) isafactor

= 2+ =3+1=(2x-1)(*+x-1) =0

= X = % or X*+x-1=0 - thiswill not factorise so we use the formula
— — 2 J— J—
= x:% or x= 1+ \/( 1" — 4x1x(-1) = 0-618 or -1-618 to 3 D.P.

2x1
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Trigonometry

Radians

of length equal to the radius.

Connection between radians and degrees

180° = ~°¢

Degrees 30 45 60 90 120 135 150
Radians "6 s s T 3 Yl

Arc length , area of a sector and area of a segment

r

Arc length s=r@

. _ 1
< O radians s=r0 Area of sector A=-r

r

r

Area of segment

6 radians

=2120 - = rsiné.
2 2

W i

180 270

T 3 72'/2

20,

= area sector — area of triangle

A radian is the angle subtended at the centre of a circle by an arc

360
27

C2 JUNE 2016 SDB



Trigonometric functions

Basic results

tan A= >n ﬁ; sin(-A) = =sin A; cos(—A) = cos A; tan(-A) = —tan A.
cos

Exact values for 30°, 45° and 60°

From the equilateral triangle of side 2 we can see that
30°
sin60° = %, sin30° = Y% 2 i
cos 60° = % cos30° =
tan 60° = 3 tan30° = Yy N8O
1
From the isosceles right-angled triangle with sides 1, 1, V2
we can see that
sin45° = Y/, 1 V2
cos 45° = 1/,
tan45° = 1 m a5”
1

Sine and cosine rules and area of triangle

C

Sine rule
a b ¢
sinA sinB sinC

be careful — the sine rule always gives you two answers for each angle,
so if possible do not use the sine rule to find the largest angle as it might be obtuse;

you may be able to use the cosine rule.
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Ambiguous case

Example: In a triangle PQR, PQ = 10, ZQPR = 40°and QR =8.
Find ZPRQ.

Solution: If we draw PQ and an angle of
40°, there are two possible positions for
R, giving two values of ZPRQ.

The sine rule gives

sin40 _ sinR

8 10
= sin R =0-80348...

= R = 53.5° or 180-53.5 = 126.5° both answers are correct

Cosine rule

a®=b? + ¢® - 2bc cosA

You will always have unique answers with the cosine rule.

Area of triangle

Area of atriangle = 1absinC = fbcsinA = lacsinB.

Graphs of trigonometric functions

y .
y=sinx Yy=COsX
X X

-90 % | 1 270 60 -90 ‘ 9 180 0 | 360
-1

<g:"""_'

y =sin X Yy = COS X y =tan x
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Graphs of y =sin nx, y =sin(-x), y =sin(x + n) etc.

You should know the shapes of these graphs

y =sin 3x y
y=sin3x

y =sin 3x is like y =sin x
but repeats itself 3 times for 0° <x <360°% or0<x<27x°

i P
y=tanx y=tan(-x)= -tanx

y=sinx

x

1 -90 90 8
y=sin(-x)= -sinx -1
- i
y= f(x) =sinx y =f(x) =tan x
=  forareflection in the y-axis, = for areflection in the y-axis,
f(—x) = sin(—x) = -sinx, f(—x) = tan(-x) = —tanx,
and for a reflection in the x-axis, and for a reflection in the x-axis,
—f (x) =-sin x —f (x) = —tan x
= same graph for both reflections = same graph for both reflections

y = cos(-x) and —cos X

y = cos(—x) is the same as the graph of y =f (x) = cos x, since the graph of y = cos x
is symmetrical about the y-axis, and f (—x) = cos(-x) = cos X.

21y

But y = —cos x = —f (x) is a reflection Jcose
of y = f (x) = cos x in the x-axis. /\/ )
-180 ] e 180
\/\ y= —Cosx

-2

y =sin(x + 30)

y=sinx

y =sin(x + 30) is the graph of y=sin(cs30)

-90 90 18 270

-30
y = sin x translated through ( 0 )

-2
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Solving trigonometrical equations

Examples: Solve (a) sin x = 0-453, (b) cos x=-0-769, (c) sinx=-0-876,
(d) tanx=1-56, for0<x < 360°

Solutions:

