(i) Differentiate $12 \sqrt[3]{x}$.
(ii) Integrate $\frac{6}{x^{3}}$.

2 Use calculus to find the set of values of x for which $x^{3}-6 x$ is an increasing function.

3 The points $\mathrm{P}(2,3.6)$ and $\mathrm{Q}(2.2,2.4)$ lie on the curve $y=\mathrm{f}(x)$. Use P and Q to estimate the gradient of the curve at the point where $x=2$.

4 Find $\frac{d y}{d x}$ when
(i) $y=2 x^{-5}$,
(ii) $y=\sqrt[3]{x}$.

5 The equation of a curve is $y=\sqrt{1+2 x}$.
(i) Calculate the gradient of the chord joining the points on the curve where $x=4$ and $x=4.1$. Give your answer correct to 4 decimal places.
(ii) Showing the points you use, calculate the gradient of another chord of the curve which is a closer approximation to the gradient of the curve when $x=4$.

Fig. 5
Fig. 5 shows the graph of $y=2^{x}$.
(i) On the copy of Fig. 5, draw by eye a tangent to the curve at the point where $x=2$. Hence find an estimate of the gradient of $y=2^{x}$ when $x=2$.
(ii) Calculate the y-values on the curve when $x=1.8$ and $x=2.2$. Hence calculate another approximation to the gradient of $y=2^{x}$ when $x=2$.

7 Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=\sqrt{x}+\frac{3}{x}$. [3]

8 The gradient of a curve is $6 x^{2}+12 x^{\frac{1}{2}}$. The curve passes through the point $(4,10)$. Find the equation of the curve.

9 Use calculus to find the set of values of x for which $\mathrm{f}(x)=12 x-x^{3}$ is an increasing function.

10 Given tha $y=6 x^{\frac{3}{2}}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
Show, without using a calculator, that when $x=36$ the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ is $\frac{3}{4}$.

11 The gradient of a curve is given by $\frac{\mathrm{d} y}{\mathrm{~d} x}=3-x^{2}$. The curve passes through the point $(6,1)$. Find the equation of the curve.

12 Given tha $y=6 x^{3}+\sqrt{x}+3$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.

