1 (i) Differentiate $12\sqrt[3]{x}$.

(ii) Integrate
$$\frac{6}{x^3}$$
. [3]

[2]

- 2 Use calculus to find the set of values of x for which $x^3 6x$ is an increasing function. [5]
- 3 The points P(2, 3.6) and Q(2.2, 2.4) lie on the curve y = f(x). Use P and Q to estimate the gradient of the curve at the point where x = 2. [2]

4 Find
$$\frac{dy}{dx}$$
 when
(i) $y = 2x^{-5}$,
(ii) $y = \sqrt[3]{x}$.
[2]

- 5 The equation of a curve is $y = \sqrt{1 + 2x}$.
 - (i) Calculate the gradient of the chord joining the points on the curve where x = 4 and x = 4.1. Give your answer correct to 4 decimal places. [3]
 - (ii) Showing the points you use, calculate the gradient of another chord of the curve which is a closer approximation to the gradient of the curve when x = 4. [2]

Fig. 5 shows the graph of $y = 2^x$.

- (i) On the copy of Fig. 5, draw by eye a tangent to the curve at the point where x = 2. Hence find an estimate of the gradient of $y = 2^x$ when x = 2. [3]
- (ii) Calculate the *y*-values on the curve when x = 1.8 and x = 2.2. Hence calculate another approximation to the gradient of $y = 2^x$ when x = 2. [2]

7 Find
$$\frac{dy}{dx}$$
 when $y = \sqrt{x} + \frac{3}{x}$. [3]

- 8 The gradient of a curve is $6x^2 + 12x^{\frac{1}{2}}$. The curve passes through the point (4, 10). Find the equation of the curve. [5]
- 9 Use calculus to find the set of values of x for which $f(x) = 12x x^3$ is an increasing function. [3]

10 Given tha
$$y = 6x^{\frac{3}{2}}$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$.

Show, without using a calculator, that when x = 36 the value of $\frac{d^2y}{dx^2}$ is $\frac{3}{4}$. [5]

11 The gradient of a curve is given by $\frac{dy}{dx} = 3 - x^2$. The curve passes through the point (6, 1). Find the equation of the curve. [4]

12 Given tha
$$y = 6x^3 + \sqrt{x} + 3$$
, find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. [5]