(@ sinx=0-453 Y, msin

= Xx=269 y=o.4531

using the graph we see that X

90 18 270 60

x=180-26-9 | X269 x=180-26.9

= x=269 or 153-1

(b) cosx=-0-769 Yy =cosx

=  x=1403 S i

using the graph we see that ™ A SN
= 360 - 140.3 y=_0.76: 9 180 70 360

= X = 140-3 or 219.7 x=140.2 x=360-140.2

(c) sinx=-0-876

y

= Xx=-61.2 1 y=sinx

using the graph we see that ﬁ
X =180 + 61-2 -90 N 90 18 270 Wo

y=-0.

or x=360-61-2 =1
<= 2412 or 298.8 x=-61.2 x=180+61.2  x=360-61.2

= = . .

(d) tanx=1.56 o1y

= x=573 y=1.56 1

using the graph we see that A /(
x =180+ 57-3 s 90 /(80 270 /feo

x=57.3 x=180+57.3
= x=57-3 or 237-3 -1
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Example: Solve sin (x — %) =0.5 for 0°<x<2xn®, giving your answers in radians in

terms of x.
21Y

Solution: First put X =x -~
51 y=0.5 !

y=sinX

sinX=05 = X = z or 7[...13 =
6 6

X

T 51
= X=X=-=—== o0 —
6 6
51 131
= X=— _—.
12 12

X=m/6

/2

WW
X=m-n/6

Example: Solve cos 2x =0-473 for 0°<x < 360° giving your answers to the nearest

degree.

Solution: First put X = 2x and find all solutions of cos X = 0-473 for 0° < X <720°

= X = 61.77.., or 360-61.77... = 298.-22.

or 61.77... + 360 =421.77..., or 298.22... + 360 = 658-22...
le. X=61.77.., 298.22...,421.77..., 658-22...

= X= %X = 31° 149° 211°, 329° to the nearest degree.

Using identities
sin A
cos A

Q) using tanA =

Example: Solve 3sinx = 4 cos x.

Solution: First divide both sides by cos x
sin X

COSX
= x=53-1° or 180 +53-1 = 233-1°.

= 3

C2 JUNE 2016 SDB

4 = 3tanx=4 = tanx=%;

13



(i)

Example:

Solution:

=
=

=

=

=

Also

-12 -
= tanA = 5—43 = %: =24,

using  sin’A +cos’A = 1

Given that cos A = % and that 270° < A < 360°, find sin A and tan A.

We know that sin?A + cos?A

sinA = 1-cos’A

2
. 5 144
sinta =1 (£) = 142
13 169
. 12
SINA = +—
13

But 270° < A < 360°

sin A is negative
. 12
SINA=—-—.
13
sin A

CoSs A

tan A=

13

y

y=+12/13

.

N
N\ y=sinx

~ X

y=-12/13

90

180, 270 60
\\\\

Example: Solve 2 sin® +sin x — cos’x =1

S————4 5

Solution: Rewriting cos®x in terms of sin x will make life easier

Using
=

=
=
=
=

138-2°,
or

sin’ + cos’ = 1
cos’x = 1 -—sin’

2 sin?x + sin x — cos’x =1

2 sin’ + sin x — (1 - sin) =1

3sin’x +sinx-2=0
(3sinx—=2)(sinx+1)=0

. 2
sinx=35 = X = 41.8°

sinx=-1 = x = 270°

y=2/3 1

y=sinx

x=41.8
°

90

18 2710 60
x=180-41.8

y=-1

N.B. If you are asked to give answers in radians, you are allowed to work in degrees as
above and then convert to radians by multiplying by —

So the answers in radians would be

180

X = 41.8103 x 150 = 0-730, or 138-1897 x 150 = 2-41, or 270 x 10 = 7,

Under no circumstances should you use the

T

C

diagram.

You need to understand the graphs and their symmetries, so get used to using them.

14
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3 Coordinate Geometry

Mid point
The mid point, M, of the line joining P (az, b1) and Q (az, by) is (%(aﬁaz), 2 (b, +b2)).

Distance between two points

Let P and Q be the points (a; b;) and (az by).

Using Pythagoras’s theorem

PQ=/(a; = a)? + (b, — b,)? (b

Perpendicular lines
Two lines with gradients m; and m, are perpendicular < m;xmp =-1

Example: Find the equation of the line through (1, -5) which is perpendicular to the line
with equation y =2x -3

Solution: The gradientof y=2x-3 is 2

= Gradient of perpendicular line is —%
= equation of perpendicular lineisy —-5=- % (x-1) using y —ys = m(x — 1)

= X+2y+9=0

Circles

Centre at the origin
Take any point, P, on a circle centre the origin

and radius 5. y

Suppose that P has coordinates (X, Y) r P(xy)
Using Pythagoras’ Theorem we have ;

X +y' =5 = x*+y*=25 y

which is the equation of the circle. —r X r -

and in general the equation of a
circle centre (0, 0) and radius r is

X+ 2=

C2 JUNE 2016 SDB 15



General equation

In the circle shown the centre is C, (a, b), y
and the radiusisr.

CQ =x-a and PQ =y-b
and, using Pythagoras
= CQ° + PQ* =1

— (x-2a)’> + (y=b)* = r?,

which is the general equation of a circle.

Example: Find the centre and radius of the circle whose equation is
x> +y*—4x + 6y —12 = 0.

Solution: First complete the square in both x and y to give
X—AX+4+y+6y+9=12+4+9 = 25
=  (x-2°+ (y+3)’ =5
which is the equation of a circle with centre (2, —3) and radius 5.

Example: Find the equation of the circle which has diameter AB, where A is (3, 5), and
Bis (8, -7).

Solution: The centre is the mid point of AB is (%(3+8), %(5—7)) = (5%, -1)

and the radius is 2AB = 2/(8-3) +(-7-5)" = 6'5

=  equationis (x-55)° + (y+1)* = 6.5%

16 C2 JUNE 2016 SDB



Equation of tangent

Example: Find the equation of the tangent to the circle x*+ 2x + y*—4y =20 at the point

(- 4, 6).
Solution: First complete the square in x and in'y 101y~
=  X+2x+1+y—dy+4 =20+1+4 g
(X + 1)2 + (y - 2)2 = 25. X2+2x+y?—4y=20
3x-4y+36=0 * >
Second find the gradient of the radius from the < X

centre (-1, 2) to the point (- 4, 6) m \5\_,/ !

=

=

H - 6—2 4
gradient of radius = = =z
—4—-1 3 5

gradient of the tangent at that point is %, since
the tangent is perpendicular to the radius
and product of gradients of perpendicular lines is -1 = —g X %

equation of the tangentis y—6 = % (x—-4)

3x—-4y + 36 =0.

Intersection of line and circle

Example: Find the intersection of the line y = 2x + 4 with the circle x*+y? =5,

Solution: Put y=2x+4 in xX*+y*=5 togive x*+(2x+4)°=5

=

U4 Uy

X*+4x° + 16x+ 16 =5
5% +16x+11=0
Gx+11)(x+1)=0
= =22 or -1
= -04 or 2
the line and the circle intersect at (-2-2, - 0-4) and (-1, 2)
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Showing a line is a tangent to a circle

If the two points of intersection are the same point then the line is a tangent.

Example: Show that the line 3x + 4y — 10 = 0 is a tangent to the circle
X+ 2x +y? + 6y = 15.

Solution: Find the intersection of the line and circle
_ 10-4y
T3

3x+4y-10=0 = X

Substituting in the equation of the circle

(10‘”)2 + 2 (@) + y*+ 6y =15

= 3
= 100 - 80y + 16y* + 60 — 24y + 9y? + 54y = 135
=  25y°—50y+25=0
=  yY-2y+1=0
= (y-1)°=0
= y=1lonly, =>x=2
= line is a tangent at (2, 1), since there is only one point of intersection
Note. You should know that the angle in a semi-circle is a right angle and that the

perpendicular from the centre to a chord bisects the chord (cuts it exactly in half).
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4

Sequences and series

Geometric series

Finite geometric series

A geometric series is a series in which each term is a constant amount times the previous
term: this constant amount is called the common ratio.

The common ratio can be any non-zero real number.

Examples: 2, 6, 18, 54, 162, 486, ..... with common ratio 3,
40, 20, 10, 5, 2%, 1%, ... .. with common ratio Y,
Y, -2,8,-32,128,-512, .. .. with common ratio —4.

Generally a geometric series can be written as
S, = at+ar+arf+ar’+ar*+....+ar" ™, upto n terms
where a is the first term and r is the common ratio.

The nth term is u, = ar" ™.

The sum of the first n terms of the above geometric series is

a-rm r’—1
a2 = gD
1-r r—1

Sh =

Proof of the formula for the sum of a geometric series

You must know this proof.

Sh = a+ar+arf+ar’+ ... ar" ?+ar"? multiply through by r
= xS, = ar+ar’+ar+ .. ar"?+ar"t+ar" subtract
=S -rxS,=a+0+0 +0 + ... 0 + 0 -—ar
= (1-nNS,=a-ar" =al-r"

1-r" r—-1
= §, = a( ) = a ( ).
1-r r—1

For an infinite series, if —-1<r<+1 < |r| <1 then " >0 as n— o, and

a
Sph > S = — .
1-r
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Example: Find the n™ term and the sum of the first 11 terms of the geometric series whose
3" term is 2 and whose 6" term is —16.

Solution: Xg =Xz x multiply by r 3 times to go from the 3" term to the 6" term
= -16=2xr
= r*=-8
= r=-2
Now X3 =X x r?
= X=Xz =2+ (=2)

= Xlzz

— 1 -
= n"term, x,=ar" = Sx (2"

and the sum of the first 11 terms is

(-2)1'-1 _ -2049
-2-1 -6

1
S;1==xX%
11 P

= 811 = 341 %

Infinite geometric series
When the common ratio is between -1 and +1 the series converges to a limit.

S, = a+ar+ar’+ar’+ar*+.... upto n terms
1-r™")
Sh = a
1-r

Since |rj<1, " - 0 as n—> o and so

Sp—> S = —
1-r
Example: Show that the geometric series
S=16+12+9+62 + .

converges to a limit and find its sum to infinity.

Solution: Firstly the common ratio is % :Z which lies between -1 and +1 therefore
the sum converges to a limit.

The sum to infinity S, = a
1-r 1-3

-~ S,=64
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Binomial series for positive integral index

Pascal’s triangle
When using Pascal’s triangle we think of the top row as row O.

row 0 1

row 1 1 1

row 2 1 2 1

row 3 1 3 3 1

row 4 1 4 6 N ﬂ4 1

row 5 1 5 10 10 5 1
N2

row 6 1 6 15 20 15 6 1

Toexpand (a+b)® we first write out all the terms of ‘degree 6 in order of decreasing
powers of a to give

Lad+ oah + Lath? + oAkt + ettt +oab® +oLb°
and then fill in the coefficients using row 6 of the triangle to give

1a% + 62 + 15a%b? + 20a%0® + 15a%h* + 6ab® + 1b°
= a® + 6a’h + 15a'® + 20a°p® + 15a’b* + 6ab® + b
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Factorials
Factorial n, writtenasn! = nx(n-1)x(n-2) x...x3x2x 1.
So 5l=5x4x3x2x1=120

. . .. n
Binomial coefficients or "C, or (r)

If we think of row 6 in Pascal’s triangle starting with the Oth term we use the following

notation
0" term 1% term 2" term 3 term 4™ term 5 term 6" term
1 6 15 20 15 6 1
6C0 6C1 GCZ 6C3 6C4 6C5 6C6

o 6
where the binomial coefficients "C, or (Z) are defined by

nCr = (:"l) = (n—?"!)!r!

or C, = (7;) - nn-1)(n-2)(n-3) >;' up to r numbers

This is particularly useful for calculating the numbers further down in Pascal’s triangle.

Example: The “fourth’ number in row 15 is

15~ _(15\ _ 15t 15! 15X14X13x12 _
¢ =(7,) = = = 1365

T (15-4)4! 11! x4! 4x3x2x1

You can also use "C, button on your calculator.

Example: Find the coefficient of x* in the expansion of (3 - 2x)°.

Solution: Thetermin x° is °Csx 3% x (=2x)° since °C; =10
is 10 x 9 x (=8x’) = —720%°

so the coefficient of x> is —720.

For more ideas on using the binomial coefficients, see the appendix.
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5 Exponentials and logarithms

Graphs of exponentials and logarithms

y =2" isan exponential function 31 y=2r
and its inverse is the logarithm function 2 //
=1log,
y = log, x. / ‘ ' og‘xx
-4 -2 2 4
-1
Remember that the graph of an inverse 2
function is the reflection of the original -3
graphin y =x. -4

Rules of logarithms

log.x=y < x=a’ log 2 x" = nlogax
logaxy =logax + logay log,1 =0
loga(x+Yy) =logax —logay logaa =1

Example: Find log; 81.

Solution: Write log; 81 =y
= 81=3 = y=4 = log;81 = 4.

To solve ‘log’ equations we can either use the rules of logarithms to end with
log, % =log, M — %k — W
or log , %k =¥ — %k = a*

Example: Solve log,40 — 3logax =10ga5

Solution: log 240 — 3logax =10g a5
= log .40 — logax® = xlog a5

log 2 (40 +x°) = log a5

40
x3

X =8

X=2.

=5

L Y
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Example: Solve log, x +log,(x + 6) = 3 + log,(x + 1).

. . x(x+6) _ x(x+6) 53 _
Solution: log, e o 2= 8
=  xX*+6x=8x+8 = x*-2x-8=0

= x-4)x+2)=0 = X=4 or -2

But x cannot be negative (you cannot have log, x when x < 0)
= x=4 only

Changing the base of a logarithm
log. b
log. a

log, b

Example: Find log 429.

Solution: log,29 — 109029 _ 1:4624 - -, o
log,, 4 0-6021

A particular case
_log, b 1

logab = = This gives a source of exam questions.
log,a log,a
Example: Solve logsx — 6logx4 =1
Solution: = log, x — 6 =1 = (log, x)*> —=log,x— 6 = 0

log, x

= (logyx — 3)(logyx+ 2) =0

U

logyx = 3 or -2

_ 1
= x=4%or 47 = x=640r —

Equations of the form a*=b

Example: Solve 5* = 13

Solution: Take logs of both sides
=  log 15" = log 1013
= x1og 105 = log 1013
log,,13 1.1139

= X = = = 1.59.
log,, 5 0-6990
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6 Differentiation

Increasing and decreasing functions

y is an increasing function if its gradient is positive, 0;

ay
dx

y is a decreasing function if its gradient is negative, d—y <
X

Example: For what values of x is y=f(x) =x®—x*—x + 7 an increasing function.

Solution: y=f(X)=x}-x*=x+7
= ﬂ:f'(x):sz—Zx—l
dx

For an increasing function we want values of x for which f'(x)=3x*-=2x-1 > 0

Find solutions of f' (x) =3x*-=2x-1=0 RIS
= (x+1)(xx-1)=0 £1(x) =3x-2x-1
= X= 71/3 or 1 1

so graph of 3x*—2x—1 meets x-axis at /3 and 1

and is above x-axis for -1 13 2

X< 3 or x>1

= f'(x)>0 for x<3 or x>1

So y=x*-x?—x+7 isan increasing function for x < /3 or x > 1.

Stationary points and local maxima and minima (turning points).

Any point where the gradient is zero is called a stationary point.
Local maxima and minima are called turning points.
The gradient at a local maximum or minimum is 0.
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S\

minimum maximum
Stationary points of inflection

Turning points

Therefore to find max and min

first — differentiate and find the values of x which give gradient, % , equal to zero:
X

2
second - find second derivative d Z and substitute value of x found above —

second derivative positive = minimum, and
second derivative negative = maximum:

d?y
dx
just before and just after the value of x.

N.B. If = 0, itdoes not help! In this case you will need to find the gradient

Be careful: you might have a stationary point of inflection

third — substitute x to find the value of y and give both coordinates in your answer.

Using second derivative

Example:
Find the local maxima and minima of the curve with equation y=x*+ 4x® - 8x* - 7.

Solution:

y=x'+ 43 -8 -T.

First find % = 4x° + 12x° — 16X.
X

At maxima and minima the gradient = % =0
X
= 43+12¢%-16x =0 = X*+3°-4x=0 = x(X*+3x-4)=0

= X(x+4)(x-1) =0 = x=-4,0 or 1.
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2
Second find % = 12x° + 24x - 16
X

2
When x = -4, 3 2/ =12x16-24x4-16 = 80, positive = minatx =-4
X
d?y .
When x =0, ) = -16, negative, = max atx=0
X
2
Whenx =1, 32’ = 12+24-16=20, positive,= min at x =1.
X

Third find y—values: when x=-4,0 or 1 = y= -135, -7 or -10

= Maximum at (0,-7) and Minimums at (-4, -135) and (1, -10).

d?y
dx
inflection.

N.B. If = 0, itdoes not help! You can have any of max, min or stationary point of

Using gradients before and after

Example: Find the stationary points of y = 3x* - 8x% + 6x* + 7.

Solution: y=3x*—8x%+6x*+7

Y 1953 242 + 12x = 0 for stationary points

dx

x(¢-2x+1)=0 = x(x-1%?=0 = x=0orl.
2

9Y — 36x2 - a8x + 12

dx

which is 12 (positive) when x =0 = minimum at (0, 7)
and which is 0 when x = 1, so we must look at gradients before and after.

x = 09 1 11
d - o108 0 +0-132
dx

— - -~

= stationary point of inflection at (1, 2)

N.B. We could have max, min or stationary point of inflection when the second
derivative is zero, so we must look at gradients before and after.
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Maximum and minimum problems
Example:
A manufacturer of cans for baked beans wishes to use as little metal as possible in the

manufacture of these cans. The cans must have a volume of 500 cm®: how should he design
the cans?

Solution:
R
L R We need to find the radius and height needed to make cans of
| volume 500 cm® using the minimum possible amount of metal.
h em Suppose that the radius is x cm and that the height is h cm.
E The area of top and bottom together is 2 x ©x* cm?® and the
& v area of the curved surface is 2nxh cm®

— the total surface area A = 2nx> + 2nxh cm?. I

We have a problem here: A is a function not only of x, but also of h.

But the volume is 500 cm® and the volume can also be written as Vv = nx’h cm®

= nx*h=500 = hZSLMZJ
X

. 500
and so | can be written A = 27x% + 27X x —

 Az2md+ 2090 _ ol s 1000
X
= 2 - 1000x 2 = amx— 220
dx x2
) dA 1000
For stationary values of A, thearea, — =0 = 42x= —;
dx X
3 s 1000
= 4zx’=1000 = X :4— = 79.57747155 = x=4-301270069
T
= Xx=430to3sF. = h= 502 = 8.60
T X

We do not know whether this value gives a maximum or a minimum value of A or a
stationary point of inflection
d?a

sowe must find — = 4m + 2000x~3 = 4w+ 2020
dx x

Clearly this is positive when x = 4-30 and thus this gives a minimum of A

— minimum area of metal is 349 cm?

when the radius is 4-30 cm and the height is 8-60 cm.
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7 Integration

Definite integrals
When limits of integration are given.

Example: Find I: 6x° —8x+1 dx

Solution: J: 6x> —8x+1 dx :[2x3—4x2+x]f

= [2x3-4x3 +3] - [2x1°-4x1% +1]
= [21]-[-1] = 22.

Area under curve

no need for +C as it cancels out

put top limit in first

The integral is the area between the curve and the x—axis, but areas above the axis are

positive and areas below the axis are negative.

Example: Find the area between the x—axis, x =0, x=2 and y = x* — 4x.

Solution:
2
j X* —4x dx
0
NG L 16 .
= E—ZX = [3—8]]—[0—0]: S which is negative
0

since the area is below the x—axis

. . +16
= required area is =

y=x>-4x

Example: Find the area between the x-axis, x=1,x=4 and y=3x—-Xx*.

Solution: First sketch the curve to see which bits are above (positive) and which bits are

below (negative).
y=3x-x* = x(3-X)

= meets x-axis at 0 and 3. 3

Area A; between 1 and 3, is above axis:

area A,, between 3 and 4, is below axis

so we must find these areas separately.
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A = I: 3x — x? dx

{3x2 x3}3 )

= | X esny =

2 3],

o (o ae= |2 X] s - s
and | 3x-x* dx = T—?3_[3]_[.]__E

and so area A, (areas are positive) = +1°/
sototal area = A; + A, = 3Y5+ 1% = 5%,
3x* X

3 4
Note that LA 3x—x* dx {T—?} = [24]-[15] = 15
1

which is A; - A, (= 345 - 1% = 1'%).

Numerical integration: the trapezium rule

Many functions can not be ‘anti—differentiated” and the trapezium rule is a way of
estimating the area under the curve.

Divide the area under y =f(x) into n strips, vy
each of width h. y=fx)

Join the top of each strip with a straight line to
form a trapezium.

Then the area under the curve ylf y|2
h

~ sum of the areas of the trapezia h ' —

- J':f(x) dx

Q

shyo +v,) +3h(y, +y,) +3h(y, +y;) + . +3h(y,,+Y,)

Q

b
= [ 100 0~ Sh(Yo+Yi+ Y+ Yo +Yot s+ Vs oo +Yor+Yoat V)

Q

b
= [ 100 dx = FN( Y, F 2V +Y, +Ys + o +Y,)

= area under curve ~ %2 width of each strip x (‘ends’ + 2 x ‘middles’).
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8 Appendix

Binomial coefficients, "C,

Choosing r objects from n

If we have n objects, the number of ways we can choose r of these objects is "C,.

n n
Cr = Chor
Every time r objects from n must, therefore, be the same as the number of ways of
leaving n—r behind. are chosen from n, there are n—r objects left behind; the
number of ways of choosing r objects

= nCr = nCn_r .

This can be proved algebraically.

n! n! n! _ nC
r

(n-n-m)n-r)! ~  (@m-n+r)!(n-r)!  ri(n-r)

n —
Cn—r—

(a+b)"
In the expansion of (a+b)" = (a+b)(a+b)(a+b)(@a+b)(@a+b)... (a+b)(a+h),
where there are n brackets,

we can think of forming the term a"~"b" by choosing the r letter bs from the n
brackets in "C, ways.

Thus the coefficient of a"~'b" is "C,.
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Points of inflexion

A point of inflexion is a maximum or minimum of the gradient.

When the gradient is also zero, in which case we have a stationary point of inflexion,
otherwise we have an oblique (sloping) point of inflexion.

maximum
+ - 1Z°f gradient

minimum
of gradient\‘

maximum To+ t

minimum

of gradient of gradient
-_ ++*t ¥
Oblique points of inflexion Stationary points of inflexion
To find a point of inflexion
. ., d?y
1. Find the value(s) of x for which iz - 0, X=a, B, ...
. d3y
2. Either  show that i 0 for these values of x
or show that
. _ d?y . d?y .
either x=a = —Zis+ve and x=a’ = —is-ve
d;z dgz
_ a<y . dcy .
or x=a = —is—ve and x=a' = —2is-+ve
dx? dx?
dzy . - +
o iz changes sign from x=a~ to x=a .

Example: Find the point(s) of inflexion on the graph of y = x*—x3-3x% + 5x + 1.

Solution: y = x*=x*=3x*+5x+1

d
= =43 -32-6x+5
dx
d2
= =2 =12¢-6x-6
dx
d?y 2
E = O = 6(2X —X—l) = 6(2X+1)(X_1) = O

1
= x:—g or 1.

d3

22 = 2ax-6

dx3
1 d3y a3y

X=—= = ——= = -18%#0, and x=1=>—==18=0
2 dx3 dx3
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= points of inflexion at A, (—% , =2 %)

1 \ y
and B! (1: 3)- y=x*-x3-3x2+5x+1 4 B_/

_ d
Notice that =~ =0 when x = 1, \ /
dx

d 3 1
but =~ =12 20whenx =+ -2 -1 / 1
dx 4 2 A

P
= A, (—% , =2 i), is an oblique point of

inflexion, and

B, (1, 3), is a stationary point of
inflexion.

Integration
Area under graph — sum of rectangles

Y=fx)

In any continuous graph, y = f (x), we can divide the

area between x = a and x = b into n strips, each of ~
width &x. L

The area under the graph (between the graph, the
x-axis and the lines x = a and x = b) is approximately

% K or
the area of the n rectangles, as shown.

= the area under the graph

ax——ax-

n
b
A= Zyl-(?x, and aséx =0, A= j y dx
. a

=1

Integration as ‘anti-differentiation’

ax

A = area under the curve from x = a to x v =100
oA =increase in area from x to x + dx
o A = area of the rectangle shown

= SA=f(X)x SxX )
S_A

2 x fQ)

=

SA

ox

As 6x—0 a X
dA
we have —= f(x)

= to find the integral we ‘anti-differentiate’ f (x).
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